dragon-ml-toolbox 6.0.0__tar.gz → 6.0.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of dragon-ml-toolbox might be problematic. Click here for more details.
- {dragon_ml_toolbox-6.0.0/dragon_ml_toolbox.egg-info → dragon_ml_toolbox-6.0.1}/PKG-INFO +1 -1
- {dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1/dragon_ml_toolbox.egg-info}/PKG-INFO +1 -1
- {dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/ml_tools/ML_evaluation.py +8 -2
- {dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/ml_tools/ensemble_evaluation.py +1 -1
- {dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/pyproject.toml +1 -1
- {dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/LICENSE +0 -0
- {dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/LICENSE-THIRD-PARTY.md +0 -0
- {dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/README.md +0 -0
- {dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/dragon_ml_toolbox.egg-info/SOURCES.txt +0 -0
- {dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/dragon_ml_toolbox.egg-info/dependency_links.txt +0 -0
- {dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/dragon_ml_toolbox.egg-info/requires.txt +0 -0
- {dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/dragon_ml_toolbox.egg-info/top_level.txt +0 -0
- {dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/ml_tools/ETL_engineering.py +0 -0
- {dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/ml_tools/GUI_tools.py +0 -0
- {dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/ml_tools/MICE_imputation.py +0 -0
- {dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/ml_tools/ML_callbacks.py +0 -0
- {dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/ml_tools/ML_datasetmaster.py +0 -0
- {dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/ml_tools/ML_inference.py +0 -0
- {dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/ml_tools/ML_models.py +0 -0
- {dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/ml_tools/ML_optimization.py +0 -0
- {dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/ml_tools/ML_trainer.py +0 -0
- {dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/ml_tools/PSO_optimization.py +0 -0
- {dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/ml_tools/RNN_forecast.py +0 -0
- {dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/ml_tools/SQL.py +0 -0
- {dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/ml_tools/VIF_factor.py +0 -0
- {dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/ml_tools/__init__.py +0 -0
- {dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/ml_tools/_logger.py +0 -0
- {dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/ml_tools/_script_info.py +0 -0
- {dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/ml_tools/custom_logger.py +0 -0
- {dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/ml_tools/data_exploration.py +0 -0
- {dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/ml_tools/ensemble_inference.py +0 -0
- {dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/ml_tools/ensemble_learning.py +0 -0
- {dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/ml_tools/handle_excel.py +0 -0
- {dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/ml_tools/keys.py +0 -0
- {dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/ml_tools/optimization_tools.py +0 -0
- {dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/ml_tools/path_manager.py +0 -0
- {dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/ml_tools/utilities.py +0 -0
- {dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/setup.cfg +0 -0
|
@@ -163,7 +163,7 @@ def classification_metrics(save_dir: Union[str, Path], y_true: np.ndarray, y_pre
|
|
|
163
163
|
fig_cal, ax_cal = plt.subplots(figsize=(8, 8), dpi=100)
|
|
164
164
|
CalibrationDisplay.from_predictions(y_true, y_score, n_bins=15, ax=ax_cal)
|
|
165
165
|
|
|
166
|
-
ax_cal.set_title('
|
|
166
|
+
ax_cal.set_title('Reliability Curve')
|
|
167
167
|
ax_cal.set_xlabel('Mean Predicted Probability')
|
|
168
168
|
ax_cal.set_ylabel('Fraction of Positives')
|
|
169
169
|
ax_cal.grid(True)
|
|
@@ -197,7 +197,7 @@ def regression_metrics(y_true: np.ndarray, y_pred: np.ndarray, save_dir: Union[s
|
|
|
197
197
|
f" Coefficient of Determination (R²): {r2:.4f}"
|
|
198
198
|
]
|
|
199
199
|
report_string = "\n".join(report_lines)
|
|
200
|
-
print(report_string)
|
|
200
|
+
# print(report_string)
|
|
201
201
|
|
|
202
202
|
save_dir_path = make_fullpath(save_dir, make=True, enforce="directory")
|
|
203
203
|
# Save text report
|
|
@@ -308,6 +308,8 @@ def shap_summary_plot(model, background_data: Union[torch.Tensor,np.ndarray], in
|
|
|
308
308
|
# Save Bar Plot
|
|
309
309
|
bar_path = save_dir_path / "shap_bar_plot.svg"
|
|
310
310
|
shap.summary_plot(shap_values, instances_to_explain_np, feature_names=feature_names, plot_type="bar", show=False)
|
|
311
|
+
ax = plt.gca()
|
|
312
|
+
ax.set_xlabel("SHAP Value Impact", labelpad=10)
|
|
311
313
|
plt.title("SHAP Feature Importance")
|
|
312
314
|
plt.tight_layout()
|
|
313
315
|
plt.savefig(bar_path)
|
|
@@ -317,6 +319,10 @@ def shap_summary_plot(model, background_data: Union[torch.Tensor,np.ndarray], in
|
|
|
317
319
|
# Save Dot Plot
|
|
318
320
|
dot_path = save_dir_path / "shap_dot_plot.svg"
|
|
319
321
|
shap.summary_plot(shap_values, instances_to_explain_np, feature_names=feature_names, plot_type="dot", show=False)
|
|
322
|
+
ax = plt.gca()
|
|
323
|
+
ax.set_xlabel("SHAP Value Impact", labelpad=10)
|
|
324
|
+
cb = plt.gcf().axes[-1]
|
|
325
|
+
cb.set_ylabel("", size=1)
|
|
320
326
|
plt.title("SHAP Feature Importance")
|
|
321
327
|
plt.tight_layout()
|
|
322
328
|
plt.savefig(dot_path)
|
|
@@ -351,7 +351,7 @@ def plot_calibration_curve(
|
|
|
351
351
|
ax=ax
|
|
352
352
|
)
|
|
353
353
|
|
|
354
|
-
ax.set_title(f"{model_name} -
|
|
354
|
+
ax.set_title(f"{model_name} - Reliability Curve for {target_name}", fontsize=base_fontsize)
|
|
355
355
|
ax.tick_params(axis='both', labelsize=base_fontsize - 2)
|
|
356
356
|
ax.set_xlabel("Mean Predicted Probability", fontsize=base_fontsize)
|
|
357
357
|
ax.set_ylabel("Fraction of Positives", fontsize=base_fontsize)
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/dragon_ml_toolbox.egg-info/dependency_links.txt
RENAMED
|
File without changes
|
|
File without changes
|
{dragon_ml_toolbox-6.0.0 → dragon_ml_toolbox-6.0.1}/dragon_ml_toolbox.egg-info/top_level.txt
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|