doc-page-extractor 0.1.2__tar.gz → 0.2.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/PKG-INFO +3 -3
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/__init__.py +0 -1
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/extractor.py +41 -41
- doc_page_extractor-0.2.1/doc_page_extractor/latex.py +33 -0
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/layout_order.py +13 -10
- doc_page_extractor-0.2.1/doc_page_extractor/model.py +103 -0
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/ocr.py +47 -28
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/onnxocr/predict_base.py +9 -4
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/onnxocr/predict_cls.py +23 -3
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/onnxocr/predict_det.py +24 -5
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/onnxocr/predict_rec.py +30 -7
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/table.py +14 -24
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/types.py +4 -24
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor.egg-info/PKG-INFO +3 -3
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor.egg-info/SOURCES.txt +1 -1
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor.egg-info/requires.txt +2 -2
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/setup.py +3 -3
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/tests/test_history_bus.py +1 -1
- doc_page_extractor-0.1.2/doc_page_extractor/latex.py +0 -29
- doc_page_extractor-0.1.2/doc_page_extractor/models.py +0 -92
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/LICENSE +0 -0
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/README.md +0 -0
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/clipper.py +0 -0
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/downloader.py +0 -0
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/layoutreader.py +0 -0
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/ocr_corrector.py +0 -0
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/onnxocr/__init__.py +0 -0
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/onnxocr/cls_postprocess.py +0 -0
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/onnxocr/db_postprocess.py +0 -0
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/onnxocr/imaug.py +0 -0
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/onnxocr/operators.py +0 -0
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/onnxocr/predict_system.py +0 -0
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/onnxocr/rec_postprocess.py +0 -0
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/onnxocr/utils.py +0 -0
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/overlap.py +0 -0
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/plot.py +0 -0
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/raw_optimizer.py +0 -0
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/rectangle.py +0 -0
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/rotation.py +0 -0
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/struct_eqtable/__init__.py +0 -0
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/struct_eqtable/internvl/__init__.py +0 -0
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/struct_eqtable/internvl/conversation.py +0 -0
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/struct_eqtable/internvl/internvl.py +0 -0
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/struct_eqtable/internvl/internvl_lmdeploy.py +0 -0
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/struct_eqtable/pix2s/__init__.py +0 -0
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/struct_eqtable/pix2s/pix2s.py +0 -0
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/struct_eqtable/pix2s/pix2s_trt.py +0 -0
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/utils.py +0 -0
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor.egg-info/dependency_links.txt +0 -0
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor.egg-info/top_level.txt +0 -0
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/setup.cfg +0 -0
- {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/tests/__init__.py +0 -0
|
@@ -1,13 +1,13 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: doc-page-extractor
|
|
3
|
-
Version: 0.1
|
|
3
|
+
Version: 0.2.1
|
|
4
4
|
Summary: doc page extractor can identify text and format in images and return structured data.
|
|
5
5
|
Home-page: https://github.com/Moskize91/doc-page-extractor
|
|
6
6
|
Author: Tao Zeyu
|
|
7
7
|
Author-email: i@taozeyu.com
|
|
8
8
|
Description-Content-Type: text/markdown
|
|
9
9
|
License-File: LICENSE
|
|
10
|
-
Requires-Dist: opencv-python<5.0,>=4.
|
|
10
|
+
Requires-Dist: opencv-python<5.0,>=4.10.0
|
|
11
11
|
Requires-Dist: pillow<11.0,>=10.3
|
|
12
12
|
Requires-Dist: pyclipper<2.0,>=1.2.0
|
|
13
13
|
Requires-Dist: numpy<2.0,>=1.24.0
|
|
@@ -16,7 +16,7 @@ Requires-Dist: transformers<=4.47,>=4.42.4
|
|
|
16
16
|
Requires-Dist: doclayout_yolo>=0.0.3
|
|
17
17
|
Requires-Dist: pix2tex<=0.2.0,>=0.1.4
|
|
18
18
|
Requires-Dist: accelerate<2.0,>=1.6.0
|
|
19
|
-
Requires-Dist: huggingface_hub
|
|
19
|
+
Requires-Dist: huggingface_hub<1.0,>=0.30.2
|
|
20
20
|
Dynamic: author
|
|
21
21
|
Dynamic: author-email
|
|
22
22
|
Dynamic: description
|
|
@@ -1,10 +1,11 @@
|
|
|
1
|
+
import torch
|
|
1
2
|
|
|
3
|
+
from os import PathLike
|
|
2
4
|
from typing import Literal, Generator
|
|
3
5
|
from PIL.Image import Image
|
|
4
6
|
from doclayout_yolo import YOLOv10
|
|
5
|
-
from logging import Logger, getLogger
|
|
6
7
|
|
|
7
|
-
from .
|
|
8
|
+
from .model import Model, HuggingfaceModel
|
|
8
9
|
from .ocr import OCR
|
|
9
10
|
from .ocr_corrector import correct_fragments
|
|
10
11
|
from .raw_optimizer import RawOptimizer
|
|
@@ -16,55 +17,48 @@ from .overlap import merge_fragments_as_line, remove_overlap_layouts
|
|
|
16
17
|
from .clipper import clip_from_image
|
|
17
18
|
from .types import (
|
|
18
19
|
ExtractedResult,
|
|
19
|
-
ModelsDownloader,
|
|
20
20
|
OCRFragment,
|
|
21
|
-
TableLayoutParsedFormat,
|
|
22
21
|
Layout,
|
|
23
22
|
LayoutClass,
|
|
24
23
|
PlainLayout,
|
|
25
24
|
TableLayout,
|
|
26
25
|
FormulaLayout,
|
|
26
|
+
TableLayoutParsedFormat
|
|
27
27
|
)
|
|
28
28
|
|
|
29
29
|
|
|
30
30
|
class DocExtractor:
|
|
31
31
|
def __init__(
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
32
|
+
self,
|
|
33
|
+
model_cache_dir: PathLike | None = None,
|
|
34
|
+
device: Literal["cpu", "cuda"] = "cpu",
|
|
35
|
+
model: Model | None = None,
|
|
36
|
+
) -> None:
|
|
37
|
+
|
|
38
|
+
if model is None:
|
|
39
|
+
if model_cache_dir is None:
|
|
40
|
+
raise ValueError("You must provide a model_cache_dir or a model instance.")
|
|
41
|
+
model = HuggingfaceModel(model_cache_dir)
|
|
42
|
+
|
|
43
|
+
if device == "cuda" and not torch.cuda.is_available():
|
|
44
|
+
device = "cpu"
|
|
45
|
+
print("CUDA is not available. Using CPU instead.")
|
|
43
46
|
|
|
44
47
|
self._device: Literal["cpu", "cuda"] = device
|
|
45
|
-
self.
|
|
46
|
-
self._extract_formula: bool = extract_formula
|
|
47
|
-
self._extract_table_format: TableLayoutParsedFormat | None = extract_table_format
|
|
48
|
+
self._model: Model = model
|
|
48
49
|
self._yolo: YOLOv10 | None = None
|
|
49
|
-
self._ocr: OCR = OCR(
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
)
|
|
53
|
-
self._table: Table = Table(
|
|
54
|
-
device=device,
|
|
55
|
-
get_model_dir=self._models_downloader.struct_eqtable,
|
|
56
|
-
)
|
|
57
|
-
self._latex: LaTeX = LaTeX(
|
|
58
|
-
get_model_dir=self._models_downloader.latex,
|
|
59
|
-
)
|
|
60
|
-
self._layout_order: LayoutOrder = LayoutOrder(
|
|
61
|
-
get_model_dir=self._models_downloader.layoutreader,
|
|
62
|
-
)
|
|
50
|
+
self._ocr: OCR = OCR(device, model)
|
|
51
|
+
self._table: Table = Table(device, model)
|
|
52
|
+
self._latex: LaTeX = LaTeX(device, model)
|
|
53
|
+
self._layout_order: LayoutOrder = LayoutOrder(device, model)
|
|
63
54
|
|
|
64
55
|
def extract(
|
|
65
56
|
self,
|
|
66
57
|
image: Image,
|
|
67
|
-
|
|
58
|
+
extract_formula: bool,
|
|
59
|
+
extract_table_format: TableLayoutParsedFormat | None = None,
|
|
60
|
+
ocr_for_each_layouts: bool = False,
|
|
61
|
+
adjust_points: bool = False
|
|
68
62
|
) -> ExtractedResult:
|
|
69
63
|
|
|
70
64
|
raw_optimizer = RawOptimizer(image, adjust_points)
|
|
@@ -74,13 +68,13 @@ class DocExtractor:
|
|
|
74
68
|
layouts = self._layouts_matched_by_fragments(fragments, layouts)
|
|
75
69
|
layouts = remove_overlap_layouts(layouts)
|
|
76
70
|
|
|
77
|
-
if
|
|
71
|
+
if ocr_for_each_layouts:
|
|
78
72
|
self._correct_fragments_by_ocr_layouts(raw_optimizer.image, layouts)
|
|
79
73
|
|
|
80
74
|
layouts = self._layout_order.sort(layouts, raw_optimizer.image.size)
|
|
81
75
|
layouts = [layout for layout in layouts if self._should_keep_layout(layout)]
|
|
82
76
|
|
|
83
|
-
self._parse_table_and_formula_layouts(layouts, raw_optimizer)
|
|
77
|
+
self._parse_table_and_formula_layouts(layouts, raw_optimizer, extract_formula=extract_formula, extract_table_format=extract_table_format)
|
|
84
78
|
|
|
85
79
|
for layout in layouts:
|
|
86
80
|
layout.fragments = merge_fragments_as_line(layout.fragments)
|
|
@@ -142,16 +136,22 @@ class DocExtractor:
|
|
|
142
136
|
for layout in layouts:
|
|
143
137
|
correct_fragments(self._ocr, source, layout)
|
|
144
138
|
|
|
145
|
-
def _parse_table_and_formula_layouts(
|
|
139
|
+
def _parse_table_and_formula_layouts(
|
|
140
|
+
self,
|
|
141
|
+
layouts: list[Layout],
|
|
142
|
+
raw_optimizer: RawOptimizer,
|
|
143
|
+
extract_formula: bool,
|
|
144
|
+
extract_table_format: TableLayoutParsedFormat | None,
|
|
145
|
+
):
|
|
146
146
|
for layout in layouts:
|
|
147
|
-
if isinstance(layout, FormulaLayout) and
|
|
147
|
+
if isinstance(layout, FormulaLayout) and extract_formula:
|
|
148
148
|
image = clip_from_image(raw_optimizer.image, layout.rect)
|
|
149
149
|
layout.latex = self._latex.extract(image)
|
|
150
|
-
elif isinstance(layout, TableLayout) and
|
|
150
|
+
elif isinstance(layout, TableLayout) and extract_table_format is not None:
|
|
151
151
|
image = clip_from_image(raw_optimizer.image, layout.rect)
|
|
152
|
-
parsed = self._table.predict(image,
|
|
152
|
+
parsed = self._table.predict(image, extract_table_format)
|
|
153
153
|
if parsed is not None:
|
|
154
|
-
layout.parsed = (parsed,
|
|
154
|
+
layout.parsed = (parsed, extract_table_format)
|
|
155
155
|
|
|
156
156
|
def _split_layouts_by_group(self, layouts: list[Layout]):
|
|
157
157
|
texts_layouts: list[Layout] = []
|
|
@@ -195,7 +195,7 @@ class DocExtractor:
|
|
|
195
195
|
|
|
196
196
|
def _get_yolo(self) -> YOLOv10:
|
|
197
197
|
if self._yolo is None:
|
|
198
|
-
model_path = self.
|
|
198
|
+
model_path = self._model.get_yolo_path()
|
|
199
199
|
self._yolo = YOLOv10(str(model_path))
|
|
200
200
|
return self._yolo
|
|
201
201
|
|
|
@@ -0,0 +1,33 @@
|
|
|
1
|
+
import os
|
|
2
|
+
import torch
|
|
3
|
+
|
|
4
|
+
from munch import Munch
|
|
5
|
+
from pix2tex.cli import LatexOCR
|
|
6
|
+
from PIL.Image import Image
|
|
7
|
+
from typing import Literal
|
|
8
|
+
from .utils import expand_image
|
|
9
|
+
from .model import Model
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
class LaTeX:
|
|
13
|
+
def __init__(self, device: Literal["cpu", "cuda"], model: Model) -> None:
|
|
14
|
+
self._model: Model = model
|
|
15
|
+
self._latex_model: LatexOCR | None = None
|
|
16
|
+
self._device: Literal["cpu", "cuda"] = device
|
|
17
|
+
|
|
18
|
+
def extract(self, image: Image) -> str | None:
|
|
19
|
+
image = expand_image(image, 0.1) # 添加边缘提高识别准确率
|
|
20
|
+
model = self._get_model()
|
|
21
|
+
with torch.no_grad():
|
|
22
|
+
return model(image)
|
|
23
|
+
|
|
24
|
+
def _get_model(self) -> LatexOCR:
|
|
25
|
+
if self._latex_model is None:
|
|
26
|
+
model_path = self._model.get_latex_path()
|
|
27
|
+
self._latex_model = LatexOCR(Munch({
|
|
28
|
+
"config": os.path.join("settings", "config.yaml"),
|
|
29
|
+
"checkpoint": os.path.join(model_path, "checkpoints", "weights.pth"),
|
|
30
|
+
"no_cuda": self._device == "cpu",
|
|
31
|
+
"no_resize": False,
|
|
32
|
+
}))
|
|
33
|
+
return self._latex_model
|
|
@@ -1,10 +1,11 @@
|
|
|
1
1
|
import torch
|
|
2
2
|
|
|
3
|
-
from typing import Generator
|
|
3
|
+
from typing import Generator, Literal
|
|
4
4
|
from dataclasses import dataclass
|
|
5
5
|
from transformers import LayoutLMv3ForTokenClassification
|
|
6
6
|
|
|
7
|
-
from .types import Layout, LayoutClass
|
|
7
|
+
from .types import Layout, LayoutClass
|
|
8
|
+
from .model import Model
|
|
8
9
|
from .layoutreader import prepare_inputs, boxes2inputs, parse_logits
|
|
9
10
|
|
|
10
11
|
|
|
@@ -17,17 +18,19 @@ class _BBox:
|
|
|
17
18
|
value: tuple[float, float, float, float]
|
|
18
19
|
|
|
19
20
|
class LayoutOrder:
|
|
20
|
-
def __init__(self,
|
|
21
|
-
self.
|
|
22
|
-
self.
|
|
21
|
+
def __init__(self, device: Literal["cpu", "cuda"], model: Model):
|
|
22
|
+
self._model: Model = model
|
|
23
|
+
self._order_model: LayoutLMv3ForTokenClassification | None = None
|
|
24
|
+
self._device: Literal["cpu", "cuda"] = device
|
|
23
25
|
|
|
24
26
|
def _get_model(self) -> LayoutLMv3ForTokenClassification:
|
|
25
|
-
if self.
|
|
26
|
-
|
|
27
|
-
|
|
27
|
+
if self._order_model is None:
|
|
28
|
+
model_path = self._model.get_layoutreader_path()
|
|
29
|
+
self._order_model = LayoutLMv3ForTokenClassification.from_pretrained(
|
|
30
|
+
pretrained_model_name_or_path=model_path,
|
|
28
31
|
local_files_only=True,
|
|
29
|
-
)
|
|
30
|
-
return self.
|
|
32
|
+
).to(device=self._device)
|
|
33
|
+
return self._order_model
|
|
31
34
|
|
|
32
35
|
def sort(self, layouts: list[Layout], size: tuple[int, int]) -> list[Layout]:
|
|
33
36
|
width, height = size
|
|
@@ -0,0 +1,103 @@
|
|
|
1
|
+
from os import PathLike
|
|
2
|
+
from typing import runtime_checkable, Protocol
|
|
3
|
+
from pathlib import Path
|
|
4
|
+
from threading import Lock
|
|
5
|
+
from huggingface_hub import hf_hub_download, snapshot_download, try_to_load_from_cache
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
@runtime_checkable
|
|
9
|
+
class Model(Protocol):
|
|
10
|
+
def get_onnx_ocr_path(self) -> Path:
|
|
11
|
+
pass
|
|
12
|
+
|
|
13
|
+
def get_yolo_path(self) -> Path:
|
|
14
|
+
pass
|
|
15
|
+
|
|
16
|
+
def get_layoutreader_path(self) -> Path:
|
|
17
|
+
pass
|
|
18
|
+
|
|
19
|
+
def get_struct_eqtable_path(self) -> Path:
|
|
20
|
+
pass
|
|
21
|
+
|
|
22
|
+
def get_latex_path(self) -> Path:
|
|
23
|
+
pass
|
|
24
|
+
|
|
25
|
+
class HuggingfaceModel(Model):
|
|
26
|
+
def __init__(self, model_cache_dir: PathLike):
|
|
27
|
+
super().__init__()
|
|
28
|
+
self._lock: Lock = Lock()
|
|
29
|
+
self._model_cache_dir: Path = Path(model_cache_dir)
|
|
30
|
+
|
|
31
|
+
def get_onnx_ocr_path(self) -> Path:
|
|
32
|
+
return self._get_model_path(
|
|
33
|
+
repo_id="moskize/OnnxOCR",
|
|
34
|
+
filename=None,
|
|
35
|
+
repo_type=None,
|
|
36
|
+
is_snapshot=True
|
|
37
|
+
)
|
|
38
|
+
|
|
39
|
+
def get_yolo_path(self) -> Path:
|
|
40
|
+
return self._get_model_path(
|
|
41
|
+
repo_id="opendatalab/PDF-Extract-Kit-1.0",
|
|
42
|
+
filename="models/Layout/YOLO/doclayout_yolo_ft.pt",
|
|
43
|
+
repo_type=None,
|
|
44
|
+
is_snapshot=False,
|
|
45
|
+
)
|
|
46
|
+
|
|
47
|
+
def get_layoutreader_path(self) -> Path:
|
|
48
|
+
return self._get_model_path(
|
|
49
|
+
repo_id="hantian/layoutreader",
|
|
50
|
+
filename=None,
|
|
51
|
+
repo_type=None,
|
|
52
|
+
is_snapshot=True,
|
|
53
|
+
)
|
|
54
|
+
|
|
55
|
+
def get_struct_eqtable_path(self) -> Path:
|
|
56
|
+
return self._get_model_path(
|
|
57
|
+
repo_id="U4R/StructTable-InternVL2-1B",
|
|
58
|
+
filename="model.safetensors",
|
|
59
|
+
repo_type=None,
|
|
60
|
+
is_snapshot=True,
|
|
61
|
+
)
|
|
62
|
+
|
|
63
|
+
def get_latex_path(self) -> Path:
|
|
64
|
+
return self._get_model_path(
|
|
65
|
+
repo_id="lukbl/LaTeX-OCR",
|
|
66
|
+
filename="checkpoints/weights.pth",
|
|
67
|
+
repo_type="space",
|
|
68
|
+
is_snapshot=True,
|
|
69
|
+
)
|
|
70
|
+
|
|
71
|
+
def _get_model_path(
|
|
72
|
+
self,
|
|
73
|
+
repo_id: str,
|
|
74
|
+
filename: str | None,
|
|
75
|
+
repo_type: str | None,
|
|
76
|
+
is_snapshot: bool,
|
|
77
|
+
) -> Path:
|
|
78
|
+
with self._lock:
|
|
79
|
+
cache_filename = "README.md"
|
|
80
|
+
if filename is not None:
|
|
81
|
+
cache_filename = filename
|
|
82
|
+
model_path = try_to_load_from_cache(
|
|
83
|
+
repo_id=repo_id,
|
|
84
|
+
filename=cache_filename,
|
|
85
|
+
repo_type=repo_type,
|
|
86
|
+
cache_dir=self._model_cache_dir
|
|
87
|
+
)
|
|
88
|
+
if isinstance(model_path, str):
|
|
89
|
+
if filename is None:
|
|
90
|
+
model_path = Path(model_path).parent
|
|
91
|
+
|
|
92
|
+
elif is_snapshot:
|
|
93
|
+
model_path = snapshot_download(
|
|
94
|
+
cache_dir=self._model_cache_dir,
|
|
95
|
+
repo_id=repo_id,
|
|
96
|
+
)
|
|
97
|
+
else:
|
|
98
|
+
model_path = hf_hub_download(
|
|
99
|
+
cache_dir=self._model_cache_dir,
|
|
100
|
+
repo_id=repo_id,
|
|
101
|
+
filename=filename,
|
|
102
|
+
)
|
|
103
|
+
return Path(model_path)
|
|
@@ -5,7 +5,8 @@ import os
|
|
|
5
5
|
from typing import Literal, Generator
|
|
6
6
|
from dataclasses import dataclass
|
|
7
7
|
from .onnxocr import TextSystem
|
|
8
|
-
from .types import
|
|
8
|
+
from .types import OCRFragment
|
|
9
|
+
from .model import Model
|
|
9
10
|
from .rectangle import Rectangle
|
|
10
11
|
from .utils import is_space_text
|
|
11
12
|
|
|
@@ -46,17 +47,10 @@ class _OONXParams:
|
|
|
46
47
|
det_model_dir: str
|
|
47
48
|
rec_char_dict_path: str
|
|
48
49
|
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
50
|
class OCR:
|
|
53
|
-
def __init__(
|
|
54
|
-
self,
|
|
55
|
-
device: Literal["cpu", "cuda"],
|
|
56
|
-
get_model_dir: GetModelDir,
|
|
57
|
-
):
|
|
51
|
+
def __init__(self, device: Literal["cpu", "cuda"], model: Model):
|
|
58
52
|
self._device: Literal["cpu", "cuda"] = device
|
|
59
|
-
self.
|
|
53
|
+
self._model: Model = model
|
|
60
54
|
self._text_system: TextSystem | None = None
|
|
61
55
|
|
|
62
56
|
def search_fragments(self, image: np.ndarray) -> Generator[OCRFragment, None, None]:
|
|
@@ -89,17 +83,9 @@ class OCR:
|
|
|
89
83
|
for box, res in zip(dt_boxes, rec_res):
|
|
90
84
|
yield box.tolist(), res
|
|
91
85
|
|
|
92
|
-
def make_model_paths(self) -> list[str]:
|
|
93
|
-
model_paths = []
|
|
94
|
-
model_dir = self._get_model_dir()
|
|
95
|
-
for model_path in _MODELS:
|
|
96
|
-
file_name = os.path.join(*model_path)
|
|
97
|
-
model_paths.append(os.path.join(model_dir, file_name))
|
|
98
|
-
return model_paths
|
|
99
|
-
|
|
100
86
|
def _get_text_system(self) -> TextSystem:
|
|
101
87
|
if self._text_system is None:
|
|
102
|
-
model_paths = self.
|
|
88
|
+
model_paths = self._make_model_paths()
|
|
103
89
|
self._text_system = TextSystem(_OONXParams(
|
|
104
90
|
use_angle_cls=True,
|
|
105
91
|
use_gpu=(self._device != "cpu"),
|
|
@@ -127,9 +113,16 @@ class OCR:
|
|
|
127
113
|
det_model_dir=model_paths[2],
|
|
128
114
|
rec_char_dict_path=model_paths[3],
|
|
129
115
|
))
|
|
130
|
-
|
|
131
116
|
return self._text_system
|
|
132
117
|
|
|
118
|
+
def _make_model_paths(self) -> list[str]:
|
|
119
|
+
model_paths: list[str] = []
|
|
120
|
+
model_dir = self._model.get_onnx_ocr_path()
|
|
121
|
+
for model_path in _MODELS:
|
|
122
|
+
file_name = os.path.join(*model_path)
|
|
123
|
+
model_paths.append(str(model_dir / file_name))
|
|
124
|
+
return model_paths
|
|
125
|
+
|
|
133
126
|
def _preprocess_image(self, image: np.ndarray) -> np.ndarray:
|
|
134
127
|
image = self._alpha_to_color(image, (255, 255, 255))
|
|
135
128
|
# image = cv2.bitwise_not(image) # inv
|
|
@@ -141,14 +134,40 @@ class OCR:
|
|
|
141
134
|
beta=255,
|
|
142
135
|
norm_type=cv2.NORM_MINMAX,
|
|
143
136
|
)
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
|
|
137
|
+
if cv2.cuda.getCudaEnabledDeviceCount() > 0:
|
|
138
|
+
gpu_frame = cv2.cuda.GpuMat()
|
|
139
|
+
gpu_frame.upload(image)
|
|
140
|
+
image = cv2.cuda.fastNlMeansDenoisingColored(
|
|
141
|
+
src=gpu_frame,
|
|
142
|
+
dst=None,
|
|
143
|
+
h_luminance=10,
|
|
144
|
+
photo_render=10,
|
|
145
|
+
search_window=15,
|
|
146
|
+
block_size=7,
|
|
147
|
+
)
|
|
148
|
+
image = gpu_frame.download()
|
|
149
|
+
elif cv2.ocl.haveOpenCL():
|
|
150
|
+
cv2.ocl.setUseOpenCL(True)
|
|
151
|
+
gpu_frame = cv2.UMat(image)
|
|
152
|
+
image = cv2.fastNlMeansDenoisingColored(
|
|
153
|
+
src=gpu_frame,
|
|
154
|
+
dst=None,
|
|
155
|
+
h=10,
|
|
156
|
+
hColor=10,
|
|
157
|
+
templateWindowSize=7,
|
|
158
|
+
searchWindowSize=15,
|
|
159
|
+
)
|
|
160
|
+
image = image.get()
|
|
161
|
+
else:
|
|
162
|
+
image = cv2.fastNlMeansDenoisingColored(
|
|
163
|
+
src=image,
|
|
164
|
+
dst=None,
|
|
165
|
+
h=10,
|
|
166
|
+
hColor=10,
|
|
167
|
+
templateWindowSize=7,
|
|
168
|
+
searchWindowSize=15,
|
|
169
|
+
)
|
|
170
|
+
|
|
152
171
|
# image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # image to gray
|
|
153
172
|
return image
|
|
154
173
|
|
{doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/onnxocr/predict_base.py
RENAMED
|
@@ -1,8 +1,13 @@
|
|
|
1
|
-
import onnxruntime
|
|
2
|
-
|
|
3
1
|
class PredictBase(object):
|
|
4
2
|
def __init__(self):
|
|
5
|
-
|
|
3
|
+
self._onnxruntime = None
|
|
4
|
+
|
|
5
|
+
@property
|
|
6
|
+
def onnxruntime(self):
|
|
7
|
+
if self._onnxruntime is None:
|
|
8
|
+
import onnxruntime
|
|
9
|
+
self._onnxruntime = onnxruntime
|
|
10
|
+
return self._onnxruntime
|
|
6
11
|
|
|
7
12
|
def get_onnx_session(self, model_dir, use_gpu):
|
|
8
13
|
# 使用gpu
|
|
@@ -11,7 +16,7 @@ class PredictBase(object):
|
|
|
11
16
|
else:
|
|
12
17
|
providers = providers = ['CPUExecutionProvider']
|
|
13
18
|
|
|
14
|
-
onnx_session = onnxruntime.InferenceSession(model_dir, None,providers=providers)
|
|
19
|
+
onnx_session = self.onnxruntime.InferenceSession(model_dir, None, providers=providers)
|
|
15
20
|
|
|
16
21
|
# print("providers:", onnxruntime.get_device())
|
|
17
22
|
return onnx_session
|
{doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/onnxocr/predict_cls.py
RENAMED
|
@@ -9,15 +9,35 @@ from .predict_base import PredictBase
|
|
|
9
9
|
|
|
10
10
|
class TextClassifier(PredictBase):
|
|
11
11
|
def __init__(self, args):
|
|
12
|
+
super().__init__()
|
|
12
13
|
self.cls_image_shape = args.cls_image_shape
|
|
13
14
|
self.cls_batch_num = args.cls_batch_num
|
|
14
15
|
self.cls_thresh = args.cls_thresh
|
|
15
16
|
self.postprocess_op = ClsPostProcess(label_list=args.label_list)
|
|
17
|
+
self._args = args
|
|
16
18
|
|
|
17
19
|
# 初始化模型
|
|
18
|
-
self.
|
|
19
|
-
self.
|
|
20
|
-
self.
|
|
20
|
+
self._cls_onnx_session = None
|
|
21
|
+
self._cls_input_name = None
|
|
22
|
+
self._cls_output_name = None
|
|
23
|
+
|
|
24
|
+
@property
|
|
25
|
+
def cls_onnx_session(self):
|
|
26
|
+
if self._cls_onnx_session is None:
|
|
27
|
+
self._cls_onnx_session = self.get_onnx_session(self._args.cls_model_dir, self._args.use_gpu)
|
|
28
|
+
return self._cls_onnx_session
|
|
29
|
+
|
|
30
|
+
@property
|
|
31
|
+
def cls_input_name(self):
|
|
32
|
+
if self._cls_input_name is None:
|
|
33
|
+
self._cls_input_name = self.get_input_name(self.cls_onnx_session)
|
|
34
|
+
return self._cls_input_name
|
|
35
|
+
|
|
36
|
+
@property
|
|
37
|
+
def cls_output_name(self):
|
|
38
|
+
if self._cls_output_name is None:
|
|
39
|
+
self._cls_output_name = self.get_output_name(self.cls_onnx_session)
|
|
40
|
+
return self._cls_output_name
|
|
21
41
|
|
|
22
42
|
def resize_norm_img(self, img):
|
|
23
43
|
imgC, imgH, imgW = self.cls_image_shape
|
{doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/onnxocr/predict_det.py
RENAMED
|
@@ -6,7 +6,8 @@ from .predict_base import PredictBase
|
|
|
6
6
|
|
|
7
7
|
class TextDetector(PredictBase):
|
|
8
8
|
def __init__(self, args):
|
|
9
|
-
|
|
9
|
+
super().__init__()
|
|
10
|
+
self._args = args
|
|
10
11
|
self.det_algorithm = args.det_algorithm
|
|
11
12
|
pre_process_list = [
|
|
12
13
|
{
|
|
@@ -43,9 +44,27 @@ class TextDetector(PredictBase):
|
|
|
43
44
|
self.postprocess_op = DBPostProcess(**postprocess_params)
|
|
44
45
|
|
|
45
46
|
# 初始化模型
|
|
46
|
-
self.
|
|
47
|
-
self.
|
|
48
|
-
self.
|
|
47
|
+
self._det_onnx_session = None
|
|
48
|
+
self._det_input_name = None
|
|
49
|
+
self._det_output_name = None
|
|
50
|
+
|
|
51
|
+
@property
|
|
52
|
+
def det_onnx_session(self):
|
|
53
|
+
if self._det_onnx_session is None:
|
|
54
|
+
self._det_onnx_session = self.get_onnx_session(self._args.det_model_dir, self._args.use_gpu)
|
|
55
|
+
return self._det_onnx_session
|
|
56
|
+
|
|
57
|
+
@property
|
|
58
|
+
def det_input_name(self):
|
|
59
|
+
if self._det_input_name is None:
|
|
60
|
+
self._det_input_name = self.get_input_name(self.det_onnx_session)
|
|
61
|
+
return self._det_input_name
|
|
62
|
+
|
|
63
|
+
@property
|
|
64
|
+
def det_output_name(self):
|
|
65
|
+
if self._det_output_name is None:
|
|
66
|
+
self._det_output_name = self.get_output_name(self.det_onnx_session)
|
|
67
|
+
return self._det_output_name
|
|
49
68
|
|
|
50
69
|
def order_points_clockwise(self, pts):
|
|
51
70
|
rect = np.zeros((4, 2), dtype="float32")
|
|
@@ -112,7 +131,7 @@ class TextDetector(PredictBase):
|
|
|
112
131
|
post_result = self.postprocess_op(preds, shape_list)
|
|
113
132
|
dt_boxes = post_result[0]["points"]
|
|
114
133
|
|
|
115
|
-
if self.
|
|
134
|
+
if self._args.det_box_type == "poly":
|
|
116
135
|
dt_boxes = self.filter_tag_det_res_only_clip(dt_boxes, ori_im.shape)
|
|
117
136
|
else:
|
|
118
137
|
dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
|
{doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/onnxocr/predict_rec.py
RENAMED
|
@@ -10,6 +10,8 @@ from .predict_base import PredictBase
|
|
|
10
10
|
|
|
11
11
|
class TextRecognizer(PredictBase):
|
|
12
12
|
def __init__(self, args):
|
|
13
|
+
super().__init__()
|
|
14
|
+
self._args = args
|
|
13
15
|
self.rec_image_shape = args.rec_image_shape
|
|
14
16
|
self.rec_batch_num = args.rec_batch_num
|
|
15
17
|
self.rec_algorithm = args.rec_algorithm
|
|
@@ -19,9 +21,29 @@ class TextRecognizer(PredictBase):
|
|
|
19
21
|
)
|
|
20
22
|
|
|
21
23
|
# 初始化模型
|
|
22
|
-
self.
|
|
23
|
-
self.
|
|
24
|
-
self.
|
|
24
|
+
self._rec_onnx_session = None
|
|
25
|
+
self._rec_input_name = None
|
|
26
|
+
self._rec_output_name = None
|
|
27
|
+
|
|
28
|
+
@property
|
|
29
|
+
def rec_onnx_session(self):
|
|
30
|
+
if self._rec_onnx_session is None:
|
|
31
|
+
self._rec_onnx_session = self.get_onnx_session(
|
|
32
|
+
self._args.rec_model_dir, self._args.use_gpu
|
|
33
|
+
)
|
|
34
|
+
return self._rec_onnx_session
|
|
35
|
+
|
|
36
|
+
@property
|
|
37
|
+
def rec_input_name(self):
|
|
38
|
+
if self._rec_input_name is None:
|
|
39
|
+
self._rec_input_name = self.get_input_name(self.rec_onnx_session)
|
|
40
|
+
return self._rec_input_name
|
|
41
|
+
|
|
42
|
+
@property
|
|
43
|
+
def rec_output_name(self):
|
|
44
|
+
if self._rec_output_name is None:
|
|
45
|
+
self._rec_output_name = self.get_output_name(self.rec_onnx_session)
|
|
46
|
+
return self._rec_output_name
|
|
25
47
|
|
|
26
48
|
def resize_norm_img(self, img, max_wh_ratio):
|
|
27
49
|
imgC, imgH, imgW = self.rec_image_shape
|
|
@@ -30,9 +52,9 @@ class TextRecognizer(PredictBase):
|
|
|
30
52
|
# return padding_im
|
|
31
53
|
image_pil = Image.fromarray(np.uint8(img))
|
|
32
54
|
if self.rec_algorithm == "ViTSTR":
|
|
33
|
-
img = image_pil.resize([imgW, imgH], Image.BICUBIC)
|
|
55
|
+
img = image_pil.resize([imgW, imgH], Image.Resampling.BICUBIC)
|
|
34
56
|
else:
|
|
35
|
-
img = image_pil.resize([imgW, imgH], Image.
|
|
57
|
+
img = image_pil.resize([imgW, imgH], Image.Resampling.LANCZOS)
|
|
36
58
|
img = np.array(img)
|
|
37
59
|
norm_img = np.expand_dims(img, -1)
|
|
38
60
|
norm_img = norm_img.transpose((2, 0, 1))
|
|
@@ -250,8 +272,9 @@ class TextRecognizer(PredictBase):
|
|
|
250
272
|
def norm_img_can(self, img, image_shape):
|
|
251
273
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # CAN only predict gray scale image
|
|
252
274
|
|
|
253
|
-
|
|
254
|
-
|
|
275
|
+
# FIXME
|
|
276
|
+
# if self.inverse:
|
|
277
|
+
# img = 255 - img
|
|
255
278
|
|
|
256
279
|
if self.rec_image_shape[0] == 1:
|
|
257
280
|
h, w = img.shape
|
|
@@ -1,24 +1,20 @@
|
|
|
1
|
-
import os
|
|
2
1
|
import torch
|
|
3
2
|
|
|
4
3
|
from typing import Literal, Any
|
|
5
4
|
from PIL.Image import Image
|
|
6
|
-
from .types import TableLayoutParsedFormat
|
|
5
|
+
from .types import TableLayoutParsedFormat
|
|
6
|
+
from .model import Model
|
|
7
7
|
from .utils import expand_image
|
|
8
8
|
|
|
9
9
|
|
|
10
10
|
OutputFormat = Literal["latex", "markdown", "html"]
|
|
11
11
|
|
|
12
12
|
class Table:
|
|
13
|
-
def __init__(
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
get_model_dir: GetModelDir,
|
|
17
|
-
):
|
|
18
|
-
self._model: Any | None = None
|
|
19
|
-
self._model_path: str = get_model_dir()
|
|
13
|
+
def __init__(self, device: Literal["cpu", "cuda"], model: Model) -> None:
|
|
14
|
+
self._model: Model = model
|
|
15
|
+
self._table_model: Any | None = None
|
|
20
16
|
self._ban: bool = False
|
|
21
|
-
if device == "cpu"
|
|
17
|
+
if device == "cpu":
|
|
22
18
|
self._ban = True
|
|
23
19
|
|
|
24
20
|
def predict(self, image: Image, format: TableLayoutParsedFormat) -> str | None:
|
|
@@ -47,24 +43,18 @@ class Table:
|
|
|
47
43
|
|
|
48
44
|
return results[0]
|
|
49
45
|
|
|
50
|
-
def _get_model(self):
|
|
51
|
-
if self.
|
|
52
|
-
local_files_only: bool
|
|
53
|
-
if os.path.exists(self._model_path):
|
|
54
|
-
local_files_only = True
|
|
55
|
-
else:
|
|
56
|
-
local_files_only = False
|
|
57
|
-
os.makedirs(self._model_path)
|
|
58
|
-
|
|
46
|
+
def _get_model(self) -> Any:
|
|
47
|
+
if self._table_model is None:
|
|
59
48
|
from .struct_eqtable import build_model
|
|
60
|
-
|
|
61
|
-
|
|
49
|
+
model_path = self._model.get_struct_eqtable_path()
|
|
50
|
+
table_model = build_model(
|
|
51
|
+
model_ckpt=model_path,
|
|
62
52
|
max_new_tokens=1024,
|
|
63
53
|
max_time=30,
|
|
64
54
|
lmdeploy=False,
|
|
65
55
|
flash_attn=True,
|
|
66
56
|
batch_size=1,
|
|
67
|
-
local_files_only=
|
|
57
|
+
local_files_only=False,
|
|
68
58
|
)
|
|
69
|
-
self.
|
|
70
|
-
return self.
|
|
59
|
+
self._table_model = table_model.cuda()
|
|
60
|
+
return self._table_model
|
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
from dataclasses import dataclass
|
|
2
|
-
from typing import Literal
|
|
2
|
+
from typing import Literal
|
|
3
3
|
from enum import auto, Enum
|
|
4
4
|
from PIL.Image import Image
|
|
5
5
|
from .rectangle import Rectangle
|
|
@@ -59,30 +59,10 @@ class FormulaLayout(BaseLayout):
|
|
|
59
59
|
|
|
60
60
|
Layout = PlainLayout | TableLayout | FormulaLayout
|
|
61
61
|
|
|
62
|
+
|
|
62
63
|
@dataclass
|
|
63
64
|
class ExtractedResult:
|
|
64
65
|
rotation: float
|
|
65
66
|
layouts: list[Layout]
|
|
66
|
-
extracted_image: Image
|
|
67
|
-
adjusted_image: Image | None
|
|
68
|
-
|
|
69
|
-
GetModelDir = Callable[[], str]
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
@runtime_checkable
|
|
73
|
-
class ModelsDownloader(Protocol):
|
|
74
|
-
|
|
75
|
-
def onnx_ocr(self) -> str:
|
|
76
|
-
pass
|
|
77
|
-
|
|
78
|
-
def yolo(self) -> str:
|
|
79
|
-
pass
|
|
80
|
-
|
|
81
|
-
def layoutreader(self) -> str:
|
|
82
|
-
pass
|
|
83
|
-
|
|
84
|
-
def struct_eqtable(self) -> str:
|
|
85
|
-
pass
|
|
86
|
-
|
|
87
|
-
def latex(self) -> str:
|
|
88
|
-
pass
|
|
67
|
+
extracted_image: Image | None
|
|
68
|
+
adjusted_image: Image | None
|
|
@@ -1,13 +1,13 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: doc-page-extractor
|
|
3
|
-
Version: 0.1
|
|
3
|
+
Version: 0.2.1
|
|
4
4
|
Summary: doc page extractor can identify text and format in images and return structured data.
|
|
5
5
|
Home-page: https://github.com/Moskize91/doc-page-extractor
|
|
6
6
|
Author: Tao Zeyu
|
|
7
7
|
Author-email: i@taozeyu.com
|
|
8
8
|
Description-Content-Type: text/markdown
|
|
9
9
|
License-File: LICENSE
|
|
10
|
-
Requires-Dist: opencv-python<5.0,>=4.
|
|
10
|
+
Requires-Dist: opencv-python<5.0,>=4.10.0
|
|
11
11
|
Requires-Dist: pillow<11.0,>=10.3
|
|
12
12
|
Requires-Dist: pyclipper<2.0,>=1.2.0
|
|
13
13
|
Requires-Dist: numpy<2.0,>=1.24.0
|
|
@@ -16,7 +16,7 @@ Requires-Dist: transformers<=4.47,>=4.42.4
|
|
|
16
16
|
Requires-Dist: doclayout_yolo>=0.0.3
|
|
17
17
|
Requires-Dist: pix2tex<=0.2.0,>=0.1.4
|
|
18
18
|
Requires-Dist: accelerate<2.0,>=1.6.0
|
|
19
|
-
Requires-Dist: huggingface_hub
|
|
19
|
+
Requires-Dist: huggingface_hub<1.0,>=0.30.2
|
|
20
20
|
Dynamic: author
|
|
21
21
|
Dynamic: author-email
|
|
22
22
|
Dynamic: description
|
{doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor.egg-info/SOURCES.txt
RENAMED
|
@@ -8,7 +8,7 @@ doc_page_extractor/extractor.py
|
|
|
8
8
|
doc_page_extractor/latex.py
|
|
9
9
|
doc_page_extractor/layout_order.py
|
|
10
10
|
doc_page_extractor/layoutreader.py
|
|
11
|
-
doc_page_extractor/
|
|
11
|
+
doc_page_extractor/model.py
|
|
12
12
|
doc_page_extractor/ocr.py
|
|
13
13
|
doc_page_extractor/ocr_corrector.py
|
|
14
14
|
doc_page_extractor/overlap.py
|
{doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor.egg-info/requires.txt
RENAMED
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
opencv-python<5.0,>=4.
|
|
1
|
+
opencv-python<5.0,>=4.10.0
|
|
2
2
|
pillow<11.0,>=10.3
|
|
3
3
|
pyclipper<2.0,>=1.2.0
|
|
4
4
|
numpy<2.0,>=1.24.0
|
|
@@ -7,4 +7,4 @@ transformers<=4.47,>=4.42.4
|
|
|
7
7
|
doclayout_yolo>=0.0.3
|
|
8
8
|
pix2tex<=0.2.0,>=0.1.4
|
|
9
9
|
accelerate<2.0,>=1.6.0
|
|
10
|
-
huggingface_hub
|
|
10
|
+
huggingface_hub<1.0,>=0.30.2
|
|
@@ -5,7 +5,7 @@ if "doc_page_extractor.struct_eqtable" not in find_packages():
|
|
|
5
5
|
|
|
6
6
|
setup(
|
|
7
7
|
name="doc-page-extractor",
|
|
8
|
-
version="0.1
|
|
8
|
+
version="0.2.1",
|
|
9
9
|
author="Tao Zeyu",
|
|
10
10
|
author_email="i@taozeyu.com",
|
|
11
11
|
url="https://github.com/Moskize91/doc-page-extractor",
|
|
@@ -14,7 +14,7 @@ setup(
|
|
|
14
14
|
long_description=open("./README.md", encoding="utf8").read(),
|
|
15
15
|
long_description_content_type="text/markdown",
|
|
16
16
|
install_requires=[
|
|
17
|
-
"opencv-python>=4.
|
|
17
|
+
"opencv-python>=4.10.0,<5.0",
|
|
18
18
|
"pillow>=10.3,<11.0",
|
|
19
19
|
"pyclipper>=1.2.0,<2.0",
|
|
20
20
|
"numpy>=1.24.0,<2.0",
|
|
@@ -23,6 +23,6 @@ setup(
|
|
|
23
23
|
"doclayout_yolo>=0.0.3",
|
|
24
24
|
"pix2tex>=0.1.4,<=0.2.0",
|
|
25
25
|
"accelerate>=1.6.0,<2.0",
|
|
26
|
-
"huggingface_hub>=0.30.2",
|
|
26
|
+
"huggingface_hub>=0.30.2,<1.0",
|
|
27
27
|
],
|
|
28
28
|
)
|
|
@@ -15,7 +15,7 @@ class TestGroup(unittest.TestCase):
|
|
|
15
15
|
layouts: list[tuple[LayoutClass, list[str]]]
|
|
16
16
|
|
|
17
17
|
with Image.open(image_path) as image:
|
|
18
|
-
result = extractor.extract(image,
|
|
18
|
+
result = extractor.extract(image, extract_formula=False)
|
|
19
19
|
layouts = [self._format_Layout(layout) for layout in result.layouts]
|
|
20
20
|
|
|
21
21
|
self.assertEqual(layouts, [
|
|
@@ -1,29 +0,0 @@
|
|
|
1
|
-
import os
|
|
2
|
-
import torch
|
|
3
|
-
|
|
4
|
-
from munch import Munch
|
|
5
|
-
from pix2tex.cli import LatexOCR
|
|
6
|
-
from PIL.Image import Image
|
|
7
|
-
from .utils import expand_image
|
|
8
|
-
from .types import GetModelDir
|
|
9
|
-
|
|
10
|
-
class LaTeX:
|
|
11
|
-
def __init__(self, get_model_dir: GetModelDir):
|
|
12
|
-
self._model_path: str = get_model_dir()
|
|
13
|
-
self._model: LatexOCR | None = None
|
|
14
|
-
|
|
15
|
-
def extract(self, image: Image) -> str | None:
|
|
16
|
-
image = expand_image(image, 0.1) # 添加边缘提高识别准确率
|
|
17
|
-
model = self._get_model()
|
|
18
|
-
with torch.no_grad():
|
|
19
|
-
return model(image)
|
|
20
|
-
|
|
21
|
-
def _get_model(self) -> LatexOCR:
|
|
22
|
-
if self._model is None:
|
|
23
|
-
self._model = LatexOCR(Munch({
|
|
24
|
-
"config": os.path.join("settings", "config.yaml"),
|
|
25
|
-
"checkpoint": os.path.join(self._model_path, "checkpoints", "weights.pth"),
|
|
26
|
-
"no_cuda": True,
|
|
27
|
-
"no_resize": False,
|
|
28
|
-
}))
|
|
29
|
-
return self._model
|
|
@@ -1,92 +0,0 @@
|
|
|
1
|
-
import os
|
|
2
|
-
|
|
3
|
-
from logging import Logger
|
|
4
|
-
from huggingface_hub import hf_hub_download, snapshot_download, try_to_load_from_cache
|
|
5
|
-
from .types import ModelsDownloader
|
|
6
|
-
|
|
7
|
-
class HuggingfaceModelsDownloader(ModelsDownloader):
|
|
8
|
-
def __init__(
|
|
9
|
-
self,
|
|
10
|
-
logger: Logger,
|
|
11
|
-
model_dir_path: str | None
|
|
12
|
-
):
|
|
13
|
-
self._logger = logger
|
|
14
|
-
self._model_dir_path: str | None = model_dir_path
|
|
15
|
-
|
|
16
|
-
def onnx_ocr(self) -> str:
|
|
17
|
-
repo_path = try_to_load_from_cache(
|
|
18
|
-
repo_id="moskize/OnnxOCR",
|
|
19
|
-
filename="README.md",
|
|
20
|
-
cache_dir=self._model_dir_path
|
|
21
|
-
)
|
|
22
|
-
if isinstance(repo_path, str):
|
|
23
|
-
return os.path.dirname(repo_path)
|
|
24
|
-
else:
|
|
25
|
-
self._logger.info("Downloading OCR model...")
|
|
26
|
-
return snapshot_download(
|
|
27
|
-
cache_dir=self._model_dir_path,
|
|
28
|
-
repo_id="moskize/OnnxOCR",
|
|
29
|
-
)
|
|
30
|
-
|
|
31
|
-
def yolo(self) -> str:
|
|
32
|
-
yolo_file_path = try_to_load_from_cache(
|
|
33
|
-
repo_id="opendatalab/PDF-Extract-Kit-1.0",
|
|
34
|
-
filename="models/Layout/YOLO/doclayout_yolo_ft.pt",
|
|
35
|
-
cache_dir=self._model_dir_path
|
|
36
|
-
)
|
|
37
|
-
if isinstance(yolo_file_path, str):
|
|
38
|
-
return yolo_file_path
|
|
39
|
-
else:
|
|
40
|
-
self._logger.info("Downloading YOLO model...")
|
|
41
|
-
return hf_hub_download(
|
|
42
|
-
cache_dir=self._model_dir_path,
|
|
43
|
-
repo_id="opendatalab/PDF-Extract-Kit-1.0",
|
|
44
|
-
filename="models/Layout/YOLO/doclayout_yolo_ft.pt",
|
|
45
|
-
)
|
|
46
|
-
|
|
47
|
-
def layoutreader(self) -> str:
|
|
48
|
-
repo_path = try_to_load_from_cache(
|
|
49
|
-
repo_id="hantian/layoutreader",
|
|
50
|
-
filename="model.safetensors",
|
|
51
|
-
cache_dir=self._model_dir_path
|
|
52
|
-
)
|
|
53
|
-
if isinstance(repo_path, str):
|
|
54
|
-
return os.path.dirname(repo_path)
|
|
55
|
-
else:
|
|
56
|
-
self._logger.info("Downloading LayoutReader model...")
|
|
57
|
-
return snapshot_download(
|
|
58
|
-
cache_dir=self._model_dir_path,
|
|
59
|
-
repo_id="hantian/layoutreader",
|
|
60
|
-
)
|
|
61
|
-
|
|
62
|
-
def struct_eqtable(self) -> str:
|
|
63
|
-
repo_path = try_to_load_from_cache(
|
|
64
|
-
repo_id="U4R/StructTable-InternVL2-1B",
|
|
65
|
-
filename="model.safetensors",
|
|
66
|
-
cache_dir=self._model_dir_path
|
|
67
|
-
)
|
|
68
|
-
if isinstance(repo_path, str):
|
|
69
|
-
return os.path.dirname(repo_path)
|
|
70
|
-
else:
|
|
71
|
-
self._logger.info("Downloading StructEqTable model...")
|
|
72
|
-
return snapshot_download(
|
|
73
|
-
cache_dir=self._model_dir_path,
|
|
74
|
-
repo_id="U4R/StructTable-InternVL2-1B",
|
|
75
|
-
)
|
|
76
|
-
|
|
77
|
-
def latex(self):
|
|
78
|
-
repo_path = try_to_load_from_cache(
|
|
79
|
-
repo_id="lukbl/LaTeX-OCR",
|
|
80
|
-
filename="checkpoints/weights.pth",
|
|
81
|
-
repo_type="space",
|
|
82
|
-
cache_dir=self._model_dir_path
|
|
83
|
-
)
|
|
84
|
-
if isinstance(repo_path, str):
|
|
85
|
-
return os.path.dirname(os.path.dirname(repo_path))
|
|
86
|
-
else:
|
|
87
|
-
self._logger.info("Downloading LaTeX model...")
|
|
88
|
-
return snapshot_download(
|
|
89
|
-
cache_dir=self._model_dir_path,
|
|
90
|
-
repo_type="space",
|
|
91
|
-
repo_id="lukbl/LaTeX-OCR",
|
|
92
|
-
)
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/onnxocr/__init__.py
RENAMED
|
File without changes
|
{doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/onnxocr/cls_postprocess.py
RENAMED
|
File without changes
|
{doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/onnxocr/db_postprocess.py
RENAMED
|
File without changes
|
|
File without changes
|
{doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/onnxocr/operators.py
RENAMED
|
File without changes
|
{doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/onnxocr/predict_system.py
RENAMED
|
File without changes
|
{doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/onnxocr/rec_postprocess.py
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/struct_eqtable/__init__.py
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor.egg-info/top_level.txt
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|