domainiac 0.1.6__tar.gz → 0.3.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {domainiac-0.1.6 → domainiac-0.3.0}/PKG-INFO +2 -2
- {domainiac-0.1.6 → domainiac-0.3.0}/domainiac/managers/masterdata_manager.py +31 -5
- {domainiac-0.1.6 → domainiac-0.3.0}/domainiac/managers/plant_manager.py +2 -0
- {domainiac-0.1.6 → domainiac-0.3.0}/domainiac/managers/resource_manager.py +32 -4
- {domainiac-0.1.6 → domainiac-0.3.0}/domainiac/managers/unit_manager.py +2 -0
- domainiac-0.3.0/domainiac/wrappers/__init__.py +1 -0
- domainiac-0.3.0/domainiac/wrappers/cache_wrapper.py +16 -0
- {domainiac-0.1.6 → domainiac-0.3.0}/pyproject.toml +2 -2
- {domainiac-0.1.6 → domainiac-0.3.0}/domainiac/__init__.py +0 -0
- {domainiac-0.1.6 → domainiac-0.3.0}/domainiac/managers/__init__.py +0 -0
- {domainiac-0.1.6 → domainiac-0.3.0}/domainiac/managers/metering_manager.py +0 -0
@@ -1,12 +1,12 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: domainiac
|
3
|
-
Version: 0.
|
3
|
+
Version: 0.3.0
|
4
4
|
Summary: Package for working with Energinet data, but with specialized functions used for Enigma.
|
5
5
|
Author: Team Enigma
|
6
6
|
Author-email: gridop-enigma@energinet.dk
|
7
7
|
Requires-Python: >=3.10,<3.11
|
8
8
|
Classifier: Programming Language :: Python :: 3
|
9
9
|
Classifier: Programming Language :: Python :: 3.10
|
10
|
-
Requires-Dist: datamazing (>=
|
10
|
+
Requires-Dist: datamazing (>=5.0.2,<6.0.0)
|
11
11
|
Requires-Dist: pandas (>=2.2.0,<3.0.0)
|
12
12
|
Requires-Dist: typeguard (>=4.2.1,<5.0.0)
|
@@ -2,6 +2,8 @@ import datamazing.pandas as pdz
|
|
2
2
|
import pandas as pd
|
3
3
|
from typeguard import typechecked
|
4
4
|
|
5
|
+
from ..wrappers import cache_decorator
|
6
|
+
|
5
7
|
|
6
8
|
class MasterdataManager:
|
7
9
|
"""
|
@@ -13,27 +15,51 @@ class MasterdataManager:
|
|
13
15
|
db: pdz.Database,
|
14
16
|
time_interval: pdz.TimeInterval,
|
15
17
|
resolution: pd.Timedelta,
|
18
|
+
cache_masterdata: bool = False,
|
16
19
|
) -> None:
|
17
20
|
self.db = db
|
18
21
|
self.time_interval = time_interval
|
19
22
|
self.resolution = resolution
|
23
|
+
self.cache_masterdata = cache_masterdata
|
24
|
+
|
25
|
+
masterdata_cache = {}
|
26
|
+
|
27
|
+
@typechecked
|
28
|
+
def _get_operational_entities(self, table: str) -> pd.DataFrame:
|
29
|
+
filters = {"standing_entity_state": "InOperation"}
|
30
|
+
df = self.db.query(table, filters=filters)
|
31
|
+
return df
|
20
32
|
|
21
33
|
@typechecked
|
22
|
-
def get_operational_entities(self, table: str
|
34
|
+
def get_operational_entities(self, table: str) -> pd.DataFrame:
|
23
35
|
"""Gets the operational data for a given table."""
|
24
36
|
|
25
|
-
|
26
|
-
|
37
|
+
if self.cache_masterdata:
|
38
|
+
cached_query = cache_decorator(self.masterdata_cache)(
|
39
|
+
self._get_operational_entities
|
40
|
+
)
|
41
|
+
df = cached_query(table)
|
42
|
+
else:
|
43
|
+
df = self._get_operational_entities(table)
|
44
|
+
|
27
45
|
return df
|
28
46
|
|
29
47
|
@typechecked
|
30
48
|
def get_data(
|
31
|
-
self,
|
49
|
+
self,
|
50
|
+
table: str,
|
51
|
+
filters: dict = {},
|
52
|
+
columns: list = [],
|
32
53
|
) -> pd.DataFrame:
|
33
54
|
"""Gets the data for a given table.
|
34
55
|
Filters for rows valid at the end of time interval.
|
35
56
|
"""
|
36
|
-
|
57
|
+
# Get operational entities
|
58
|
+
df = self.get_operational_entities(table)
|
59
|
+
|
60
|
+
# Apply the filters
|
61
|
+
for column, value in filters.items():
|
62
|
+
df = df[df[column] == value].reset_index()
|
37
63
|
|
38
64
|
for column in columns:
|
39
65
|
if column not in df.columns:
|
@@ -14,10 +14,12 @@ class PlantManager(MasterdataManager):
|
|
14
14
|
db: pdz.Database,
|
15
15
|
time_interval: pdz.TimeInterval,
|
16
16
|
resolution: pd.Timedelta,
|
17
|
+
cache_masterdata: bool = False,
|
17
18
|
) -> None:
|
18
19
|
self.db = db
|
19
20
|
self.time_interval = time_interval
|
20
21
|
self.resolution = resolution
|
22
|
+
self.cache_masterdata = cache_masterdata
|
21
23
|
|
22
24
|
def get_plants(
|
23
25
|
self,
|
@@ -2,6 +2,8 @@ import datamazing.pandas as pdz
|
|
2
2
|
import pandas as pd
|
3
3
|
from typeguard import typechecked
|
4
4
|
|
5
|
+
from ..wrappers import cache_decorator
|
6
|
+
|
5
7
|
DEFAULT_RESOLUTION = pd.Timedelta("PT5M")
|
6
8
|
|
7
9
|
|
@@ -22,20 +24,46 @@ class ResourceManager:
|
|
22
24
|
db: pdz.Database,
|
23
25
|
time_interval: pdz.TimeInterval,
|
24
26
|
resolution: pd.Timedelta = DEFAULT_RESOLUTION,
|
27
|
+
cache_reource_schedules: bool = False,
|
25
28
|
) -> None:
|
26
29
|
self.db = db
|
27
30
|
self.time_interval = time_interval
|
28
31
|
self.resolution = resolution
|
32
|
+
self.cache_reource_schedules = cache_reource_schedules
|
33
|
+
|
34
|
+
resource_schedules_cache = {}
|
35
|
+
|
36
|
+
@typechecked
|
37
|
+
def _query_resource_schedules(self, table: str) -> pd.DataFrame:
|
38
|
+
return self.db.query(
|
39
|
+
table_name=table,
|
40
|
+
time_interval=self.time_interval,
|
41
|
+
)
|
42
|
+
|
43
|
+
@typechecked
|
44
|
+
def query_resource_schedules(self, table: str) -> pd.DataFrame:
|
45
|
+
if self.cache_reource_schedules:
|
46
|
+
cached_query = cache_decorator(self.resource_schedules_cache)(
|
47
|
+
self._query_resource_schedules
|
48
|
+
)
|
49
|
+
df = cached_query(table)
|
50
|
+
else:
|
51
|
+
df = self._query_resource_schedules(table)
|
52
|
+
return df
|
29
53
|
|
30
54
|
@typechecked
|
31
55
|
def get_resource_schedules(self, resource_gsrn: str | list[str]) -> pd.DataFrame:
|
32
56
|
"""Gets resource schedules for a given list of resource gsrns."""
|
33
|
-
df_resource_schedules = self.
|
34
|
-
|
35
|
-
time_interval=self.time_interval,
|
36
|
-
filters={"resource_gsrn": resource_gsrn},
|
57
|
+
df_resource_schedules = self.query_resource_schedules(
|
58
|
+
"scheduleResourcePowerPlan"
|
37
59
|
)
|
38
60
|
|
61
|
+
if isinstance(resource_gsrn, str):
|
62
|
+
resource_gsrn = [resource_gsrn]
|
63
|
+
df_resource_schedules = df_resource_schedules[
|
64
|
+
df_resource_schedules["resource_gsrn"].isin(resource_gsrn)
|
65
|
+
]
|
66
|
+
|
39
67
|
if df_resource_schedules.empty:
|
40
68
|
raise ValueError(f"No resource schedules found for gsrn {resource_gsrn}.")
|
41
69
|
|
@@ -14,10 +14,12 @@ class UnitManager(MasterdataManager):
|
|
14
14
|
db: pdz.Database,
|
15
15
|
time_interval: pdz.TimeInterval,
|
16
16
|
resolution: pd.Timedelta,
|
17
|
+
cache_masterdata: bool = False,
|
17
18
|
) -> None:
|
18
19
|
self.db = db
|
19
20
|
self.time_interval = time_interval
|
20
21
|
self.resolution = resolution
|
22
|
+
self.cache_masterdata = cache_masterdata
|
21
23
|
|
22
24
|
def get_units(
|
23
25
|
self,
|
@@ -0,0 +1 @@
|
|
1
|
+
from .cache_wrapper import cache_decorator
|
@@ -0,0 +1,16 @@
|
|
1
|
+
from functools import wraps
|
2
|
+
|
3
|
+
|
4
|
+
def cache_decorator(cache):
|
5
|
+
def decorator(func):
|
6
|
+
@wraps(func)
|
7
|
+
def wrapper(*args, **kwargs):
|
8
|
+
if args in cache:
|
9
|
+
return cache[args]
|
10
|
+
result = func(*args, **kwargs)
|
11
|
+
cache[args] = result
|
12
|
+
return result
|
13
|
+
|
14
|
+
return wrapper
|
15
|
+
|
16
|
+
return decorator
|
@@ -1,6 +1,6 @@
|
|
1
1
|
[tool.poetry]
|
2
2
|
name = "domainiac"
|
3
|
-
version = "0.
|
3
|
+
version = "0.3.0"
|
4
4
|
description = "Package for working with Energinet data, but with specialized functions used for Enigma."
|
5
5
|
authors = ["Team Enigma <gridop-enigma@energinet.dk>"]
|
6
6
|
packages = [
|
@@ -10,7 +10,7 @@ packages = [
|
|
10
10
|
[tool.poetry.dependencies]
|
11
11
|
python = "^3.10,<3.11"
|
12
12
|
pandas = "^2.2.0"
|
13
|
-
datamazing = "^
|
13
|
+
datamazing = "^5.0.2"
|
14
14
|
typeguard = "^4.2.1"
|
15
15
|
|
16
16
|
[tool.poetry.dev-dependencies]
|
File without changes
|
File without changes
|
File without changes
|