dragon-ml-toolbox 13.6.0__tar.gz → 13.8.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of dragon-ml-toolbox might be problematic. Click here for more details.
- {dragon_ml_toolbox-13.6.0/dragon_ml_toolbox.egg-info → dragon_ml_toolbox-13.8.0}/PKG-INFO +1 -1
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0/dragon_ml_toolbox.egg-info}/PKG-INFO +1 -1
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/ml_tools/MICE_imputation.py +207 -5
- dragon_ml_toolbox-13.8.0/ml_tools/ML_utilities.py +479 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/ml_tools/custom_logger.py +26 -8
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/ml_tools/keys.py +8 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/ml_tools/utilities.py +178 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/pyproject.toml +1 -1
- dragon_ml_toolbox-13.6.0/ml_tools/ML_utilities.py +0 -230
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/LICENSE +0 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/LICENSE-THIRD-PARTY.md +0 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/README.md +0 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/dragon_ml_toolbox.egg-info/SOURCES.txt +0 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/dragon_ml_toolbox.egg-info/dependency_links.txt +0 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/dragon_ml_toolbox.egg-info/requires.txt +0 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/dragon_ml_toolbox.egg-info/top_level.txt +0 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/ml_tools/ETL_cleaning.py +0 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/ml_tools/ETL_engineering.py +0 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/ml_tools/GUI_tools.py +0 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/ml_tools/ML_callbacks.py +0 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/ml_tools/ML_datasetmaster.py +0 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/ml_tools/ML_evaluation.py +0 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/ml_tools/ML_evaluation_multi.py +0 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/ml_tools/ML_inference.py +0 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/ml_tools/ML_models.py +0 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/ml_tools/ML_optimization.py +0 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/ml_tools/ML_scaler.py +0 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/ml_tools/ML_trainer.py +0 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/ml_tools/PSO_optimization.py +0 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/ml_tools/RNN_forecast.py +0 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/ml_tools/SQL.py +0 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/ml_tools/VIF_factor.py +0 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/ml_tools/__init__.py +0 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/ml_tools/_logger.py +0 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/ml_tools/_schema.py +0 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/ml_tools/_script_info.py +0 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/ml_tools/constants.py +0 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/ml_tools/data_exploration.py +0 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/ml_tools/ensemble_evaluation.py +0 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/ml_tools/ensemble_inference.py +0 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/ml_tools/ensemble_learning.py +0 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/ml_tools/handle_excel.py +0 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/ml_tools/math_utilities.py +0 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/ml_tools/optimization_tools.py +0 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/ml_tools/path_manager.py +0 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/ml_tools/serde.py +0 -0
- {dragon_ml_toolbox-13.6.0 → dragon_ml_toolbox-13.8.0}/setup.cfg +0 -0
|
@@ -7,19 +7,20 @@ from plotnine import ggplot, labs, theme, element_blank # type: ignore
|
|
|
7
7
|
from typing import Optional, Union
|
|
8
8
|
|
|
9
9
|
from .utilities import load_dataframe, merge_dataframes, save_dataframe_filename
|
|
10
|
-
from .math_utilities import threshold_binary_values
|
|
10
|
+
from .math_utilities import threshold_binary_values, discretize_categorical_values
|
|
11
11
|
from .path_manager import sanitize_filename, make_fullpath, list_csv_paths
|
|
12
12
|
from ._logger import _LOGGER
|
|
13
13
|
from ._script_info import _script_info
|
|
14
|
+
from ._schema import FeatureSchema
|
|
14
15
|
|
|
15
16
|
|
|
16
17
|
__all__ = [
|
|
18
|
+
"MiceImputer",
|
|
17
19
|
"apply_mice",
|
|
18
20
|
"save_imputed_datasets",
|
|
19
|
-
"get_na_column_names",
|
|
20
21
|
"get_convergence_diagnostic",
|
|
21
22
|
"get_imputed_distributions",
|
|
22
|
-
"run_mice_pipeline"
|
|
23
|
+
"run_mice_pipeline",
|
|
23
24
|
]
|
|
24
25
|
|
|
25
26
|
|
|
@@ -79,7 +80,7 @@ def save_imputed_datasets(save_dir: Union[str, Path], imputed_datasets: list, df
|
|
|
79
80
|
|
|
80
81
|
|
|
81
82
|
#Get names of features that had missing values before imputation
|
|
82
|
-
def
|
|
83
|
+
def _get_na_column_names(df: pd.DataFrame):
|
|
83
84
|
return [col for col in df.columns if df[col].isna().any()]
|
|
84
85
|
|
|
85
86
|
|
|
@@ -264,7 +265,7 @@ def run_mice_pipeline(df_path_or_dir: Union[str,Path], target_columns: list[str]
|
|
|
264
265
|
|
|
265
266
|
save_imputed_datasets(save_dir=save_datasets_path, imputed_datasets=imputed_datasets, df_targets=df_targets, imputed_dataset_names=imputed_dataset_names)
|
|
266
267
|
|
|
267
|
-
imputed_column_names =
|
|
268
|
+
imputed_column_names = _get_na_column_names(df=df)
|
|
268
269
|
|
|
269
270
|
get_convergence_diagnostic(kernel=kernel, imputed_dataset_names=imputed_dataset_names, column_names=imputed_column_names, root_dir=save_metrics_path)
|
|
270
271
|
|
|
@@ -278,5 +279,206 @@ def _skip_targets(df: pd.DataFrame, target_cols: list[str]):
|
|
|
278
279
|
return df_feats, df_targets
|
|
279
280
|
|
|
280
281
|
|
|
282
|
+
# modern implementation
|
|
283
|
+
class MiceImputer:
|
|
284
|
+
"""
|
|
285
|
+
A modern MICE imputation pipeline that uses a FeatureSchema
|
|
286
|
+
to correctly discretize categorical features after imputation.
|
|
287
|
+
"""
|
|
288
|
+
def __init__(self,
|
|
289
|
+
schema: FeatureSchema,
|
|
290
|
+
iterations: int=20,
|
|
291
|
+
resulting_datasets: int = 1,
|
|
292
|
+
random_state: int = 101):
|
|
293
|
+
|
|
294
|
+
self.schema = schema
|
|
295
|
+
self.random_state = random_state
|
|
296
|
+
self.iterations = iterations
|
|
297
|
+
self.resulting_datasets = resulting_datasets
|
|
298
|
+
|
|
299
|
+
# --- Store schema info ---
|
|
300
|
+
|
|
301
|
+
# 1. Categorical info
|
|
302
|
+
if not self.schema.categorical_index_map:
|
|
303
|
+
_LOGGER.warning("FeatureSchema has no 'categorical_index_map'. No discretization will be applied.")
|
|
304
|
+
self.cat_info = {}
|
|
305
|
+
else:
|
|
306
|
+
self.cat_info = self.schema.categorical_index_map
|
|
307
|
+
|
|
308
|
+
# 2. Ordered feature names (critical for index mapping)
|
|
309
|
+
self.ordered_features = list(self.schema.feature_names)
|
|
310
|
+
|
|
311
|
+
# 3. Names of categorical features
|
|
312
|
+
self.categorical_features = list(self.schema.categorical_feature_names)
|
|
313
|
+
|
|
314
|
+
_LOGGER.info(f"MiceImputer initialized. Found {len(self.cat_info)} categorical features to discretize.")
|
|
315
|
+
|
|
316
|
+
def _post_process(self, imputed_df: pd.DataFrame) -> pd.DataFrame:
|
|
317
|
+
"""
|
|
318
|
+
Applies schema-based discretization to a completed dataframe.
|
|
319
|
+
|
|
320
|
+
This method works around the behavior of `discretize_categorical_values`
|
|
321
|
+
(which returns a full int32 array) by:
|
|
322
|
+
1. Calling it on the full, ordered feature array.
|
|
323
|
+
2. Extracting *only* the valid discretized categorical columns.
|
|
324
|
+
3. Updating the original float dataframe with these integer values.
|
|
325
|
+
"""
|
|
326
|
+
# If no categorical features are defined, return the df as-is.
|
|
327
|
+
if not self.cat_info:
|
|
328
|
+
return imputed_df
|
|
329
|
+
|
|
330
|
+
try:
|
|
331
|
+
# 1. Ensure DataFrame columns match the schema order
|
|
332
|
+
# This is critical for the index-based categorical_info
|
|
333
|
+
df_ordered: pd.DataFrame = imputed_df[self.ordered_features] # type: ignore
|
|
334
|
+
|
|
335
|
+
# 2. Convert to NumPy array
|
|
336
|
+
array_ordered = df_ordered.to_numpy()
|
|
337
|
+
|
|
338
|
+
# 3. Apply discretization utility (which returns a full int32 array)
|
|
339
|
+
# This array has *correct* categorical values but *truncated* continuous values.
|
|
340
|
+
discretized_array_int32 = discretize_categorical_values(
|
|
341
|
+
array_ordered,
|
|
342
|
+
self.cat_info,
|
|
343
|
+
start_at_zero=True # Assuming 0-based indexing
|
|
344
|
+
)
|
|
345
|
+
|
|
346
|
+
# 4. Create a new DF from the int32 array, keeping the categorical columns.
|
|
347
|
+
df_discretized_cats = pd.DataFrame(
|
|
348
|
+
discretized_array_int32,
|
|
349
|
+
columns=self.ordered_features,
|
|
350
|
+
index=df_ordered.index # <-- Critical: align index
|
|
351
|
+
)[self.categorical_features] # <-- Select only cat features
|
|
352
|
+
|
|
353
|
+
# 5. "Rejoin": Start with a fresh copy of the *original* imputed DF (which has correct continuous floats).
|
|
354
|
+
final_df = df_ordered.copy()
|
|
355
|
+
|
|
356
|
+
# 6. Use .update() to "paste" the integer categorical values
|
|
357
|
+
# over the old float categorical values. Continuous floats are unaffected.
|
|
358
|
+
final_df.update(df_discretized_cats)
|
|
359
|
+
|
|
360
|
+
return final_df
|
|
361
|
+
|
|
362
|
+
except Exception as e:
|
|
363
|
+
_LOGGER.error(f"Failed during post-processing discretization:\n\tInput DF shape: {imputed_df.shape}\n\tSchema features: {len(self.ordered_features)}\n\tCategorical info keys: {list(self.cat_info.keys())}\n{e}")
|
|
364
|
+
raise
|
|
365
|
+
|
|
366
|
+
def _run_mice(self,
|
|
367
|
+
df: pd.DataFrame,
|
|
368
|
+
df_name: str) -> tuple[mf.ImputationKernel, list[pd.DataFrame], list[str]]:
|
|
369
|
+
"""
|
|
370
|
+
Runs the MICE kernel and applies schema-based post-processing.
|
|
371
|
+
|
|
372
|
+
Parameters:
|
|
373
|
+
df (pd.DataFrame): The input dataframe *with NaNs*. Should only contain feature columns.
|
|
374
|
+
df_name (str): The base name for the dataset.
|
|
375
|
+
|
|
376
|
+
Returns:
|
|
377
|
+
tuple[mf.ImputationKernel, list[pd.DataFrame], list[str]]:
|
|
378
|
+
- The trained MICE kernel
|
|
379
|
+
- A list of imputed and processed DataFrames
|
|
380
|
+
- A list of names for the new DataFrames
|
|
381
|
+
"""
|
|
382
|
+
# Ensure input df only contains features from the schema and is in the correct order.
|
|
383
|
+
try:
|
|
384
|
+
df_feats = df[self.ordered_features]
|
|
385
|
+
except KeyError as e:
|
|
386
|
+
_LOGGER.error(f"Input DataFrame is missing required schema columns: {e}")
|
|
387
|
+
raise
|
|
388
|
+
|
|
389
|
+
# 1. Initialize kernel
|
|
390
|
+
kernel = mf.ImputationKernel(
|
|
391
|
+
data=df_feats,
|
|
392
|
+
num_datasets=self.resulting_datasets,
|
|
393
|
+
random_state=self.random_state
|
|
394
|
+
)
|
|
395
|
+
|
|
396
|
+
_LOGGER.info("➡️ Schema-based MICE imputation running...")
|
|
397
|
+
|
|
398
|
+
# 2. Perform MICE
|
|
399
|
+
kernel.mice(self.iterations)
|
|
400
|
+
|
|
401
|
+
# 3. Retrieve, process, and collect datasets
|
|
402
|
+
imputed_datasets = []
|
|
403
|
+
for i in range(self.resulting_datasets):
|
|
404
|
+
# complete_data returns a pd.DataFrame
|
|
405
|
+
completed_df = kernel.complete_data(dataset=i)
|
|
406
|
+
|
|
407
|
+
# Apply our new discretization and ordering
|
|
408
|
+
processed_df = self._post_process(completed_df)
|
|
409
|
+
imputed_datasets.append(processed_df)
|
|
410
|
+
|
|
411
|
+
if not imputed_datasets:
|
|
412
|
+
_LOGGER.error("No imputed datasets were generated.")
|
|
413
|
+
raise ValueError()
|
|
414
|
+
|
|
415
|
+
# 4. Generate names
|
|
416
|
+
if self.resulting_datasets == 1:
|
|
417
|
+
imputed_dataset_names = [f"{df_name}_MICE"]
|
|
418
|
+
else:
|
|
419
|
+
imputed_dataset_names = [f"{df_name}_MICE_{i+1}" for i in range(self.resulting_datasets)]
|
|
420
|
+
|
|
421
|
+
# 5. Validate indexes
|
|
422
|
+
for imputed_df, subname in zip(imputed_datasets, imputed_dataset_names):
|
|
423
|
+
assert imputed_df.shape[0] == df.shape[0], f"❌ Row count mismatch in dataset {subname}"
|
|
424
|
+
assert all(imputed_df.index == df.index), f"❌ Index mismatch in dataset {subname}"
|
|
425
|
+
|
|
426
|
+
_LOGGER.info("Schema-based MICE imputation complete.")
|
|
427
|
+
|
|
428
|
+
return kernel, imputed_datasets, imputed_dataset_names
|
|
429
|
+
|
|
430
|
+
def run_pipeline(self,
|
|
431
|
+
df_path_or_dir: Union[str,Path],
|
|
432
|
+
save_datasets_dir: Union[str,Path],
|
|
433
|
+
save_metrics_dir: Union[str,Path],
|
|
434
|
+
):
|
|
435
|
+
"""
|
|
436
|
+
Runs the complete MICE imputation pipeline.
|
|
437
|
+
|
|
438
|
+
This method automates the entire workflow:
|
|
439
|
+
1. Loads data from a CSV file path or a directory with CSV files.
|
|
440
|
+
2. Separates features and targets based on the `FeatureSchema`.
|
|
441
|
+
3. Runs the MICE algorithm on the feature set.
|
|
442
|
+
4. Applies schema-based post-processing to discretize categorical features.
|
|
443
|
+
5. Saves the final, processed, and imputed dataset(s) (re-joined with targets) to `save_datasets_dir`.
|
|
444
|
+
6. Generates and saves convergence and distribution plots for all imputed columns to `save_metrics_dir`.
|
|
445
|
+
|
|
446
|
+
Parameters
|
|
447
|
+
----------
|
|
448
|
+
df_path_or_dir :[str,Path]
|
|
449
|
+
Path to a single CSV file or a directory containing multiple CSV files to impute.
|
|
450
|
+
save_datasets_dir : [str,Path]
|
|
451
|
+
Directory where the final imputed and processed dataset(s) will be saved as CSVs.
|
|
452
|
+
save_metrics_dir : [str,Path]
|
|
453
|
+
Directory where convergence and distribution plots will be saved.
|
|
454
|
+
"""
|
|
455
|
+
# Check paths
|
|
456
|
+
save_datasets_path = make_fullpath(save_datasets_dir, make=True)
|
|
457
|
+
save_metrics_path = make_fullpath(save_metrics_dir, make=True)
|
|
458
|
+
|
|
459
|
+
input_path = make_fullpath(df_path_or_dir)
|
|
460
|
+
if input_path.is_file():
|
|
461
|
+
all_file_paths = [input_path]
|
|
462
|
+
else:
|
|
463
|
+
all_file_paths = list(list_csv_paths(input_path).values())
|
|
464
|
+
|
|
465
|
+
for df_path in all_file_paths:
|
|
466
|
+
|
|
467
|
+
df, df_name = load_dataframe(df_path=df_path, kind="pandas")
|
|
468
|
+
|
|
469
|
+
df_features: pd.DataFrame = df[self.schema.feature_names] # type: ignore
|
|
470
|
+
df_targets = df.drop(columns=self.schema.feature_names)
|
|
471
|
+
|
|
472
|
+
imputed_column_names = _get_na_column_names(df=df_features)
|
|
473
|
+
|
|
474
|
+
kernel, imputed_datasets, imputed_dataset_names = self._run_mice(df=df_features, df_name=df_name)
|
|
475
|
+
|
|
476
|
+
save_imputed_datasets(save_dir=save_datasets_path, imputed_datasets=imputed_datasets, df_targets=df_targets, imputed_dataset_names=imputed_dataset_names)
|
|
477
|
+
|
|
478
|
+
get_convergence_diagnostic(kernel=kernel, imputed_dataset_names=imputed_dataset_names, column_names=imputed_column_names, root_dir=save_metrics_path)
|
|
479
|
+
|
|
480
|
+
get_imputed_distributions(kernel=kernel, df_name=df_name, root_dir=save_metrics_path, column_names=imputed_column_names)
|
|
481
|
+
|
|
482
|
+
|
|
281
483
|
def info():
|
|
282
484
|
_script_info(__all__)
|