docling-ibm-models 1.2.1__tar.gz → 1.3.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (32) hide show
  1. {docling_ibm_models-1.2.1 → docling_ibm_models-1.3.1}/PKG-INFO +6 -8
  2. {docling_ibm_models-1.2.1 → docling_ibm_models-1.3.1}/README.md +3 -6
  3. {docling_ibm_models-1.2.1 → docling_ibm_models-1.3.1}/pyproject.toml +3 -2
  4. {docling_ibm_models-1.2.1 → docling_ibm_models-1.3.1}/LICENSE +0 -0
  5. {docling_ibm_models-1.2.1 → docling_ibm_models-1.3.1}/docling_ibm_models/layoutmodel/layout_predictor.py +0 -0
  6. {docling_ibm_models-1.2.1 → docling_ibm_models-1.3.1}/docling_ibm_models/tableformer/__init__.py +0 -0
  7. {docling_ibm_models-1.2.1 → docling_ibm_models-1.3.1}/docling_ibm_models/tableformer/common.py +0 -0
  8. {docling_ibm_models-1.2.1 → docling_ibm_models-1.3.1}/docling_ibm_models/tableformer/data_management/__init__.py +0 -0
  9. {docling_ibm_models-1.2.1 → docling_ibm_models-1.3.1}/docling_ibm_models/tableformer/data_management/data_transformer.py +0 -0
  10. {docling_ibm_models-1.2.1 → docling_ibm_models-1.3.1}/docling_ibm_models/tableformer/data_management/functional.py +0 -0
  11. {docling_ibm_models-1.2.1 → docling_ibm_models-1.3.1}/docling_ibm_models/tableformer/data_management/matching_post_processor.py +0 -0
  12. {docling_ibm_models-1.2.1 → docling_ibm_models-1.3.1}/docling_ibm_models/tableformer/data_management/tf_cell_matcher.py +0 -0
  13. {docling_ibm_models-1.2.1 → docling_ibm_models-1.3.1}/docling_ibm_models/tableformer/data_management/tf_dataset.py +0 -0
  14. {docling_ibm_models-1.2.1 → docling_ibm_models-1.3.1}/docling_ibm_models/tableformer/data_management/tf_predictor.py +0 -0
  15. {docling_ibm_models-1.2.1 → docling_ibm_models-1.3.1}/docling_ibm_models/tableformer/data_management/transforms.py +0 -0
  16. {docling_ibm_models-1.2.1 → docling_ibm_models-1.3.1}/docling_ibm_models/tableformer/models/__init__.py +0 -0
  17. {docling_ibm_models-1.2.1 → docling_ibm_models-1.3.1}/docling_ibm_models/tableformer/models/common/__init__.py +0 -0
  18. {docling_ibm_models-1.2.1 → docling_ibm_models-1.3.1}/docling_ibm_models/tableformer/models/common/base_model.py +0 -0
  19. {docling_ibm_models-1.2.1 → docling_ibm_models-1.3.1}/docling_ibm_models/tableformer/models/table04_rs/__init__.py +0 -0
  20. {docling_ibm_models-1.2.1 → docling_ibm_models-1.3.1}/docling_ibm_models/tableformer/models/table04_rs/bbox_decoder_rs.py +0 -0
  21. {docling_ibm_models-1.2.1 → docling_ibm_models-1.3.1}/docling_ibm_models/tableformer/models/table04_rs/encoder04_rs.py +0 -0
  22. {docling_ibm_models-1.2.1 → docling_ibm_models-1.3.1}/docling_ibm_models/tableformer/models/table04_rs/tablemodel04_rs.py +0 -0
  23. {docling_ibm_models-1.2.1 → docling_ibm_models-1.3.1}/docling_ibm_models/tableformer/models/table04_rs/transformer_rs.py +0 -0
  24. {docling_ibm_models-1.2.1 → docling_ibm_models-1.3.1}/docling_ibm_models/tableformer/otsl.py +0 -0
  25. {docling_ibm_models-1.2.1 → docling_ibm_models-1.3.1}/docling_ibm_models/tableformer/settings.py +0 -0
  26. {docling_ibm_models-1.2.1 → docling_ibm_models-1.3.1}/docling_ibm_models/tableformer/test_dataset_cache.py +0 -0
  27. {docling_ibm_models-1.2.1 → docling_ibm_models-1.3.1}/docling_ibm_models/tableformer/test_prepare_image.py +0 -0
  28. {docling_ibm_models-1.2.1 → docling_ibm_models-1.3.1}/docling_ibm_models/tableformer/utils/__init__.py +0 -0
  29. {docling_ibm_models-1.2.1 → docling_ibm_models-1.3.1}/docling_ibm_models/tableformer/utils/app_profiler.py +0 -0
  30. {docling_ibm_models-1.2.1 → docling_ibm_models-1.3.1}/docling_ibm_models/tableformer/utils/mem_monitor.py +0 -0
  31. {docling_ibm_models-1.2.1 → docling_ibm_models-1.3.1}/docling_ibm_models/tableformer/utils/torch_utils.py +0 -0
  32. {docling_ibm_models-1.2.1 → docling_ibm_models-1.3.1}/docling_ibm_models/tableformer/utils/utils.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: docling-ibm-models
3
- Version: 1.2.1
3
+ Version: 1.3.1
4
4
  Summary: This package contains the AI models used by the Docling PDF conversion package
5
5
  License: MIT
6
6
  Keywords: docling,convert,document,pdf,layout model,segmentation,table structure,table former
@@ -19,12 +19,13 @@ Classifier: Programming Language :: Python :: 3.11
19
19
  Classifier: Programming Language :: Python :: 3.12
20
20
  Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
21
21
  Requires-Dist: Pillow (>=10.0.0,<11.0.0)
22
+ Requires-Dist: huggingface_hub (>=0.23,<1)
22
23
  Requires-Dist: jsonlines (>=3.1.0,<4.0.0)
23
24
  Requires-Dist: lxml (>=4.9.1,<5.0.0)
24
25
  Requires-Dist: mean_average_precision (>=2021.4.26.0,<2022.0.0.0)
25
26
  Requires-Dist: numpy (>=1.24.4,<2.0.0)
26
27
  Requires-Dist: onnxruntime (>=1.16.2,<2.0.0)
27
- Requires-Dist: opencv-python-headless (>=4.9.0.80,<5.0.0.0)
28
+ Requires-Dist: opencv-python-headless (>=4.6.0.66,<5.0.0.0)
28
29
  Requires-Dist: torch (>=2.2.2,<2.3.0) ; sys_platform == "darwin" and platform_machine == "x86_64"
29
30
  Requires-Dist: torch (>=2.2.2,<3.0.0) ; sys_platform != "darwin" or platform_machine != "x86_64"
30
31
  Requires-Dist: torchvision (>=0,<1) ; sys_platform != "darwin" or platform_machine != "x86_64"
@@ -110,7 +111,7 @@ Below we list datasets used with their description, source, and ***"TableFormer
110
111
 
111
112
  ## Configuration file
112
113
 
113
- Example configuration can be seen inside test `tests/test_tf_predictor.py`
114
+ Example configuration can be found inside test `tests/test_tf_predictor.py`
114
115
  These are the main sections of the configuration file:
115
116
 
116
117
  - `dataset`: The directory for prepared data and the parameters used during the data loading.
@@ -128,16 +129,13 @@ You can download the model weights and config files from the links:
128
129
  - [TableFormer Checkpoint](https://huggingface.co/ds4sd/docling-models/tree/main/model_artifacts/tableformer)
129
130
  - [beehive_v0.0.5](https://huggingface.co/ds4sd/docling-models/tree/main/model_artifacts/layout/beehive_v0.0.5)
130
131
 
131
- Place the downloaded files into `tests/test_data/model_artifacts/` directory.
132
-
133
132
 
134
133
  ## Inference Tests
135
134
 
136
- This contains unit tests for Docling models.
135
+ You can run the inference tests for the models with:
137
136
 
138
- First download the model weights (see above), then run:
139
137
  ```
140
- ./devtools/check_code.sh
138
+ python -m pytest tests/
141
139
  ```
142
140
 
143
141
  This will also generate prediction and matching visualizations that can be found here:
@@ -76,7 +76,7 @@ Below we list datasets used with their description, source, and ***"TableFormer
76
76
 
77
77
  ## Configuration file
78
78
 
79
- Example configuration can be seen inside test `tests/test_tf_predictor.py`
79
+ Example configuration can be found inside test `tests/test_tf_predictor.py`
80
80
  These are the main sections of the configuration file:
81
81
 
82
82
  - `dataset`: The directory for prepared data and the parameters used during the data loading.
@@ -94,16 +94,13 @@ You can download the model weights and config files from the links:
94
94
  - [TableFormer Checkpoint](https://huggingface.co/ds4sd/docling-models/tree/main/model_artifacts/tableformer)
95
95
  - [beehive_v0.0.5](https://huggingface.co/ds4sd/docling-models/tree/main/model_artifacts/layout/beehive_v0.0.5)
96
96
 
97
- Place the downloaded files into `tests/test_data/model_artifacts/` directory.
98
-
99
97
 
100
98
  ## Inference Tests
101
99
 
102
- This contains unit tests for Docling models.
100
+ You can run the inference tests for the models with:
103
101
 
104
- First download the model weights (see above), then run:
105
102
  ```
106
- ./devtools/check_code.sh
103
+ python -m pytest tests/
107
104
  ```
108
105
 
109
106
  This will also generate prediction and matching visualizations that can be found here:
@@ -1,6 +1,6 @@
1
1
  [tool.poetry]
2
2
  name = "docling-ibm-models"
3
- version = "1.2.1" # DO NOT EDIT, updated automatically
3
+ version = "1.3.1" # DO NOT EDIT, updated automatically
4
4
  description = "This package contains the AI models used by the Docling PDF conversion package"
5
5
  authors = ["Nikos Livathinos <nli@zurich.ibm.com>", "Maxim Lysak <mly@zurich.ibm.com>", "Ahmed Nassar <ahn@zurich.ibm.com>", "Christoph Auer <cau@zurich.ibm.com>", "Michele Dolfi <dol@zurich.ibm.com>", "Peter Staar <taa@zurich.ibm.com>"]
6
6
  license = "MIT"
@@ -37,7 +37,8 @@ jsonlines = "^3.1.0"
37
37
  Pillow = "^10.0.0"
38
38
  tqdm = "^4.64.0"
39
39
  mean_average_precision = "^2021.4.26.0"
40
- opencv-python-headless = { version = "^4.9.0.80" }
40
+ opencv-python-headless = "^4.6.0.66"
41
+ huggingface_hub = ">=0.23,<1"
41
42
 
42
43
  [tool.poetry.dev-dependencies]
43
44
  black = {extras = ["jupyter"], version = "^24.4.2"}