donkit-llm 0.1.5__tar.gz → 0.1.7__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: donkit-llm
3
- Version: 0.1.5
3
+ Version: 0.1.7
4
4
  Summary: Unified LLM model implementations for Donkit (OpenAI, Azure OpenAI, Claude, Vertex AI, Ollama)
5
5
  License: MIT
6
6
  Author: Donkit AI
@@ -1,6 +1,6 @@
1
1
  [tool.poetry]
2
2
  name = "donkit-llm"
3
- version = "0.1.5"
3
+ version = "0.1.7"
4
4
  description = "Unified LLM model implementations for Donkit (OpenAI, Azure OpenAI, Claude, Vertex AI, Ollama)"
5
5
  authors = ["Donkit AI <opensource@donkit.ai>"]
6
6
  license = "MIT"
@@ -43,6 +43,45 @@ class OpenAIModel(LLMModelAbstract):
43
43
  self._init_client(api_key, base_url, organization)
44
44
  self._capabilities = self._determine_capabilities()
45
45
 
46
+ def _clean_schema_for_openai(self, schema: dict, is_gpt5: bool = False) -> dict:
47
+ """Clean JSON Schema for OpenAI strict mode.
48
+
49
+ Args:
50
+ schema: JSON Schema to clean
51
+ is_gpt5: Currently unused - both GPT-4o and GPT-5 support title/description
52
+
53
+ OpenAI Structured Outputs supports:
54
+ - title and description (useful metadata for the model)
55
+ - Automatically adds additionalProperties: false for all objects
56
+ - Recursively processes nested objects and arrays
57
+
58
+ Note: The main requirement is additionalProperties: false for all objects,
59
+ which is automatically added by this method.
60
+ """
61
+ cleaned = {}
62
+
63
+ # Copy all fields, recursively processing nested structures
64
+ for key, value in schema.items():
65
+ if key == "properties" and isinstance(value, dict):
66
+ # Recursively clean properties
67
+ cleaned["properties"] = {
68
+ k: self._clean_schema_for_openai(v, is_gpt5)
69
+ if isinstance(v, dict)
70
+ else v
71
+ for k, v in value.items()
72
+ }
73
+ elif key == "items" and isinstance(value, dict):
74
+ # Recursively clean array items
75
+ cleaned["items"] = self._clean_schema_for_openai(value, is_gpt5)
76
+ else:
77
+ cleaned[key] = value
78
+
79
+ # Ensure additionalProperties is false for objects (required by OpenAI)
80
+ if cleaned.get("type") == "object" and "additionalProperties" not in cleaned:
81
+ cleaned["additionalProperties"] = False
82
+
83
+ return cleaned
84
+
46
85
  def _get_base_model_name(self) -> str:
47
86
  """Get base model name for capability/parameter detection.
48
87
 
@@ -56,9 +95,9 @@ class OpenAIModel(LLMModelAbstract):
56
95
  Reasoning models don't support temperature, top_p, presence_penalty, frequency_penalty.
57
96
  They only support max_completion_tokens (not max_tokens).
58
97
  """
59
- model_lower = self._get_base_model_name().lower()
98
+ model_lower = self.model_name.lower()
60
99
  # Check for reasoning model prefixes
61
- reasoning_prefixes = ("gpt-5", "o1", "o3", "o4")
100
+ reasoning_prefixes = ("gpt-5", "o1", "o3", "o4", "deepseek")
62
101
  return any(model_lower.startswith(prefix) for prefix in reasoning_prefixes)
63
102
 
64
103
  def _supports_max_completion_tokens(self) -> bool:
@@ -267,13 +306,18 @@ class OpenAIModel(LLMModelAbstract):
267
306
  # If response_format is a JSON Schema dict with "type": "object", wrap it
268
307
  if isinstance(request.response_format, dict):
269
308
  if request.response_format.get("type") == "object":
270
- # This is a JSON Schema - wrap it in json_schema format
309
+ # This is a JSON Schema - clean and wrap it in json_schema format
310
+ # GPT-5 and reasoning models need stricter schema cleaning
311
+ is_gpt5 = self._is_reasoning_model()
312
+ cleaned_schema = self._clean_schema_for_openai(
313
+ request.response_format, is_gpt5=is_gpt5
314
+ )
271
315
  kwargs["response_format"] = {
272
316
  "type": "json_schema",
273
317
  "json_schema": {
274
318
  "name": "response",
275
319
  "strict": True,
276
- "schema": request.response_format,
320
+ "schema": cleaned_schema,
277
321
  },
278
322
  }
279
323
  else:
@@ -291,6 +335,18 @@ class OpenAIModel(LLMModelAbstract):
291
335
  messages = [self._convert_message(msg) for msg in request.messages]
292
336
  kwargs = self._build_request_kwargs(request, messages, stream=False)
293
337
 
338
+ # Log request to LLM
339
+ # request_log = {
340
+ # "model": self._model_name,
341
+ # "messages": messages,
342
+ # "temperature": kwargs.get("temperature"),
343
+ # "max_tokens": kwargs.get("max_tokens")
344
+ # or kwargs.get("max_completion_tokens"),
345
+ # "top_p": kwargs.get("top_p"),
346
+ # "tools": kwargs.get("tools"),
347
+ # "tool_choice": kwargs.get("tool_choice"),
348
+ # }
349
+
294
350
  try:
295
351
  response = await self.client.chat.completions.create(**kwargs)
296
352
 
@@ -317,6 +373,33 @@ class OpenAIModel(LLMModelAbstract):
317
373
  for tc in message.tool_calls
318
374
  ]
319
375
 
376
+ # Log response from LLM
377
+ # response_log = {
378
+ # "content": content,
379
+ # "tool_calls": [
380
+ # {
381
+ # "id": tc.id,
382
+ # "type": tc.type,
383
+ # "function": {
384
+ # "name": tc.function.name,
385
+ # "arguments": tc.function.arguments,
386
+ # },
387
+ # }
388
+ # for tc in (message.tool_calls or [])
389
+ # ],
390
+ # "finish_reason": choice.finish_reason,
391
+ # "usage": {
392
+ # "prompt_tokens": response.usage.prompt_tokens,
393
+ # "completion_tokens": response.usage.completion_tokens,
394
+ # "total_tokens": response.usage.total_tokens,
395
+ # }
396
+ # if response.usage
397
+ # else None,
398
+ # }
399
+ # logger.info(
400
+ # f"LLM Response (generate): {json.dumps(response_log, ensure_ascii=False, indent=2)}"
401
+ # )
402
+
320
403
  return GenerateResponse(
321
404
  content=content,
322
405
  tool_calls=tool_calls,
@@ -342,6 +425,22 @@ class OpenAIModel(LLMModelAbstract):
342
425
  messages = [self._convert_message(msg) for msg in request.messages]
343
426
  kwargs = self._build_request_kwargs(request, messages, stream=True)
344
427
 
428
+ # Log request to LLM
429
+ # request_log = {
430
+ # "model": self._model_name,
431
+ # "messages": messages,
432
+ # "temperature": kwargs.get("temperature"),
433
+ # "max_tokens": kwargs.get("max_tokens")
434
+ # or kwargs.get("max_completion_tokens"),
435
+ # "top_p": kwargs.get("top_p"),
436
+ # "tools": kwargs.get("tools"),
437
+ # "tool_choice": kwargs.get("tool_choice"),
438
+ # "stream": True,
439
+ # }
440
+ # logger.info(
441
+ # f"LLM Request (generate_stream): {json.dumps(request_log, ensure_ascii=False, indent=2)}"
442
+ # )
443
+
345
444
  try:
346
445
  stream = await self.client.chat.completions.create(**kwargs)
347
446
 
@@ -357,6 +456,11 @@ class OpenAIModel(LLMModelAbstract):
357
456
 
358
457
  # Yield text content if present
359
458
  if delta.content:
459
+ # Log chunk content: uncomment to debug
460
+ # chunk_log = {"content": delta.content}
461
+ # logger.info(
462
+ # f"LLM Stream Chunk: {json.dumps(chunk_log, ensure_ascii=False)}"
463
+ # )
360
464
  yield StreamChunk(content=delta.content, tool_calls=None)
361
465
 
362
466
  # Accumulate tool calls
@@ -401,6 +505,21 @@ class OpenAIModel(LLMModelAbstract):
401
505
  )
402
506
  for tc_data in accumulated_tool_calls.values()
403
507
  ]
508
+ # Log final tool calls
509
+ # tool_calls_log = [
510
+ # {
511
+ # "id": tc.id,
512
+ # "type": tc.type,
513
+ # "function": {
514
+ # "name": tc.function.name,
515
+ # "arguments": tc.function.arguments,
516
+ # },
517
+ # }
518
+ # for tc in tool_calls
519
+ # ]
520
+ # logger.info(
521
+ # f"LLM Stream Final Tool Calls: {json.dumps(tool_calls_log, ensure_ascii=False, indent=2)}"
522
+ # )
404
523
  yield StreamChunk(content=None, tool_calls=tool_calls)
405
524
 
406
525
  except Exception as e:
@@ -1,442 +0,0 @@
1
- #!/usr/bin/env python3
2
- """Test script for Ollama LLM provider integration."""
3
-
4
- import asyncio
5
- import json
6
-
7
- import pytest
8
-
9
- from llm_gate.models import ModelCapability
10
- from .factory import ModelFactory
11
- from .model_abstract import (
12
- ContentPart,
13
- ContentType,
14
- EmbeddingRequest,
15
- GenerateRequest,
16
- Message,
17
- )
18
- from .openai_model import OpenAIModel
19
-
20
-
21
- def test_ollama_model_creation() -> None:
22
- """Test that Ollama model initializes correctly."""
23
- print("=" * 60)
24
- print("TEST 1: Ollama Model Creation via Factory")
25
- print("=" * 60)
26
-
27
- credentials = {
28
- "api_key": "ollama",
29
- "base_url": "http://localhost:11434/v1",
30
- }
31
-
32
- try:
33
- model = ModelFactory.create_model(
34
- provider="ollama",
35
- model_name="gpt-oss:20b-cloud",
36
- credentials=credentials,
37
- )
38
- print(f"✅ Model created: {model.__class__.__name__}")
39
- print(f" Model name: {model.model_name}")
40
- print(f" Is OpenAI model: {isinstance(model, OpenAIModel)}")
41
- except Exception as e:
42
- print(f"❌ Failed to create model: {e}")
43
- raise
44
-
45
-
46
- def test_openai_model_direct_creation() -> None:
47
- """Test direct OpenAI model creation for Ollama."""
48
- print("\n" + "=" * 60)
49
- print("TEST 2: Direct OpenAI Model Creation for Ollama")
50
- print("=" * 60)
51
-
52
- try:
53
- model = ModelFactory.create_openai_model(
54
- model_name="gpt-oss:20b-cloud",
55
- api_key="ollama",
56
- base_url="http://localhost:11434/v1",
57
- )
58
- print(f"✅ Model created: {model.__class__.__name__}")
59
- print(f" Model name: {model.model_name}")
60
- print(f" Has client: {hasattr(model, 'client')}")
61
- print(f" Client type: {type(model.client).__name__}")
62
- except Exception as e:
63
- print(f"❌ Failed to create model: {e}")
64
- raise
65
-
66
-
67
- def test_embedding_model_creation() -> None:
68
- """Test embedding model creation for Ollama."""
69
- print("\n" + "=" * 60)
70
- print("TEST 3: Embedding Model Creation")
71
- print("=" * 60)
72
-
73
- try:
74
- # OpenAI embedding model with Ollama base URL
75
- model = ModelFactory.create_embedding_model(
76
- provider="openai",
77
- model_name="nomic-embed-text",
78
- api_key="ollama",
79
- base_url="http://localhost:11434/v1",
80
- )
81
- print(f"✅ Embedding model created: {model.__class__.__name__}")
82
- print(f" Model name: {model.model_name}")
83
- except Exception as e:
84
- print(f"❌ Failed to create embedding model: {e}")
85
- raise
86
-
87
-
88
- def test_model_configuration() -> None:
89
- """Test model configuration."""
90
- print("\n" + "=" * 60)
91
- print("TEST 4: Model Configuration")
92
- print("=" * 60)
93
-
94
- try:
95
- model = ModelFactory.create_openai_model(
96
- model_name="gpt-oss:20b-cloud",
97
- api_key="ollama",
98
- base_url="http://localhost:11434/v1",
99
- )
100
-
101
- config = {
102
- "model_name": model.model_name,
103
- "model_type": model.__class__.__name__,
104
- "has_client": hasattr(model, "client"),
105
- "capabilities": str(model.capabilities),
106
- }
107
-
108
- print("✅ Model configuration:")
109
- print(json.dumps(config, indent=2, default=str))
110
- except Exception as e:
111
- print(f"❌ Failed to get model configuration: {e}")
112
- raise
113
-
114
-
115
- def test_factory_provider_support() -> None:
116
- """Test that factory supports ollama provider."""
117
- print("\n" + "=" * 60)
118
- print("TEST 5: Factory Provider Support")
119
- print("=" * 60)
120
-
121
- credentials = {
122
- "api_key": "ollama",
123
- "base_url": "http://localhost:11434/v1",
124
- }
125
-
126
- try:
127
- # Test all supported providers
128
- providers = ["openai", "ollama"]
129
- for provider in providers:
130
- model = ModelFactory.create_model(
131
- provider=provider,
132
- model_name="test-model",
133
- credentials=credentials,
134
- )
135
- print(f"✅ Provider '{provider}' supported: {model.__class__.__name__}")
136
- except Exception as e:
137
- print(f"❌ Provider support test failed: {e}")
138
- raise
139
-
140
-
141
- @pytest.mark.asyncio
142
- async def test_text_generation() -> None:
143
- """Test text generation with Ollama."""
144
- print("\n" + "=" * 60)
145
- print("TEST 6: Text Generation Request")
146
- print("=" * 60)
147
-
148
- credentials = {
149
- "api_key": "ollama",
150
- "base_url": "http://localhost:11434/v1",
151
- }
152
-
153
- try:
154
- model = ModelFactory.create_model(
155
- provider="ollama",
156
- model_name="gpt-oss:20b-cloud",
157
- credentials=credentials,
158
- )
159
-
160
- request = GenerateRequest(
161
- messages=[
162
- Message(
163
- role="user", content="Say 'Hello from Ollama!' in one sentence."
164
- )
165
- ],
166
- temperature=0.7,
167
- max_tokens=100,
168
- )
169
-
170
- print("📤 Sending request to Ollama...")
171
- print(" Model: gpt-oss:20b-cloud")
172
- print(f" Message: {request.messages[0].content}")
173
-
174
- response = await model.generate(request)
175
-
176
- print("✅ Generation successful")
177
- print(f" Response: {response.content}")
178
-
179
- except Exception as e:
180
- print(f"❌ Generation failed: {e}")
181
- raise
182
-
183
-
184
- @pytest.mark.asyncio
185
- async def test_streaming_generation() -> None:
186
- """Test streaming text generation with Ollama."""
187
- print("\n" + "=" * 60)
188
- print("TEST 7: Streaming Text Generation")
189
- print("=" * 60)
190
-
191
- credentials = {
192
- "api_key": "ollama",
193
- "base_url": "http://localhost:11434/v1",
194
- }
195
-
196
- try:
197
- model = ModelFactory.create_model(
198
- provider="ollama",
199
- model_name="gpt-oss:20b-cloud",
200
- credentials=credentials,
201
- )
202
-
203
- request = GenerateRequest(
204
- messages=[
205
- Message(role="user", content="Count from 1 to 5, one number per line.")
206
- ],
207
- temperature=0.5,
208
- max_tokens=100,
209
- )
210
-
211
- print("📤 Sending streaming request to Ollama...")
212
- print(" Model: gpt-oss:20b-cloud")
213
- print(f" Message: {request.messages[0].content}")
214
- print("\n Response stream:")
215
-
216
- full_content = ""
217
- async for chunk in model.generate_stream(request):
218
- if chunk.content:
219
- print(f" {chunk.content}", end="", flush=True)
220
- full_content += chunk.content
221
-
222
- print("\n\n✅ Streaming complete")
223
- print(f" Total content length: {len(full_content)} characters")
224
-
225
- except Exception as e:
226
- print(f"❌ Streaming failed: {e}")
227
- raise
228
-
229
-
230
- @pytest.mark.asyncio
231
- async def test_embedding_generation() -> None:
232
- """Test embedding generation with Ollama."""
233
- print("\n" + "=" * 60)
234
- print("TEST 8: Embedding Generation")
235
- print("=" * 60)
236
- try:
237
- model = ModelFactory.create_embedding_model(
238
- provider="openai",
239
- model_name="embeddinggemma",
240
- api_key="ollama",
241
- base_url="http://localhost:11434/v1",
242
- )
243
-
244
- texts = [
245
- "Hello from Ollama!",
246
- "This is a test embedding.",
247
- "Embedding models are useful for semantic search.",
248
- ]
249
-
250
- request = EmbeddingRequest(input=texts)
251
-
252
- print("📤 Sending embedding request to Ollama...")
253
- print(" Model: nomic-embed-text")
254
- print(f" Texts to embed: {len(texts)}")
255
- for i, text in enumerate(texts, 1):
256
- print(f" {i}. {text}")
257
-
258
- response = await model.embed(request)
259
-
260
- print("✅ Embedding successful")
261
- print(f" Number of embeddings: {len(response.embeddings)}")
262
- print(f" Embedding dimension: {len(response.embeddings[0])}")
263
- print(f" First embedding (first 5 values): {response.embeddings[0][:5]}")
264
-
265
- except Exception as e:
266
- print(f"❌ Embedding failed: {e}")
267
- raise
268
-
269
-
270
- @pytest.mark.asyncio
271
- async def test_multimodal_vision() -> None:
272
- """Test multimodal vision capabilities with Ollama."""
273
- print("\n" + "=" * 60)
274
- print("TEST 9: Multimodal Vision (Image Understanding)")
275
- print("=" * 60)
276
-
277
- credentials = {
278
- "api_key": "ollama",
279
- "base_url": "http://localhost:11434/v1",
280
- }
281
-
282
- try:
283
- model = ModelFactory.create_model(
284
- provider="ollama",
285
- model_name="qwen3-vl:235b-cloud",
286
- credentials=credentials,
287
- )
288
-
289
- # Check if model supports vision
290
- print("📋 Model capabilities:")
291
- print(f" Vision support: {model.supports_capability(ModelCapability.VISION)}")
292
- print(
293
- f" Multimodal input: {model.supports_capability(ModelCapability.MULTIMODAL_INPUT)}"
294
- )
295
-
296
- # Create a message with image URL (using a public test image)
297
- image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Cat03.jpg/1200px-Cat03.jpg"
298
-
299
- content_parts = [
300
- ContentPart(
301
- content_type=ContentType.TEXT,
302
- content="What do you see in this image? Describe it briefly.",
303
- ),
304
- ContentPart(
305
- content_type=ContentType.IMAGE_URL,
306
- content=image_url,
307
- mime_type="image/jpeg",
308
- ),
309
- ]
310
-
311
- message = Message(role="user", content=content_parts)
312
-
313
- request = GenerateRequest(
314
- messages=[message],
315
- temperature=0.7,
316
- max_tokens=200,
317
- )
318
-
319
- print("\n📤 Sending multimodal request to Ollama...")
320
- print(" Model: gpt-oss:20b-cloud")
321
- print(f" Message parts: {len(content_parts)}")
322
- print(" - Text: What do you see in this image?")
323
- print(f" - Image: {image_url}")
324
-
325
- response = await model.generate(request)
326
-
327
- print("\n✅ Vision analysis successful")
328
- print(f" Response: {response.content}")
329
-
330
- except Exception as e:
331
- print(f"❌ Vision test failed: {e}")
332
- raise
333
-
334
-
335
- @pytest.mark.asyncio
336
- async def test_multimodal_with_base64() -> None:
337
- """Test multimodal with base64 encoded image."""
338
- print("\n" + "=" * 60)
339
- print("TEST 10: Multimodal with Base64 Image")
340
- print("=" * 60)
341
-
342
- credentials = {
343
- "api_key": "ollama",
344
- "base_url": "http://localhost:11434/v1",
345
- }
346
-
347
- try:
348
- model = ModelFactory.create_model(
349
- provider="ollama",
350
- model_name="qwen3-vl:235b-cloud",
351
- credentials=credentials,
352
- )
353
-
354
- # For this test, we'll use a simple base64 encoded 1x1 pixel image
355
- # In real usage, you would encode an actual image
356
- base64_image = "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVR42mNk+M9QDwADhgGAWjR9awAAAABJRU5ErkJggg=="
357
-
358
- content_parts = [
359
- ContentPart(
360
- content_type=ContentType.TEXT,
361
- content="Analyze this image and tell me what you see.",
362
- ),
363
- ContentPart(
364
- content_type=ContentType.IMAGE_BASE64,
365
- content=base64_image,
366
- mime_type="image/png",
367
- ),
368
- ]
369
-
370
- message = Message(role="user", content=content_parts)
371
-
372
- request = GenerateRequest(
373
- messages=[message],
374
- temperature=0.5,
375
- max_tokens=100,
376
- )
377
-
378
- print("📤 Sending base64 image request to Ollama...")
379
- print(" Model: gpt-oss:20b-cloud")
380
- print(f" Message parts: {len(content_parts)}")
381
- print(" - Text: Analyze this image")
382
- print(f" - Image (base64): {len(base64_image)} characters")
383
-
384
- response = await model.generate(request)
385
-
386
- print("✅ Base64 image analysis successful")
387
- print(f" Response: {response.content}")
388
-
389
- except Exception as e:
390
- print(f"❌ Base64 image test failed: {e}")
391
- raise
392
-
393
-
394
- async def run_async_tests() -> None:
395
- """Run async tests."""
396
- try:
397
- # await test_text_generation()
398
- # await test_streaming_generation()
399
- # await test_embedding_generation()
400
- await test_multimodal_vision()
401
- await test_multimodal_with_base64()
402
- except Exception as e:
403
- print(f"\n❌ Async tests failed: {e}")
404
- raise
405
-
406
-
407
- def main() -> None:
408
- """Run all tests."""
409
- print("\n")
410
- print("╔" + "=" * 58 + "╗")
411
- print("║" + " " * 58 + "║")
412
- print("║" + " OLLAMA LLM PROVIDER INTEGRATION TESTS".center(58) + "║")
413
- print("║" + " " * 58 + "║")
414
- print("╚" + "=" * 58 + "╝")
415
-
416
- try:
417
- # Sync tests
418
- # test_ollama_model_creation()
419
- # test_model_configuration()
420
- # test_embedding_model_creation()
421
- # test_factory_provider_support()
422
- # test_openai_model_direct_creation()
423
-
424
- # Async tests (actual API calls)
425
- print("\n" + "=" * 60)
426
- print("Running async tests (actual API calls)...")
427
- print("=" * 60)
428
- asyncio.run(run_async_tests())
429
-
430
- print("\n" + "=" * 60)
431
- print("✅ ALL TESTS PASSED!")
432
- print("=" * 60 + "\n")
433
-
434
- except Exception as e:
435
- print("\n" + "=" * 60)
436
- print(f"❌ TESTS FAILED: {e}")
437
- print("=" * 60 + "\n")
438
- raise
439
-
440
-
441
- if __name__ == "__main__":
442
- main()