doc-page-extractor 0.1.2__tar.gz → 0.2.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (52) hide show
  1. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/PKG-INFO +3 -3
  2. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/__init__.py +0 -1
  3. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/extractor.py +41 -41
  4. doc_page_extractor-0.2.1/doc_page_extractor/latex.py +33 -0
  5. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/layout_order.py +13 -10
  6. doc_page_extractor-0.2.1/doc_page_extractor/model.py +103 -0
  7. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/ocr.py +47 -28
  8. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/onnxocr/predict_base.py +9 -4
  9. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/onnxocr/predict_cls.py +23 -3
  10. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/onnxocr/predict_det.py +24 -5
  11. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/onnxocr/predict_rec.py +30 -7
  12. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/table.py +14 -24
  13. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/types.py +4 -24
  14. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor.egg-info/PKG-INFO +3 -3
  15. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor.egg-info/SOURCES.txt +1 -1
  16. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor.egg-info/requires.txt +2 -2
  17. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/setup.py +3 -3
  18. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/tests/test_history_bus.py +1 -1
  19. doc_page_extractor-0.1.2/doc_page_extractor/latex.py +0 -29
  20. doc_page_extractor-0.1.2/doc_page_extractor/models.py +0 -92
  21. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/LICENSE +0 -0
  22. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/README.md +0 -0
  23. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/clipper.py +0 -0
  24. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/downloader.py +0 -0
  25. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/layoutreader.py +0 -0
  26. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/ocr_corrector.py +0 -0
  27. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/onnxocr/__init__.py +0 -0
  28. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/onnxocr/cls_postprocess.py +0 -0
  29. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/onnxocr/db_postprocess.py +0 -0
  30. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/onnxocr/imaug.py +0 -0
  31. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/onnxocr/operators.py +0 -0
  32. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/onnxocr/predict_system.py +0 -0
  33. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/onnxocr/rec_postprocess.py +0 -0
  34. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/onnxocr/utils.py +0 -0
  35. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/overlap.py +0 -0
  36. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/plot.py +0 -0
  37. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/raw_optimizer.py +0 -0
  38. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/rectangle.py +0 -0
  39. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/rotation.py +0 -0
  40. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/struct_eqtable/__init__.py +0 -0
  41. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/struct_eqtable/internvl/__init__.py +0 -0
  42. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/struct_eqtable/internvl/conversation.py +0 -0
  43. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/struct_eqtable/internvl/internvl.py +0 -0
  44. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/struct_eqtable/internvl/internvl_lmdeploy.py +0 -0
  45. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/struct_eqtable/pix2s/__init__.py +0 -0
  46. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/struct_eqtable/pix2s/pix2s.py +0 -0
  47. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/struct_eqtable/pix2s/pix2s_trt.py +0 -0
  48. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor/utils.py +0 -0
  49. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor.egg-info/dependency_links.txt +0 -0
  50. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/doc_page_extractor.egg-info/top_level.txt +0 -0
  51. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/setup.cfg +0 -0
  52. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.1}/tests/__init__.py +0 -0
@@ -1,13 +1,13 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: doc-page-extractor
3
- Version: 0.1.2
3
+ Version: 0.2.1
4
4
  Summary: doc page extractor can identify text and format in images and return structured data.
5
5
  Home-page: https://github.com/Moskize91/doc-page-extractor
6
6
  Author: Tao Zeyu
7
7
  Author-email: i@taozeyu.com
8
8
  Description-Content-Type: text/markdown
9
9
  License-File: LICENSE
10
- Requires-Dist: opencv-python<5.0,>=4.11.0
10
+ Requires-Dist: opencv-python<5.0,>=4.10.0
11
11
  Requires-Dist: pillow<11.0,>=10.3
12
12
  Requires-Dist: pyclipper<2.0,>=1.2.0
13
13
  Requires-Dist: numpy<2.0,>=1.24.0
@@ -16,7 +16,7 @@ Requires-Dist: transformers<=4.47,>=4.42.4
16
16
  Requires-Dist: doclayout_yolo>=0.0.3
17
17
  Requires-Dist: pix2tex<=0.2.0,>=0.1.4
18
18
  Requires-Dist: accelerate<2.0,>=1.6.0
19
- Requires-Dist: huggingface_hub>=0.30.2
19
+ Requires-Dist: huggingface_hub<1.0,>=0.30.2
20
20
  Dynamic: author
21
21
  Dynamic: author-email
22
22
  Dynamic: description
@@ -12,5 +12,4 @@ from .types import (
12
12
  PlainLayout,
13
13
  FormulaLayout,
14
14
  TableLayout,
15
- ModelsDownloader
16
15
  )
@@ -1,10 +1,11 @@
1
+ import torch
1
2
 
3
+ from os import PathLike
2
4
  from typing import Literal, Generator
3
5
  from PIL.Image import Image
4
6
  from doclayout_yolo import YOLOv10
5
- from logging import Logger, getLogger
6
7
 
7
- from .models import HuggingfaceModelsDownloader
8
+ from .model import Model, HuggingfaceModel
8
9
  from .ocr import OCR
9
10
  from .ocr_corrector import correct_fragments
10
11
  from .raw_optimizer import RawOptimizer
@@ -16,55 +17,48 @@ from .overlap import merge_fragments_as_line, remove_overlap_layouts
16
17
  from .clipper import clip_from_image
17
18
  from .types import (
18
19
  ExtractedResult,
19
- ModelsDownloader,
20
20
  OCRFragment,
21
- TableLayoutParsedFormat,
22
21
  Layout,
23
22
  LayoutClass,
24
23
  PlainLayout,
25
24
  TableLayout,
26
25
  FormulaLayout,
26
+ TableLayoutParsedFormat
27
27
  )
28
28
 
29
29
 
30
30
  class DocExtractor:
31
31
  def __init__(
32
- self,
33
- model_cache_dir: str | None = None,
34
- device: Literal["cpu", "cuda"] = "cpu",
35
- ocr_for_each_layouts: bool = True,
36
- extract_formula: bool = True,
37
- extract_table_format: TableLayoutParsedFormat | None = None,
38
- models_downloader: ModelsDownloader | None = None,
39
- logger: Logger | None = None,
40
- ):
41
- self._logger = logger or getLogger(__name__)
42
- self._models_downloader = models_downloader or HuggingfaceModelsDownloader(self._logger, model_cache_dir)
32
+ self,
33
+ model_cache_dir: PathLike | None = None,
34
+ device: Literal["cpu", "cuda"] = "cpu",
35
+ model: Model | None = None,
36
+ ) -> None:
37
+
38
+ if model is None:
39
+ if model_cache_dir is None:
40
+ raise ValueError("You must provide a model_cache_dir or a model instance.")
41
+ model = HuggingfaceModel(model_cache_dir)
42
+
43
+ if device == "cuda" and not torch.cuda.is_available():
44
+ device = "cpu"
45
+ print("CUDA is not available. Using CPU instead.")
43
46
 
44
47
  self._device: Literal["cpu", "cuda"] = device
45
- self._ocr_for_each_layouts: bool = ocr_for_each_layouts
46
- self._extract_formula: bool = extract_formula
47
- self._extract_table_format: TableLayoutParsedFormat | None = extract_table_format
48
+ self._model: Model = model
48
49
  self._yolo: YOLOv10 | None = None
49
- self._ocr: OCR = OCR(
50
- device=device,
51
- get_model_dir=self._models_downloader.onnx_ocr,
52
- )
53
- self._table: Table = Table(
54
- device=device,
55
- get_model_dir=self._models_downloader.struct_eqtable,
56
- )
57
- self._latex: LaTeX = LaTeX(
58
- get_model_dir=self._models_downloader.latex,
59
- )
60
- self._layout_order: LayoutOrder = LayoutOrder(
61
- get_model_dir=self._models_downloader.layoutreader,
62
- )
50
+ self._ocr: OCR = OCR(device, model)
51
+ self._table: Table = Table(device, model)
52
+ self._latex: LaTeX = LaTeX(device, model)
53
+ self._layout_order: LayoutOrder = LayoutOrder(device, model)
63
54
 
64
55
  def extract(
65
56
  self,
66
57
  image: Image,
67
- adjust_points: bool = False,
58
+ extract_formula: bool,
59
+ extract_table_format: TableLayoutParsedFormat | None = None,
60
+ ocr_for_each_layouts: bool = False,
61
+ adjust_points: bool = False
68
62
  ) -> ExtractedResult:
69
63
 
70
64
  raw_optimizer = RawOptimizer(image, adjust_points)
@@ -74,13 +68,13 @@ class DocExtractor:
74
68
  layouts = self._layouts_matched_by_fragments(fragments, layouts)
75
69
  layouts = remove_overlap_layouts(layouts)
76
70
 
77
- if self._ocr_for_each_layouts:
71
+ if ocr_for_each_layouts:
78
72
  self._correct_fragments_by_ocr_layouts(raw_optimizer.image, layouts)
79
73
 
80
74
  layouts = self._layout_order.sort(layouts, raw_optimizer.image.size)
81
75
  layouts = [layout for layout in layouts if self._should_keep_layout(layout)]
82
76
 
83
- self._parse_table_and_formula_layouts(layouts, raw_optimizer)
77
+ self._parse_table_and_formula_layouts(layouts, raw_optimizer, extract_formula=extract_formula, extract_table_format=extract_table_format)
84
78
 
85
79
  for layout in layouts:
86
80
  layout.fragments = merge_fragments_as_line(layout.fragments)
@@ -142,16 +136,22 @@ class DocExtractor:
142
136
  for layout in layouts:
143
137
  correct_fragments(self._ocr, source, layout)
144
138
 
145
- def _parse_table_and_formula_layouts(self, layouts: list[Layout], raw_optimizer: RawOptimizer):
139
+ def _parse_table_and_formula_layouts(
140
+ self,
141
+ layouts: list[Layout],
142
+ raw_optimizer: RawOptimizer,
143
+ extract_formula: bool,
144
+ extract_table_format: TableLayoutParsedFormat | None,
145
+ ):
146
146
  for layout in layouts:
147
- if isinstance(layout, FormulaLayout) and self._extract_formula:
147
+ if isinstance(layout, FormulaLayout) and extract_formula:
148
148
  image = clip_from_image(raw_optimizer.image, layout.rect)
149
149
  layout.latex = self._latex.extract(image)
150
- elif isinstance(layout, TableLayout) and self._extract_table_format is not None:
150
+ elif isinstance(layout, TableLayout) and extract_table_format is not None:
151
151
  image = clip_from_image(raw_optimizer.image, layout.rect)
152
- parsed = self._table.predict(image, self._extract_table_format)
152
+ parsed = self._table.predict(image, extract_table_format)
153
153
  if parsed is not None:
154
- layout.parsed = (parsed, self._extract_table_format)
154
+ layout.parsed = (parsed, extract_table_format)
155
155
 
156
156
  def _split_layouts_by_group(self, layouts: list[Layout]):
157
157
  texts_layouts: list[Layout] = []
@@ -195,7 +195,7 @@ class DocExtractor:
195
195
 
196
196
  def _get_yolo(self) -> YOLOv10:
197
197
  if self._yolo is None:
198
- model_path = self._models_downloader.yolo()
198
+ model_path = self._model.get_yolo_path()
199
199
  self._yolo = YOLOv10(str(model_path))
200
200
  return self._yolo
201
201
 
@@ -0,0 +1,33 @@
1
+ import os
2
+ import torch
3
+
4
+ from munch import Munch
5
+ from pix2tex.cli import LatexOCR
6
+ from PIL.Image import Image
7
+ from typing import Literal
8
+ from .utils import expand_image
9
+ from .model import Model
10
+
11
+
12
+ class LaTeX:
13
+ def __init__(self, device: Literal["cpu", "cuda"], model: Model) -> None:
14
+ self._model: Model = model
15
+ self._latex_model: LatexOCR | None = None
16
+ self._device: Literal["cpu", "cuda"] = device
17
+
18
+ def extract(self, image: Image) -> str | None:
19
+ image = expand_image(image, 0.1) # 添加边缘提高识别准确率
20
+ model = self._get_model()
21
+ with torch.no_grad():
22
+ return model(image)
23
+
24
+ def _get_model(self) -> LatexOCR:
25
+ if self._latex_model is None:
26
+ model_path = self._model.get_latex_path()
27
+ self._latex_model = LatexOCR(Munch({
28
+ "config": os.path.join("settings", "config.yaml"),
29
+ "checkpoint": os.path.join(model_path, "checkpoints", "weights.pth"),
30
+ "no_cuda": self._device == "cpu",
31
+ "no_resize": False,
32
+ }))
33
+ return self._latex_model
@@ -1,10 +1,11 @@
1
1
  import torch
2
2
 
3
- from typing import Generator
3
+ from typing import Generator, Literal
4
4
  from dataclasses import dataclass
5
5
  from transformers import LayoutLMv3ForTokenClassification
6
6
 
7
- from .types import Layout, LayoutClass, GetModelDir
7
+ from .types import Layout, LayoutClass
8
+ from .model import Model
8
9
  from .layoutreader import prepare_inputs, boxes2inputs, parse_logits
9
10
 
10
11
 
@@ -17,17 +18,19 @@ class _BBox:
17
18
  value: tuple[float, float, float, float]
18
19
 
19
20
  class LayoutOrder:
20
- def __init__(self, get_model_dir: GetModelDir):
21
- self._model_path: str = get_model_dir()
22
- self._model: LayoutLMv3ForTokenClassification | None = None
21
+ def __init__(self, device: Literal["cpu", "cuda"], model: Model):
22
+ self._model: Model = model
23
+ self._order_model: LayoutLMv3ForTokenClassification | None = None
24
+ self._device: Literal["cpu", "cuda"] = device
23
25
 
24
26
  def _get_model(self) -> LayoutLMv3ForTokenClassification:
25
- if self._model is None:
26
- self._model = LayoutLMv3ForTokenClassification.from_pretrained(
27
- pretrained_model_name_or_path=self._model_path,
27
+ if self._order_model is None:
28
+ model_path = self._model.get_layoutreader_path()
29
+ self._order_model = LayoutLMv3ForTokenClassification.from_pretrained(
30
+ pretrained_model_name_or_path=model_path,
28
31
  local_files_only=True,
29
- )
30
- return self._model
32
+ ).to(device=self._device)
33
+ return self._order_model
31
34
 
32
35
  def sort(self, layouts: list[Layout], size: tuple[int, int]) -> list[Layout]:
33
36
  width, height = size
@@ -0,0 +1,103 @@
1
+ from os import PathLike
2
+ from typing import runtime_checkable, Protocol
3
+ from pathlib import Path
4
+ from threading import Lock
5
+ from huggingface_hub import hf_hub_download, snapshot_download, try_to_load_from_cache
6
+
7
+
8
+ @runtime_checkable
9
+ class Model(Protocol):
10
+ def get_onnx_ocr_path(self) -> Path:
11
+ pass
12
+
13
+ def get_yolo_path(self) -> Path:
14
+ pass
15
+
16
+ def get_layoutreader_path(self) -> Path:
17
+ pass
18
+
19
+ def get_struct_eqtable_path(self) -> Path:
20
+ pass
21
+
22
+ def get_latex_path(self) -> Path:
23
+ pass
24
+
25
+ class HuggingfaceModel(Model):
26
+ def __init__(self, model_cache_dir: PathLike):
27
+ super().__init__()
28
+ self._lock: Lock = Lock()
29
+ self._model_cache_dir: Path = Path(model_cache_dir)
30
+
31
+ def get_onnx_ocr_path(self) -> Path:
32
+ return self._get_model_path(
33
+ repo_id="moskize/OnnxOCR",
34
+ filename=None,
35
+ repo_type=None,
36
+ is_snapshot=True
37
+ )
38
+
39
+ def get_yolo_path(self) -> Path:
40
+ return self._get_model_path(
41
+ repo_id="opendatalab/PDF-Extract-Kit-1.0",
42
+ filename="models/Layout/YOLO/doclayout_yolo_ft.pt",
43
+ repo_type=None,
44
+ is_snapshot=False,
45
+ )
46
+
47
+ def get_layoutreader_path(self) -> Path:
48
+ return self._get_model_path(
49
+ repo_id="hantian/layoutreader",
50
+ filename=None,
51
+ repo_type=None,
52
+ is_snapshot=True,
53
+ )
54
+
55
+ def get_struct_eqtable_path(self) -> Path:
56
+ return self._get_model_path(
57
+ repo_id="U4R/StructTable-InternVL2-1B",
58
+ filename="model.safetensors",
59
+ repo_type=None,
60
+ is_snapshot=True,
61
+ )
62
+
63
+ def get_latex_path(self) -> Path:
64
+ return self._get_model_path(
65
+ repo_id="lukbl/LaTeX-OCR",
66
+ filename="checkpoints/weights.pth",
67
+ repo_type="space",
68
+ is_snapshot=True,
69
+ )
70
+
71
+ def _get_model_path(
72
+ self,
73
+ repo_id: str,
74
+ filename: str | None,
75
+ repo_type: str | None,
76
+ is_snapshot: bool,
77
+ ) -> Path:
78
+ with self._lock:
79
+ cache_filename = "README.md"
80
+ if filename is not None:
81
+ cache_filename = filename
82
+ model_path = try_to_load_from_cache(
83
+ repo_id=repo_id,
84
+ filename=cache_filename,
85
+ repo_type=repo_type,
86
+ cache_dir=self._model_cache_dir
87
+ )
88
+ if isinstance(model_path, str):
89
+ if filename is None:
90
+ model_path = Path(model_path).parent
91
+
92
+ elif is_snapshot:
93
+ model_path = snapshot_download(
94
+ cache_dir=self._model_cache_dir,
95
+ repo_id=repo_id,
96
+ )
97
+ else:
98
+ model_path = hf_hub_download(
99
+ cache_dir=self._model_cache_dir,
100
+ repo_id=repo_id,
101
+ filename=filename,
102
+ )
103
+ return Path(model_path)
@@ -5,7 +5,8 @@ import os
5
5
  from typing import Literal, Generator
6
6
  from dataclasses import dataclass
7
7
  from .onnxocr import TextSystem
8
- from .types import GetModelDir, OCRFragment
8
+ from .types import OCRFragment
9
+ from .model import Model
9
10
  from .rectangle import Rectangle
10
11
  from .utils import is_space_text
11
12
 
@@ -46,17 +47,10 @@ class _OONXParams:
46
47
  det_model_dir: str
47
48
  rec_char_dict_path: str
48
49
 
49
-
50
-
51
-
52
50
  class OCR:
53
- def __init__(
54
- self,
55
- device: Literal["cpu", "cuda"],
56
- get_model_dir: GetModelDir,
57
- ):
51
+ def __init__(self, device: Literal["cpu", "cuda"], model: Model):
58
52
  self._device: Literal["cpu", "cuda"] = device
59
- self._get_model_dir: GetModelDir = get_model_dir
53
+ self._model: Model = model
60
54
  self._text_system: TextSystem | None = None
61
55
 
62
56
  def search_fragments(self, image: np.ndarray) -> Generator[OCRFragment, None, None]:
@@ -89,17 +83,9 @@ class OCR:
89
83
  for box, res in zip(dt_boxes, rec_res):
90
84
  yield box.tolist(), res
91
85
 
92
- def make_model_paths(self) -> list[str]:
93
- model_paths = []
94
- model_dir = self._get_model_dir()
95
- for model_path in _MODELS:
96
- file_name = os.path.join(*model_path)
97
- model_paths.append(os.path.join(model_dir, file_name))
98
- return model_paths
99
-
100
86
  def _get_text_system(self) -> TextSystem:
101
87
  if self._text_system is None:
102
- model_paths = self.make_model_paths()
88
+ model_paths = self._make_model_paths()
103
89
  self._text_system = TextSystem(_OONXParams(
104
90
  use_angle_cls=True,
105
91
  use_gpu=(self._device != "cpu"),
@@ -127,9 +113,16 @@ class OCR:
127
113
  det_model_dir=model_paths[2],
128
114
  rec_char_dict_path=model_paths[3],
129
115
  ))
130
-
131
116
  return self._text_system
132
117
 
118
+ def _make_model_paths(self) -> list[str]:
119
+ model_paths: list[str] = []
120
+ model_dir = self._model.get_onnx_ocr_path()
121
+ for model_path in _MODELS:
122
+ file_name = os.path.join(*model_path)
123
+ model_paths.append(str(model_dir / file_name))
124
+ return model_paths
125
+
133
126
  def _preprocess_image(self, image: np.ndarray) -> np.ndarray:
134
127
  image = self._alpha_to_color(image, (255, 255, 255))
135
128
  # image = cv2.bitwise_not(image) # inv
@@ -141,14 +134,40 @@ class OCR:
141
134
  beta=255,
142
135
  norm_type=cv2.NORM_MINMAX,
143
136
  )
144
- image = cv2.fastNlMeansDenoisingColored(
145
- src=image,
146
- dst=None,
147
- h=10,
148
- hColor=10,
149
- templateWindowSize=7,
150
- searchWindowSize=15,
151
- )
137
+ if cv2.cuda.getCudaEnabledDeviceCount() > 0:
138
+ gpu_frame = cv2.cuda.GpuMat()
139
+ gpu_frame.upload(image)
140
+ image = cv2.cuda.fastNlMeansDenoisingColored(
141
+ src=gpu_frame,
142
+ dst=None,
143
+ h_luminance=10,
144
+ photo_render=10,
145
+ search_window=15,
146
+ block_size=7,
147
+ )
148
+ image = gpu_frame.download()
149
+ elif cv2.ocl.haveOpenCL():
150
+ cv2.ocl.setUseOpenCL(True)
151
+ gpu_frame = cv2.UMat(image)
152
+ image = cv2.fastNlMeansDenoisingColored(
153
+ src=gpu_frame,
154
+ dst=None,
155
+ h=10,
156
+ hColor=10,
157
+ templateWindowSize=7,
158
+ searchWindowSize=15,
159
+ )
160
+ image = image.get()
161
+ else:
162
+ image = cv2.fastNlMeansDenoisingColored(
163
+ src=image,
164
+ dst=None,
165
+ h=10,
166
+ hColor=10,
167
+ templateWindowSize=7,
168
+ searchWindowSize=15,
169
+ )
170
+
152
171
  # image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # image to gray
153
172
  return image
154
173
 
@@ -1,8 +1,13 @@
1
- import onnxruntime
2
-
3
1
  class PredictBase(object):
4
2
  def __init__(self):
5
- pass
3
+ self._onnxruntime = None
4
+
5
+ @property
6
+ def onnxruntime(self):
7
+ if self._onnxruntime is None:
8
+ import onnxruntime
9
+ self._onnxruntime = onnxruntime
10
+ return self._onnxruntime
6
11
 
7
12
  def get_onnx_session(self, model_dir, use_gpu):
8
13
  # 使用gpu
@@ -11,7 +16,7 @@ class PredictBase(object):
11
16
  else:
12
17
  providers = providers = ['CPUExecutionProvider']
13
18
 
14
- onnx_session = onnxruntime.InferenceSession(model_dir, None,providers=providers)
19
+ onnx_session = self.onnxruntime.InferenceSession(model_dir, None, providers=providers)
15
20
 
16
21
  # print("providers:", onnxruntime.get_device())
17
22
  return onnx_session
@@ -9,15 +9,35 @@ from .predict_base import PredictBase
9
9
 
10
10
  class TextClassifier(PredictBase):
11
11
  def __init__(self, args):
12
+ super().__init__()
12
13
  self.cls_image_shape = args.cls_image_shape
13
14
  self.cls_batch_num = args.cls_batch_num
14
15
  self.cls_thresh = args.cls_thresh
15
16
  self.postprocess_op = ClsPostProcess(label_list=args.label_list)
17
+ self._args = args
16
18
 
17
19
  # 初始化模型
18
- self.cls_onnx_session = self.get_onnx_session(args.cls_model_dir, args.use_gpu)
19
- self.cls_input_name = self.get_input_name(self.cls_onnx_session)
20
- self.cls_output_name = self.get_output_name(self.cls_onnx_session)
20
+ self._cls_onnx_session = None
21
+ self._cls_input_name = None
22
+ self._cls_output_name = None
23
+
24
+ @property
25
+ def cls_onnx_session(self):
26
+ if self._cls_onnx_session is None:
27
+ self._cls_onnx_session = self.get_onnx_session(self._args.cls_model_dir, self._args.use_gpu)
28
+ return self._cls_onnx_session
29
+
30
+ @property
31
+ def cls_input_name(self):
32
+ if self._cls_input_name is None:
33
+ self._cls_input_name = self.get_input_name(self.cls_onnx_session)
34
+ return self._cls_input_name
35
+
36
+ @property
37
+ def cls_output_name(self):
38
+ if self._cls_output_name is None:
39
+ self._cls_output_name = self.get_output_name(self.cls_onnx_session)
40
+ return self._cls_output_name
21
41
 
22
42
  def resize_norm_img(self, img):
23
43
  imgC, imgH, imgW = self.cls_image_shape
@@ -6,7 +6,8 @@ from .predict_base import PredictBase
6
6
 
7
7
  class TextDetector(PredictBase):
8
8
  def __init__(self, args):
9
- self.args = args
9
+ super().__init__()
10
+ self._args = args
10
11
  self.det_algorithm = args.det_algorithm
11
12
  pre_process_list = [
12
13
  {
@@ -43,9 +44,27 @@ class TextDetector(PredictBase):
43
44
  self.postprocess_op = DBPostProcess(**postprocess_params)
44
45
 
45
46
  # 初始化模型
46
- self.det_onnx_session = self.get_onnx_session(args.det_model_dir, args.use_gpu)
47
- self.det_input_name = self.get_input_name(self.det_onnx_session)
48
- self.det_output_name = self.get_output_name(self.det_onnx_session)
47
+ self._det_onnx_session = None
48
+ self._det_input_name = None
49
+ self._det_output_name = None
50
+
51
+ @property
52
+ def det_onnx_session(self):
53
+ if self._det_onnx_session is None:
54
+ self._det_onnx_session = self.get_onnx_session(self._args.det_model_dir, self._args.use_gpu)
55
+ return self._det_onnx_session
56
+
57
+ @property
58
+ def det_input_name(self):
59
+ if self._det_input_name is None:
60
+ self._det_input_name = self.get_input_name(self.det_onnx_session)
61
+ return self._det_input_name
62
+
63
+ @property
64
+ def det_output_name(self):
65
+ if self._det_output_name is None:
66
+ self._det_output_name = self.get_output_name(self.det_onnx_session)
67
+ return self._det_output_name
49
68
 
50
69
  def order_points_clockwise(self, pts):
51
70
  rect = np.zeros((4, 2), dtype="float32")
@@ -112,7 +131,7 @@ class TextDetector(PredictBase):
112
131
  post_result = self.postprocess_op(preds, shape_list)
113
132
  dt_boxes = post_result[0]["points"]
114
133
 
115
- if self.args.det_box_type == "poly":
134
+ if self._args.det_box_type == "poly":
116
135
  dt_boxes = self.filter_tag_det_res_only_clip(dt_boxes, ori_im.shape)
117
136
  else:
118
137
  dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
@@ -10,6 +10,8 @@ from .predict_base import PredictBase
10
10
 
11
11
  class TextRecognizer(PredictBase):
12
12
  def __init__(self, args):
13
+ super().__init__()
14
+ self._args = args
13
15
  self.rec_image_shape = args.rec_image_shape
14
16
  self.rec_batch_num = args.rec_batch_num
15
17
  self.rec_algorithm = args.rec_algorithm
@@ -19,9 +21,29 @@ class TextRecognizer(PredictBase):
19
21
  )
20
22
 
21
23
  # 初始化模型
22
- self.rec_onnx_session = self.get_onnx_session(args.rec_model_dir, args.use_gpu)
23
- self.rec_input_name = self.get_input_name(self.rec_onnx_session)
24
- self.rec_output_name = self.get_output_name(self.rec_onnx_session)
24
+ self._rec_onnx_session = None
25
+ self._rec_input_name = None
26
+ self._rec_output_name = None
27
+
28
+ @property
29
+ def rec_onnx_session(self):
30
+ if self._rec_onnx_session is None:
31
+ self._rec_onnx_session = self.get_onnx_session(
32
+ self._args.rec_model_dir, self._args.use_gpu
33
+ )
34
+ return self._rec_onnx_session
35
+
36
+ @property
37
+ def rec_input_name(self):
38
+ if self._rec_input_name is None:
39
+ self._rec_input_name = self.get_input_name(self.rec_onnx_session)
40
+ return self._rec_input_name
41
+
42
+ @property
43
+ def rec_output_name(self):
44
+ if self._rec_output_name is None:
45
+ self._rec_output_name = self.get_output_name(self.rec_onnx_session)
46
+ return self._rec_output_name
25
47
 
26
48
  def resize_norm_img(self, img, max_wh_ratio):
27
49
  imgC, imgH, imgW = self.rec_image_shape
@@ -30,9 +52,9 @@ class TextRecognizer(PredictBase):
30
52
  # return padding_im
31
53
  image_pil = Image.fromarray(np.uint8(img))
32
54
  if self.rec_algorithm == "ViTSTR":
33
- img = image_pil.resize([imgW, imgH], Image.BICUBIC)
55
+ img = image_pil.resize([imgW, imgH], Image.Resampling.BICUBIC)
34
56
  else:
35
- img = image_pil.resize([imgW, imgH], Image.ANTIALIAS)
57
+ img = image_pil.resize([imgW, imgH], Image.Resampling.LANCZOS)
36
58
  img = np.array(img)
37
59
  norm_img = np.expand_dims(img, -1)
38
60
  norm_img = norm_img.transpose((2, 0, 1))
@@ -250,8 +272,9 @@ class TextRecognizer(PredictBase):
250
272
  def norm_img_can(self, img, image_shape):
251
273
  img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # CAN only predict gray scale image
252
274
 
253
- if self.inverse:
254
- img = 255 - img
275
+ # FIXME
276
+ # if self.inverse:
277
+ # img = 255 - img
255
278
 
256
279
  if self.rec_image_shape[0] == 1:
257
280
  h, w = img.shape
@@ -1,24 +1,20 @@
1
- import os
2
1
  import torch
3
2
 
4
3
  from typing import Literal, Any
5
4
  from PIL.Image import Image
6
- from .types import TableLayoutParsedFormat, GetModelDir
5
+ from .types import TableLayoutParsedFormat
6
+ from .model import Model
7
7
  from .utils import expand_image
8
8
 
9
9
 
10
10
  OutputFormat = Literal["latex", "markdown", "html"]
11
11
 
12
12
  class Table:
13
- def __init__(
14
- self,
15
- device: Literal["cpu", "cuda"],
16
- get_model_dir: GetModelDir,
17
- ):
18
- self._model: Any | None = None
19
- self._model_path: str = get_model_dir()
13
+ def __init__(self, device: Literal["cpu", "cuda"], model: Model) -> None:
14
+ self._model: Model = model
15
+ self._table_model: Any | None = None
20
16
  self._ban: bool = False
21
- if device == "cpu" or not torch.cuda.is_available():
17
+ if device == "cpu":
22
18
  self._ban = True
23
19
 
24
20
  def predict(self, image: Image, format: TableLayoutParsedFormat) -> str | None:
@@ -47,24 +43,18 @@ class Table:
47
43
 
48
44
  return results[0]
49
45
 
50
- def _get_model(self):
51
- if self._model is None:
52
- local_files_only: bool
53
- if os.path.exists(self._model_path):
54
- local_files_only = True
55
- else:
56
- local_files_only = False
57
- os.makedirs(self._model_path)
58
-
46
+ def _get_model(self) -> Any:
47
+ if self._table_model is None:
59
48
  from .struct_eqtable import build_model
60
- model = build_model(
61
- model_ckpt=self._model_path,
49
+ model_path = self._model.get_struct_eqtable_path()
50
+ table_model = build_model(
51
+ model_ckpt=model_path,
62
52
  max_new_tokens=1024,
63
53
  max_time=30,
64
54
  lmdeploy=False,
65
55
  flash_attn=True,
66
56
  batch_size=1,
67
- local_files_only=local_files_only,
57
+ local_files_only=False,
68
58
  )
69
- self._model = model.cuda()
70
- return self._model
59
+ self._table_model = table_model.cuda()
60
+ return self._table_model
@@ -1,5 +1,5 @@
1
1
  from dataclasses import dataclass
2
- from typing import Literal, Callable, Protocol, runtime_checkable
2
+ from typing import Literal
3
3
  from enum import auto, Enum
4
4
  from PIL.Image import Image
5
5
  from .rectangle import Rectangle
@@ -59,30 +59,10 @@ class FormulaLayout(BaseLayout):
59
59
 
60
60
  Layout = PlainLayout | TableLayout | FormulaLayout
61
61
 
62
+
62
63
  @dataclass
63
64
  class ExtractedResult:
64
65
  rotation: float
65
66
  layouts: list[Layout]
66
- extracted_image: Image
67
- adjusted_image: Image | None
68
-
69
- GetModelDir = Callable[[], str]
70
-
71
-
72
- @runtime_checkable
73
- class ModelsDownloader(Protocol):
74
-
75
- def onnx_ocr(self) -> str:
76
- pass
77
-
78
- def yolo(self) -> str:
79
- pass
80
-
81
- def layoutreader(self) -> str:
82
- pass
83
-
84
- def struct_eqtable(self) -> str:
85
- pass
86
-
87
- def latex(self) -> str:
88
- pass
67
+ extracted_image: Image | None
68
+ adjusted_image: Image | None
@@ -1,13 +1,13 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: doc-page-extractor
3
- Version: 0.1.2
3
+ Version: 0.2.1
4
4
  Summary: doc page extractor can identify text and format in images and return structured data.
5
5
  Home-page: https://github.com/Moskize91/doc-page-extractor
6
6
  Author: Tao Zeyu
7
7
  Author-email: i@taozeyu.com
8
8
  Description-Content-Type: text/markdown
9
9
  License-File: LICENSE
10
- Requires-Dist: opencv-python<5.0,>=4.11.0
10
+ Requires-Dist: opencv-python<5.0,>=4.10.0
11
11
  Requires-Dist: pillow<11.0,>=10.3
12
12
  Requires-Dist: pyclipper<2.0,>=1.2.0
13
13
  Requires-Dist: numpy<2.0,>=1.24.0
@@ -16,7 +16,7 @@ Requires-Dist: transformers<=4.47,>=4.42.4
16
16
  Requires-Dist: doclayout_yolo>=0.0.3
17
17
  Requires-Dist: pix2tex<=0.2.0,>=0.1.4
18
18
  Requires-Dist: accelerate<2.0,>=1.6.0
19
- Requires-Dist: huggingface_hub>=0.30.2
19
+ Requires-Dist: huggingface_hub<1.0,>=0.30.2
20
20
  Dynamic: author
21
21
  Dynamic: author-email
22
22
  Dynamic: description
@@ -8,7 +8,7 @@ doc_page_extractor/extractor.py
8
8
  doc_page_extractor/latex.py
9
9
  doc_page_extractor/layout_order.py
10
10
  doc_page_extractor/layoutreader.py
11
- doc_page_extractor/models.py
11
+ doc_page_extractor/model.py
12
12
  doc_page_extractor/ocr.py
13
13
  doc_page_extractor/ocr_corrector.py
14
14
  doc_page_extractor/overlap.py
@@ -1,4 +1,4 @@
1
- opencv-python<5.0,>=4.11.0
1
+ opencv-python<5.0,>=4.10.0
2
2
  pillow<11.0,>=10.3
3
3
  pyclipper<2.0,>=1.2.0
4
4
  numpy<2.0,>=1.24.0
@@ -7,4 +7,4 @@ transformers<=4.47,>=4.42.4
7
7
  doclayout_yolo>=0.0.3
8
8
  pix2tex<=0.2.0,>=0.1.4
9
9
  accelerate<2.0,>=1.6.0
10
- huggingface_hub>=0.30.2
10
+ huggingface_hub<1.0,>=0.30.2
@@ -5,7 +5,7 @@ if "doc_page_extractor.struct_eqtable" not in find_packages():
5
5
 
6
6
  setup(
7
7
  name="doc-page-extractor",
8
- version="0.1.2",
8
+ version="0.2.1",
9
9
  author="Tao Zeyu",
10
10
  author_email="i@taozeyu.com",
11
11
  url="https://github.com/Moskize91/doc-page-extractor",
@@ -14,7 +14,7 @@ setup(
14
14
  long_description=open("./README.md", encoding="utf8").read(),
15
15
  long_description_content_type="text/markdown",
16
16
  install_requires=[
17
- "opencv-python>=4.11.0,<5.0",
17
+ "opencv-python>=4.10.0,<5.0",
18
18
  "pillow>=10.3,<11.0",
19
19
  "pyclipper>=1.2.0,<2.0",
20
20
  "numpy>=1.24.0,<2.0",
@@ -23,6 +23,6 @@ setup(
23
23
  "doclayout_yolo>=0.0.3",
24
24
  "pix2tex>=0.1.4,<=0.2.0",
25
25
  "accelerate>=1.6.0,<2.0",
26
- "huggingface_hub>=0.30.2",
26
+ "huggingface_hub>=0.30.2,<1.0",
27
27
  ],
28
28
  )
@@ -15,7 +15,7 @@ class TestGroup(unittest.TestCase):
15
15
  layouts: list[tuple[LayoutClass, list[str]]]
16
16
 
17
17
  with Image.open(image_path) as image:
18
- result = extractor.extract(image, "ch")
18
+ result = extractor.extract(image, extract_formula=False)
19
19
  layouts = [self._format_Layout(layout) for layout in result.layouts]
20
20
 
21
21
  self.assertEqual(layouts, [
@@ -1,29 +0,0 @@
1
- import os
2
- import torch
3
-
4
- from munch import Munch
5
- from pix2tex.cli import LatexOCR
6
- from PIL.Image import Image
7
- from .utils import expand_image
8
- from .types import GetModelDir
9
-
10
- class LaTeX:
11
- def __init__(self, get_model_dir: GetModelDir):
12
- self._model_path: str = get_model_dir()
13
- self._model: LatexOCR | None = None
14
-
15
- def extract(self, image: Image) -> str | None:
16
- image = expand_image(image, 0.1) # 添加边缘提高识别准确率
17
- model = self._get_model()
18
- with torch.no_grad():
19
- return model(image)
20
-
21
- def _get_model(self) -> LatexOCR:
22
- if self._model is None:
23
- self._model = LatexOCR(Munch({
24
- "config": os.path.join("settings", "config.yaml"),
25
- "checkpoint": os.path.join(self._model_path, "checkpoints", "weights.pth"),
26
- "no_cuda": True,
27
- "no_resize": False,
28
- }))
29
- return self._model
@@ -1,92 +0,0 @@
1
- import os
2
-
3
- from logging import Logger
4
- from huggingface_hub import hf_hub_download, snapshot_download, try_to_load_from_cache
5
- from .types import ModelsDownloader
6
-
7
- class HuggingfaceModelsDownloader(ModelsDownloader):
8
- def __init__(
9
- self,
10
- logger: Logger,
11
- model_dir_path: str | None
12
- ):
13
- self._logger = logger
14
- self._model_dir_path: str | None = model_dir_path
15
-
16
- def onnx_ocr(self) -> str:
17
- repo_path = try_to_load_from_cache(
18
- repo_id="moskize/OnnxOCR",
19
- filename="README.md",
20
- cache_dir=self._model_dir_path
21
- )
22
- if isinstance(repo_path, str):
23
- return os.path.dirname(repo_path)
24
- else:
25
- self._logger.info("Downloading OCR model...")
26
- return snapshot_download(
27
- cache_dir=self._model_dir_path,
28
- repo_id="moskize/OnnxOCR",
29
- )
30
-
31
- def yolo(self) -> str:
32
- yolo_file_path = try_to_load_from_cache(
33
- repo_id="opendatalab/PDF-Extract-Kit-1.0",
34
- filename="models/Layout/YOLO/doclayout_yolo_ft.pt",
35
- cache_dir=self._model_dir_path
36
- )
37
- if isinstance(yolo_file_path, str):
38
- return yolo_file_path
39
- else:
40
- self._logger.info("Downloading YOLO model...")
41
- return hf_hub_download(
42
- cache_dir=self._model_dir_path,
43
- repo_id="opendatalab/PDF-Extract-Kit-1.0",
44
- filename="models/Layout/YOLO/doclayout_yolo_ft.pt",
45
- )
46
-
47
- def layoutreader(self) -> str:
48
- repo_path = try_to_load_from_cache(
49
- repo_id="hantian/layoutreader",
50
- filename="model.safetensors",
51
- cache_dir=self._model_dir_path
52
- )
53
- if isinstance(repo_path, str):
54
- return os.path.dirname(repo_path)
55
- else:
56
- self._logger.info("Downloading LayoutReader model...")
57
- return snapshot_download(
58
- cache_dir=self._model_dir_path,
59
- repo_id="hantian/layoutreader",
60
- )
61
-
62
- def struct_eqtable(self) -> str:
63
- repo_path = try_to_load_from_cache(
64
- repo_id="U4R/StructTable-InternVL2-1B",
65
- filename="model.safetensors",
66
- cache_dir=self._model_dir_path
67
- )
68
- if isinstance(repo_path, str):
69
- return os.path.dirname(repo_path)
70
- else:
71
- self._logger.info("Downloading StructEqTable model...")
72
- return snapshot_download(
73
- cache_dir=self._model_dir_path,
74
- repo_id="U4R/StructTable-InternVL2-1B",
75
- )
76
-
77
- def latex(self):
78
- repo_path = try_to_load_from_cache(
79
- repo_id="lukbl/LaTeX-OCR",
80
- filename="checkpoints/weights.pth",
81
- repo_type="space",
82
- cache_dir=self._model_dir_path
83
- )
84
- if isinstance(repo_path, str):
85
- return os.path.dirname(os.path.dirname(repo_path))
86
- else:
87
- self._logger.info("Downloading LaTeX model...")
88
- return snapshot_download(
89
- cache_dir=self._model_dir_path,
90
- repo_type="space",
91
- repo_id="lukbl/LaTeX-OCR",
92
- )