doc-page-extractor 0.1.2__tar.gz → 0.2.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (50) hide show
  1. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/PKG-INFO +2 -2
  2. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/extractor.py +19 -15
  3. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/latex.py +4 -2
  4. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/layout_order.py +2 -1
  5. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/ocr.py +34 -8
  6. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/onnxocr/predict_base.py +9 -4
  7. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/onnxocr/predict_cls.py +23 -3
  8. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/onnxocr/predict_det.py +24 -5
  9. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/onnxocr/predict_rec.py +30 -7
  10. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/types.py +7 -4
  11. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor.egg-info/PKG-INFO +2 -2
  12. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor.egg-info/requires.txt +1 -1
  13. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/setup.py +2 -2
  14. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/tests/test_history_bus.py +1 -1
  15. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/LICENSE +0 -0
  16. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/README.md +0 -0
  17. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/__init__.py +0 -0
  18. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/clipper.py +0 -0
  19. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/downloader.py +0 -0
  20. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/layoutreader.py +0 -0
  21. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/models.py +0 -0
  22. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/ocr_corrector.py +0 -0
  23. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/onnxocr/__init__.py +0 -0
  24. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/onnxocr/cls_postprocess.py +0 -0
  25. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/onnxocr/db_postprocess.py +0 -0
  26. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/onnxocr/imaug.py +0 -0
  27. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/onnxocr/operators.py +0 -0
  28. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/onnxocr/predict_system.py +0 -0
  29. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/onnxocr/rec_postprocess.py +0 -0
  30. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/onnxocr/utils.py +0 -0
  31. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/overlap.py +0 -0
  32. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/plot.py +0 -0
  33. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/raw_optimizer.py +0 -0
  34. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/rectangle.py +0 -0
  35. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/rotation.py +0 -0
  36. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/struct_eqtable/__init__.py +0 -0
  37. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/struct_eqtable/internvl/__init__.py +0 -0
  38. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/struct_eqtable/internvl/conversation.py +0 -0
  39. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/struct_eqtable/internvl/internvl.py +0 -0
  40. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/struct_eqtable/internvl/internvl_lmdeploy.py +0 -0
  41. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/struct_eqtable/pix2s/__init__.py +0 -0
  42. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/struct_eqtable/pix2s/pix2s.py +0 -0
  43. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/struct_eqtable/pix2s/pix2s_trt.py +0 -0
  44. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/table.py +0 -0
  45. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor/utils.py +0 -0
  46. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor.egg-info/SOURCES.txt +0 -0
  47. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor.egg-info/dependency_links.txt +0 -0
  48. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/doc_page_extractor.egg-info/top_level.txt +0 -0
  49. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/setup.cfg +0 -0
  50. {doc_page_extractor-0.1.2 → doc_page_extractor-0.2.0}/tests/__init__.py +0 -0
@@ -1,13 +1,13 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: doc-page-extractor
3
- Version: 0.1.2
3
+ Version: 0.2.0
4
4
  Summary: doc page extractor can identify text and format in images and return structured data.
5
5
  Home-page: https://github.com/Moskize91/doc-page-extractor
6
6
  Author: Tao Zeyu
7
7
  Author-email: i@taozeyu.com
8
8
  Description-Content-Type: text/markdown
9
9
  License-File: LICENSE
10
- Requires-Dist: opencv-python<5.0,>=4.11.0
10
+ Requires-Dist: opencv-python<5.0,>=4.10.0
11
11
  Requires-Dist: pillow<11.0,>=10.3
12
12
  Requires-Dist: pyclipper<2.0,>=1.2.0
13
13
  Requires-Dist: numpy<2.0,>=1.24.0
@@ -18,12 +18,12 @@ from .types import (
18
18
  ExtractedResult,
19
19
  ModelsDownloader,
20
20
  OCRFragment,
21
- TableLayoutParsedFormat,
22
21
  Layout,
23
22
  LayoutClass,
24
23
  PlainLayout,
25
24
  TableLayout,
26
25
  FormulaLayout,
26
+ TableLayoutParsedFormat
27
27
  )
28
28
 
29
29
 
@@ -32,9 +32,6 @@ class DocExtractor:
32
32
  self,
33
33
  model_cache_dir: str | None = None,
34
34
  device: Literal["cpu", "cuda"] = "cpu",
35
- ocr_for_each_layouts: bool = True,
36
- extract_formula: bool = True,
37
- extract_table_format: TableLayoutParsedFormat | None = None,
38
35
  models_downloader: ModelsDownloader | None = None,
39
36
  logger: Logger | None = None,
40
37
  ):
@@ -42,9 +39,6 @@ class DocExtractor:
42
39
  self._models_downloader = models_downloader or HuggingfaceModelsDownloader(self._logger, model_cache_dir)
43
40
 
44
41
  self._device: Literal["cpu", "cuda"] = device
45
- self._ocr_for_each_layouts: bool = ocr_for_each_layouts
46
- self._extract_formula: bool = extract_formula
47
- self._extract_table_format: TableLayoutParsedFormat | None = extract_table_format
48
42
  self._yolo: YOLOv10 | None = None
49
43
  self._ocr: OCR = OCR(
50
44
  device=device,
@@ -56,6 +50,7 @@ class DocExtractor:
56
50
  )
57
51
  self._latex: LaTeX = LaTeX(
58
52
  get_model_dir=self._models_downloader.latex,
53
+ device=device,
59
54
  )
60
55
  self._layout_order: LayoutOrder = LayoutOrder(
61
56
  get_model_dir=self._models_downloader.layoutreader,
@@ -64,7 +59,10 @@ class DocExtractor:
64
59
  def extract(
65
60
  self,
66
61
  image: Image,
67
- adjust_points: bool = False,
62
+ extract_formula: bool,
63
+ extract_table_format: TableLayoutParsedFormat | None = None,
64
+ ocr_for_each_layouts: bool = False,
65
+ adjust_points: bool = False
68
66
  ) -> ExtractedResult:
69
67
 
70
68
  raw_optimizer = RawOptimizer(image, adjust_points)
@@ -74,13 +72,13 @@ class DocExtractor:
74
72
  layouts = self._layouts_matched_by_fragments(fragments, layouts)
75
73
  layouts = remove_overlap_layouts(layouts)
76
74
 
77
- if self._ocr_for_each_layouts:
75
+ if ocr_for_each_layouts:
78
76
  self._correct_fragments_by_ocr_layouts(raw_optimizer.image, layouts)
79
77
 
80
78
  layouts = self._layout_order.sort(layouts, raw_optimizer.image.size)
81
79
  layouts = [layout for layout in layouts if self._should_keep_layout(layout)]
82
80
 
83
- self._parse_table_and_formula_layouts(layouts, raw_optimizer)
81
+ self._parse_table_and_formula_layouts(layouts, raw_optimizer, extract_formula=extract_formula, extract_table_format=extract_table_format)
84
82
 
85
83
  for layout in layouts:
86
84
  layout.fragments = merge_fragments_as_line(layout.fragments)
@@ -142,16 +140,22 @@ class DocExtractor:
142
140
  for layout in layouts:
143
141
  correct_fragments(self._ocr, source, layout)
144
142
 
145
- def _parse_table_and_formula_layouts(self, layouts: list[Layout], raw_optimizer: RawOptimizer):
143
+ def _parse_table_and_formula_layouts(
144
+ self,
145
+ layouts: list[Layout],
146
+ raw_optimizer: RawOptimizer,
147
+ extract_formula: bool,
148
+ extract_table_format: TableLayoutParsedFormat | None,
149
+ ):
146
150
  for layout in layouts:
147
- if isinstance(layout, FormulaLayout) and self._extract_formula:
151
+ if isinstance(layout, FormulaLayout) and extract_formula:
148
152
  image = clip_from_image(raw_optimizer.image, layout.rect)
149
153
  layout.latex = self._latex.extract(image)
150
- elif isinstance(layout, TableLayout) and self._extract_table_format is not None:
154
+ elif isinstance(layout, TableLayout) and extract_table_format is not None:
151
155
  image = clip_from_image(raw_optimizer.image, layout.rect)
152
- parsed = self._table.predict(image, self._extract_table_format)
156
+ parsed = self._table.predict(image, extract_table_format)
153
157
  if parsed is not None:
154
- layout.parsed = (parsed, self._extract_table_format)
158
+ layout.parsed = (parsed, extract_table_format)
155
159
 
156
160
  def _split_layouts_by_group(self, layouts: list[Layout]):
157
161
  texts_layouts: list[Layout] = []
@@ -4,13 +4,15 @@ import torch
4
4
  from munch import Munch
5
5
  from pix2tex.cli import LatexOCR
6
6
  from PIL.Image import Image
7
+ from typing import Literal
7
8
  from .utils import expand_image
8
9
  from .types import GetModelDir
9
10
 
10
11
  class LaTeX:
11
- def __init__(self, get_model_dir: GetModelDir):
12
+ def __init__(self, device: Literal["cpu", "cuda"],get_model_dir: GetModelDir):
12
13
  self._model_path: str = get_model_dir()
13
14
  self._model: LatexOCR | None = None
15
+ self._device: Literal["cpu", "cuda"] = device
14
16
 
15
17
  def extract(self, image: Image) -> str | None:
16
18
  image = expand_image(image, 0.1) # 添加边缘提高识别准确率
@@ -23,7 +25,7 @@ class LaTeX:
23
25
  self._model = LatexOCR(Munch({
24
26
  "config": os.path.join("settings", "config.yaml"),
25
27
  "checkpoint": os.path.join(self._model_path, "checkpoints", "weights.pth"),
26
- "no_cuda": True,
28
+ "no_cuda": self._device == "cpu",
27
29
  "no_resize": False,
28
30
  }))
29
31
  return self._model
@@ -20,13 +20,14 @@ class LayoutOrder:
20
20
  def __init__(self, get_model_dir: GetModelDir):
21
21
  self._model_path: str = get_model_dir()
22
22
  self._model: LayoutLMv3ForTokenClassification | None = None
23
+ self._device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
23
24
 
24
25
  def _get_model(self) -> LayoutLMv3ForTokenClassification:
25
26
  if self._model is None:
26
27
  self._model = LayoutLMv3ForTokenClassification.from_pretrained(
27
28
  pretrained_model_name_or_path=self._model_path,
28
29
  local_files_only=True,
29
- )
30
+ ).to(device=self._device)
30
31
  return self._model
31
32
 
32
33
  def sort(self, layouts: list[Layout], size: tuple[int, int]) -> list[Layout]:
@@ -141,14 +141,40 @@ class OCR:
141
141
  beta=255,
142
142
  norm_type=cv2.NORM_MINMAX,
143
143
  )
144
- image = cv2.fastNlMeansDenoisingColored(
145
- src=image,
146
- dst=None,
147
- h=10,
148
- hColor=10,
149
- templateWindowSize=7,
150
- searchWindowSize=15,
151
- )
144
+ if cv2.cuda.getCudaEnabledDeviceCount() > 0:
145
+ gpu_frame = cv2.cuda.GpuMat()
146
+ gpu_frame.upload(image)
147
+ image = cv2.cuda.fastNlMeansDenoisingColored(
148
+ src=gpu_frame,
149
+ dst=None,
150
+ h_luminance=10,
151
+ photo_render=10,
152
+ search_window=15,
153
+ block_size=7,
154
+ )
155
+ image = gpu_frame.download()
156
+ elif cv2.ocl.haveOpenCL():
157
+ cv2.ocl.setUseOpenCL(True)
158
+ gpu_frame = cv2.UMat(image)
159
+ image = cv2.fastNlMeansDenoisingColored(
160
+ src=gpu_frame,
161
+ dst=None,
162
+ h=10,
163
+ hColor=10,
164
+ templateWindowSize=7,
165
+ searchWindowSize=15,
166
+ )
167
+ image = image.get()
168
+ else:
169
+ image = cv2.fastNlMeansDenoisingColored(
170
+ src=image,
171
+ dst=None,
172
+ h=10,
173
+ hColor=10,
174
+ templateWindowSize=7,
175
+ searchWindowSize=15,
176
+ )
177
+
152
178
  # image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # image to gray
153
179
  return image
154
180
 
@@ -1,8 +1,13 @@
1
- import onnxruntime
2
-
3
1
  class PredictBase(object):
4
2
  def __init__(self):
5
- pass
3
+ self._onnxruntime = None
4
+
5
+ @property
6
+ def onnxruntime(self):
7
+ if self._onnxruntime is None:
8
+ import onnxruntime
9
+ self._onnxruntime = onnxruntime
10
+ return self._onnxruntime
6
11
 
7
12
  def get_onnx_session(self, model_dir, use_gpu):
8
13
  # 使用gpu
@@ -11,7 +16,7 @@ class PredictBase(object):
11
16
  else:
12
17
  providers = providers = ['CPUExecutionProvider']
13
18
 
14
- onnx_session = onnxruntime.InferenceSession(model_dir, None,providers=providers)
19
+ onnx_session = self.onnxruntime.InferenceSession(model_dir, None, providers=providers)
15
20
 
16
21
  # print("providers:", onnxruntime.get_device())
17
22
  return onnx_session
@@ -9,15 +9,35 @@ from .predict_base import PredictBase
9
9
 
10
10
  class TextClassifier(PredictBase):
11
11
  def __init__(self, args):
12
+ super().__init__()
12
13
  self.cls_image_shape = args.cls_image_shape
13
14
  self.cls_batch_num = args.cls_batch_num
14
15
  self.cls_thresh = args.cls_thresh
15
16
  self.postprocess_op = ClsPostProcess(label_list=args.label_list)
17
+ self._args = args
16
18
 
17
19
  # 初始化模型
18
- self.cls_onnx_session = self.get_onnx_session(args.cls_model_dir, args.use_gpu)
19
- self.cls_input_name = self.get_input_name(self.cls_onnx_session)
20
- self.cls_output_name = self.get_output_name(self.cls_onnx_session)
20
+ self._cls_onnx_session = None
21
+ self._cls_input_name = None
22
+ self._cls_output_name = None
23
+
24
+ @property
25
+ def cls_onnx_session(self):
26
+ if self._cls_onnx_session is None:
27
+ self._cls_onnx_session = self.get_onnx_session(self._args.cls_model_dir, self._args.use_gpu)
28
+ return self._cls_onnx_session
29
+
30
+ @property
31
+ def cls_input_name(self):
32
+ if self._cls_input_name is None:
33
+ self._cls_input_name = self.get_input_name(self.cls_onnx_session)
34
+ return self._cls_input_name
35
+
36
+ @property
37
+ def cls_output_name(self):
38
+ if self._cls_output_name is None:
39
+ self._cls_output_name = self.get_output_name(self.cls_onnx_session)
40
+ return self._cls_output_name
21
41
 
22
42
  def resize_norm_img(self, img):
23
43
  imgC, imgH, imgW = self.cls_image_shape
@@ -6,7 +6,8 @@ from .predict_base import PredictBase
6
6
 
7
7
  class TextDetector(PredictBase):
8
8
  def __init__(self, args):
9
- self.args = args
9
+ super().__init__()
10
+ self._args = args
10
11
  self.det_algorithm = args.det_algorithm
11
12
  pre_process_list = [
12
13
  {
@@ -43,9 +44,27 @@ class TextDetector(PredictBase):
43
44
  self.postprocess_op = DBPostProcess(**postprocess_params)
44
45
 
45
46
  # 初始化模型
46
- self.det_onnx_session = self.get_onnx_session(args.det_model_dir, args.use_gpu)
47
- self.det_input_name = self.get_input_name(self.det_onnx_session)
48
- self.det_output_name = self.get_output_name(self.det_onnx_session)
47
+ self._det_onnx_session = None
48
+ self._det_input_name = None
49
+ self._det_output_name = None
50
+
51
+ @property
52
+ def det_onnx_session(self):
53
+ if self._det_onnx_session is None:
54
+ self._det_onnx_session = self.get_onnx_session(self._args.det_model_dir, self._args.use_gpu)
55
+ return self._det_onnx_session
56
+
57
+ @property
58
+ def det_input_name(self):
59
+ if self._det_input_name is None:
60
+ self._det_input_name = self.get_input_name(self.det_onnx_session)
61
+ return self._det_input_name
62
+
63
+ @property
64
+ def det_output_name(self):
65
+ if self._det_output_name is None:
66
+ self._det_output_name = self.get_output_name(self.det_onnx_session)
67
+ return self._det_output_name
49
68
 
50
69
  def order_points_clockwise(self, pts):
51
70
  rect = np.zeros((4, 2), dtype="float32")
@@ -112,7 +131,7 @@ class TextDetector(PredictBase):
112
131
  post_result = self.postprocess_op(preds, shape_list)
113
132
  dt_boxes = post_result[0]["points"]
114
133
 
115
- if self.args.det_box_type == "poly":
134
+ if self._args.det_box_type == "poly":
116
135
  dt_boxes = self.filter_tag_det_res_only_clip(dt_boxes, ori_im.shape)
117
136
  else:
118
137
  dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
@@ -10,6 +10,8 @@ from .predict_base import PredictBase
10
10
 
11
11
  class TextRecognizer(PredictBase):
12
12
  def __init__(self, args):
13
+ super().__init__()
14
+ self._args = args
13
15
  self.rec_image_shape = args.rec_image_shape
14
16
  self.rec_batch_num = args.rec_batch_num
15
17
  self.rec_algorithm = args.rec_algorithm
@@ -19,9 +21,29 @@ class TextRecognizer(PredictBase):
19
21
  )
20
22
 
21
23
  # 初始化模型
22
- self.rec_onnx_session = self.get_onnx_session(args.rec_model_dir, args.use_gpu)
23
- self.rec_input_name = self.get_input_name(self.rec_onnx_session)
24
- self.rec_output_name = self.get_output_name(self.rec_onnx_session)
24
+ self._rec_onnx_session = None
25
+ self._rec_input_name = None
26
+ self._rec_output_name = None
27
+
28
+ @property
29
+ def rec_onnx_session(self):
30
+ if self._rec_onnx_session is None:
31
+ self._rec_onnx_session = self.get_onnx_session(
32
+ self._args.rec_model_dir, self._args.use_gpu
33
+ )
34
+ return self._rec_onnx_session
35
+
36
+ @property
37
+ def rec_input_name(self):
38
+ if self._rec_input_name is None:
39
+ self._rec_input_name = self.get_input_name(self.rec_onnx_session)
40
+ return self._rec_input_name
41
+
42
+ @property
43
+ def rec_output_name(self):
44
+ if self._rec_output_name is None:
45
+ self._rec_output_name = self.get_output_name(self.rec_onnx_session)
46
+ return self._rec_output_name
25
47
 
26
48
  def resize_norm_img(self, img, max_wh_ratio):
27
49
  imgC, imgH, imgW = self.rec_image_shape
@@ -30,9 +52,9 @@ class TextRecognizer(PredictBase):
30
52
  # return padding_im
31
53
  image_pil = Image.fromarray(np.uint8(img))
32
54
  if self.rec_algorithm == "ViTSTR":
33
- img = image_pil.resize([imgW, imgH], Image.BICUBIC)
55
+ img = image_pil.resize([imgW, imgH], Image.Resampling.BICUBIC)
34
56
  else:
35
- img = image_pil.resize([imgW, imgH], Image.ANTIALIAS)
57
+ img = image_pil.resize([imgW, imgH], Image.Resampling.LANCZOS)
36
58
  img = np.array(img)
37
59
  norm_img = np.expand_dims(img, -1)
38
60
  norm_img = norm_img.transpose((2, 0, 1))
@@ -250,8 +272,9 @@ class TextRecognizer(PredictBase):
250
272
  def norm_img_can(self, img, image_shape):
251
273
  img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # CAN only predict gray scale image
252
274
 
253
- if self.inverse:
254
- img = 255 - img
275
+ # FIXME
276
+ # if self.inverse:
277
+ # img = 255 - img
255
278
 
256
279
  if self.rec_image_shape[0] == 1:
257
280
  h, w = img.shape
@@ -1,5 +1,5 @@
1
1
  from dataclasses import dataclass
2
- from typing import Literal, Callable, Protocol, runtime_checkable
2
+ from typing import Literal, Callable, Protocol, runtime_checkable, List
3
3
  from enum import auto, Enum
4
4
  from PIL.Image import Image
5
5
  from .rectangle import Rectangle
@@ -32,7 +32,7 @@ class TableLayoutParsedFormat(Enum):
32
32
  @dataclass
33
33
  class BaseLayout:
34
34
  rect: Rectangle
35
- fragments: list[OCRFragment]
35
+ fragments: List[OCRFragment]
36
36
 
37
37
  @dataclass
38
38
  class PlainLayout(BaseLayout):
@@ -59,11 +59,12 @@ class FormulaLayout(BaseLayout):
59
59
 
60
60
  Layout = PlainLayout | TableLayout | FormulaLayout
61
61
 
62
+
62
63
  @dataclass
63
64
  class ExtractedResult:
64
65
  rotation: float
65
- layouts: list[Layout]
66
- extracted_image: Image
66
+ layouts: List[Layout]
67
+ extracted_image: Image | None
67
68
  adjusted_image: Image | None
68
69
 
69
70
  GetModelDir = Callable[[], str]
@@ -86,3 +87,5 @@ class ModelsDownloader(Protocol):
86
87
 
87
88
  def latex(self) -> str:
88
89
  pass
90
+
91
+
@@ -1,13 +1,13 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: doc-page-extractor
3
- Version: 0.1.2
3
+ Version: 0.2.0
4
4
  Summary: doc page extractor can identify text and format in images and return structured data.
5
5
  Home-page: https://github.com/Moskize91/doc-page-extractor
6
6
  Author: Tao Zeyu
7
7
  Author-email: i@taozeyu.com
8
8
  Description-Content-Type: text/markdown
9
9
  License-File: LICENSE
10
- Requires-Dist: opencv-python<5.0,>=4.11.0
10
+ Requires-Dist: opencv-python<5.0,>=4.10.0
11
11
  Requires-Dist: pillow<11.0,>=10.3
12
12
  Requires-Dist: pyclipper<2.0,>=1.2.0
13
13
  Requires-Dist: numpy<2.0,>=1.24.0
@@ -1,4 +1,4 @@
1
- opencv-python<5.0,>=4.11.0
1
+ opencv-python<5.0,>=4.10.0
2
2
  pillow<11.0,>=10.3
3
3
  pyclipper<2.0,>=1.2.0
4
4
  numpy<2.0,>=1.24.0
@@ -5,7 +5,7 @@ if "doc_page_extractor.struct_eqtable" not in find_packages():
5
5
 
6
6
  setup(
7
7
  name="doc-page-extractor",
8
- version="0.1.2",
8
+ version="0.2.0",
9
9
  author="Tao Zeyu",
10
10
  author_email="i@taozeyu.com",
11
11
  url="https://github.com/Moskize91/doc-page-extractor",
@@ -14,7 +14,7 @@ setup(
14
14
  long_description=open("./README.md", encoding="utf8").read(),
15
15
  long_description_content_type="text/markdown",
16
16
  install_requires=[
17
- "opencv-python>=4.11.0,<5.0",
17
+ "opencv-python>=4.10.0,<5.0",
18
18
  "pillow>=10.3,<11.0",
19
19
  "pyclipper>=1.2.0,<2.0",
20
20
  "numpy>=1.24.0,<2.0",
@@ -15,7 +15,7 @@ class TestGroup(unittest.TestCase):
15
15
  layouts: list[tuple[LayoutClass, list[str]]]
16
16
 
17
17
  with Image.open(image_path) as image:
18
- result = extractor.extract(image, "ch")
18
+ result = extractor.extract(image, extract_formula=False)
19
19
  layouts = [self._format_Layout(layout) for layout in result.layouts]
20
20
 
21
21
  self.assertEqual(layouts, [