divergent-beamsearch 0.1.8__tar.gz → 0.2.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {divergent_beamsearch-0.1.8 → divergent_beamsearch-0.2.1}/PKG-INFO +2 -3
- {divergent_beamsearch-0.1.8 → divergent_beamsearch-0.2.1}/pyproject.toml +3 -3
- {divergent_beamsearch-0.1.8 → divergent_beamsearch-0.2.1}/src/divergent_beamsearch/algorithm.py +20 -9
- {divergent_beamsearch-0.1.8 → divergent_beamsearch-0.2.1}/tests/test_beamsearch.py +34 -2
- {divergent_beamsearch-0.1.8 → divergent_beamsearch-0.2.1}/uv.lock +14 -7
- {divergent_beamsearch-0.1.8 → divergent_beamsearch-0.2.1}/.gitignore +0 -0
- {divergent_beamsearch-0.1.8 → divergent_beamsearch-0.2.1}/.python-version +0 -0
- {divergent_beamsearch-0.1.8 → divergent_beamsearch-0.2.1}/LICENCE +0 -0
- {divergent_beamsearch-0.1.8 → divergent_beamsearch-0.2.1}/README.md +0 -0
- {divergent_beamsearch-0.1.8 → divergent_beamsearch-0.2.1}/src/divergent_beamsearch/__init__.py +0 -0
@@ -1,12 +1,11 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: divergent-beamsearch
|
3
|
-
Version: 0.1
|
3
|
+
Version: 0.2.1
|
4
4
|
Summary: A variant of the beam search algorithm that focuses on finding answers that maximize the probability of generating an answer before diverging into another subject.
|
5
5
|
License-File: LICENCE
|
6
6
|
Requires-Python: >=3.11
|
7
|
-
Requires-Dist: multi-choices-parser>=0.9.
|
7
|
+
Requires-Dist: multi-choices-parser>=0.9.72
|
8
8
|
Requires-Dist: torch>=2.0.0
|
9
|
-
Requires-Dist: transformers>=4.47.1
|
10
9
|
Description-Content-Type: text/markdown
|
11
10
|
|
12
11
|
# Divergent Beam Search
|
@@ -1,18 +1,18 @@
|
|
1
1
|
[project]
|
2
2
|
name = "divergent-beamsearch"
|
3
|
-
version = "0.1
|
3
|
+
version = "0.2.1"
|
4
4
|
description = "A variant of the beam search algorithm that focuses on finding answers that maximize the probability of generating an answer before diverging into another subject."
|
5
5
|
readme = "README.md"
|
6
6
|
requires-python = ">=3.11"
|
7
7
|
dependencies = [
|
8
|
-
"multi-choices-parser>=0.9.
|
8
|
+
"multi-choices-parser>=0.9.72",
|
9
9
|
"torch>=2.0.0",
|
10
|
-
"transformers>=4.47.1",
|
11
10
|
]
|
12
11
|
|
13
12
|
[dependency-groups]
|
14
13
|
dev = [
|
15
14
|
"pytest>=8.3.4",
|
15
|
+
"transformers>=4.47.1"
|
16
16
|
]
|
17
17
|
|
18
18
|
[build-system]
|
{divergent_beamsearch-0.1.8 → divergent_beamsearch-0.2.1}/src/divergent_beamsearch/algorithm.py
RENAMED
@@ -1,6 +1,9 @@
|
|
1
1
|
import math
|
2
2
|
import torch
|
3
|
-
|
3
|
+
try:
|
4
|
+
from transformers import GPT2LMHeadModel
|
5
|
+
except ImportError:
|
6
|
+
pass
|
4
7
|
from multi_choices_parser import DEFAULT_END_SYMB
|
5
8
|
|
6
9
|
|
@@ -35,12 +38,17 @@ def apply_mask_tokens(pred : torch.Tensor, parsers_tokens):
|
|
35
38
|
return pred[~pred.isinf().all(dim=-1)]
|
36
39
|
|
37
40
|
|
38
|
-
def batched_inference_logits(model : GPT2LMHeadModel, input_ids : torch.Tensor,
|
41
|
+
def batched_inference_logits(model : "GPT2LMHeadModel", input_ids : torch.Tensor,
|
42
|
+
attention_mask : torch.Tensor | None = None, batch_size : int = 32,
|
43
|
+
to_cpu=False) -> torch.Tensor:
|
39
44
|
logits = []
|
40
45
|
if attention_mask is None:
|
41
46
|
attention_mask = torch.ones_like(input_ids)
|
42
47
|
for i in range(0, input_ids.shape[0], batch_size):
|
43
|
-
|
48
|
+
l = model(input_ids[i:i+batch_size], attention_mask=attention_mask[i:i+batch_size]).logits
|
49
|
+
if to_cpu:
|
50
|
+
l = l.cpu()
|
51
|
+
logits.append(l)
|
44
52
|
return torch.cat(logits, dim=0)
|
45
53
|
|
46
54
|
def select_mask(source : list, mask : list[bool]) -> list:
|
@@ -91,7 +99,9 @@ def pad_to_same_size(tensors : list[torch.Tensor], padding_value : int) -> torch
|
|
91
99
|
return torch.cat(padded_tensors, dim=0)
|
92
100
|
|
93
101
|
@torch.no_grad()
|
94
|
-
def divergent_beamsearch(input_ids : torch.Tensor, model : GPT2LMHeadModel, beam_size : int,
|
102
|
+
def divergent_beamsearch(input_ids : torch.Tensor, model : "GPT2LMHeadModel", beam_size : int,
|
103
|
+
max_length : int, parser : Parser, pad_token_id : int, batch_size=32,
|
104
|
+
num_solutions = None, end_symb=DEFAULT_END_SYMB, optimize_gpu_mem=True) -> tuple[torch.Tensor, torch.Tensor]:
|
95
105
|
assert input_ids.shape[0] == 1, "Batch size must be 1"
|
96
106
|
device = input_ids.device
|
97
107
|
input_ids = input_ids.cpu()
|
@@ -114,7 +124,7 @@ def divergent_beamsearch(input_ids : torch.Tensor, model : GPT2LMHeadModel, beam
|
|
114
124
|
for _ in range(max_length):
|
115
125
|
if len(input_ids_unfinished) == 0:
|
116
126
|
break
|
117
|
-
pred = batched_inference_logits(model, input_ids_unfinished.to(device), batch_size=batch_size)[:, -1].cpu()
|
127
|
+
pred = batched_inference_logits(model, input_ids_unfinished.to(device), batch_size=batch_size, to_cpu=optimize_gpu_mem)[:, -1].cpu()
|
118
128
|
parsers_tokens, can_end = get_parsers_tokens(parsers_unfinished, end_symb)
|
119
129
|
logprobs = torch.log_softmax(pred, dim=-1)
|
120
130
|
logprobs_filtered = apply_mask_tokens(logprobs, parsers_tokens)
|
@@ -173,21 +183,22 @@ def set_slice_row(x : torch.Tensor, slices : torch.IntTensor, value) -> torch.Te
|
|
173
183
|
x[i].index_fill_(0, indices[i], 0)
|
174
184
|
|
175
185
|
@torch.no_grad()
|
176
|
-
def divergent_logprob(input_ids : torch.Tensor, attention_mask : torch.Tensor | None, model : GPT2LMHeadModel,
|
186
|
+
def divergent_logprob(input_ids : torch.Tensor, attention_mask : torch.Tensor | None, model : "GPT2LMHeadModel",
|
177
187
|
parsers : Parser | list[Parser] | None, batch_size=32,
|
178
|
-
start : int | torch.IntTensor = None, end_symb=DEFAULT_END_SYMB) -> torch.FloatTensor:
|
188
|
+
start : int | torch.IntTensor = None, end_symb=DEFAULT_END_SYMB, optimize_gpu_mem=True) -> torch.FloatTensor:
|
179
189
|
if start is None:
|
180
|
-
start =
|
190
|
+
start = 1
|
181
191
|
if isinstance(start, int):
|
182
192
|
start = torch.tensor([start]*input_ids.shape[0])
|
183
193
|
assert start.shape[0] == input_ids.shape[0]
|
194
|
+
assert (start > 0).all()
|
184
195
|
# -1 because next token offset
|
185
196
|
start = start - 1
|
186
197
|
|
187
198
|
if attention_mask is None:
|
188
199
|
attention_mask = torch.ones_like(input_ids)
|
189
200
|
|
190
|
-
logits = batched_inference_logits(model, input_ids, attention_mask, batch_size).cpu()
|
201
|
+
logits = batched_inference_logits(model, input_ids, attention_mask, batch_size, to_cpu=optimize_gpu_mem).cpu()
|
191
202
|
input_ids = input_ids.cpu()
|
192
203
|
attention_mask = attention_mask.cpu()
|
193
204
|
|
@@ -13,6 +13,7 @@ TEST_END_SYMBS = [DEFAULT_END_SYMB, 'tokenizer']
|
|
13
13
|
def model_and_tokenizer():
|
14
14
|
model = GPT2LMHeadModel.from_pretrained("gpt2")
|
15
15
|
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
16
|
+
tokenizer.pad_token = tokenizer.eos_token
|
16
17
|
return model, tokenizer
|
17
18
|
|
18
19
|
@pytest.fixture
|
@@ -32,6 +33,7 @@ def fakemodel_and_tokenizer():
|
|
32
33
|
# Instantiate a model with the custom configuration
|
33
34
|
model = GPT2LMHeadModel(config)
|
34
35
|
model.eval()
|
36
|
+
tokenizer.pad_token = tokenizer.eos_token
|
35
37
|
|
36
38
|
return model, tokenizer
|
37
39
|
|
@@ -77,11 +79,13 @@ def test_divergent_beamsearch(model_and_tokenizer, device, end_symb):
|
|
77
79
|
end_symb=end_symb
|
78
80
|
)
|
79
81
|
true_solutions = torch.nn.utils.rnn.pad_sequence([torch.tensor(ans) for ans in tokenized_answers], batch_first=True, padding_value=pad_token_id)
|
80
|
-
|
82
|
+
|
81
83
|
assert torch.isclose(scores[0], logprob_paris_diverge), "Beam search did not return the expected score"
|
82
84
|
assert torch.isclose(scores[1], logprob_madrid), "Beam search did not return the expected score"
|
83
85
|
assert torch.isclose(scores[2], logprob_paris_hilton), "Beam search did not return the expected score"
|
84
86
|
assert torch.isclose(scores[3], logprob_garbage), "Beam search did not return the expected score"
|
87
|
+
assert (solutions == true_solutions).all(), "Beam search did not return the expected solutions"
|
88
|
+
|
85
89
|
|
86
90
|
|
87
91
|
@pytest.mark.parametrize("device", ['cpu', 'cuda'])
|
@@ -95,7 +99,6 @@ def test_divergent_logprob(fakemodel_and_tokenizer, device, end_symb):
|
|
95
99
|
"The capital of France is Paris",
|
96
100
|
"The top model Paris Hilton"
|
97
101
|
]
|
98
|
-
tokenizer.pad_token = tokenizer.eos_token
|
99
102
|
inp = tokenizer(prompts, return_tensors="pt", padding=True)
|
100
103
|
input_ids = inp.input_ids.to(device)
|
101
104
|
attention_mask = inp.attention_mask.to(device)
|
@@ -200,3 +203,32 @@ def test_vanilla_beamsearch(model_and_tokenizer, device):
|
|
200
203
|
assert np.isclose(
|
201
204
|
scores.cpu().numpy(), np.array([-8.1361, -8.7745, -9.1053]), atol=0.0001
|
202
205
|
).all()
|
206
|
+
|
207
|
+
@pytest.mark.parametrize("device", ['cpu', 'cuda'])
|
208
|
+
@pytest.mark.parametrize("dtype", [torch.bfloat16, torch.float32])
|
209
|
+
def test_element_wise_equivalence_divergent_logprob(fakemodel_and_tokenizer, device, dtype):
|
210
|
+
model, tokenizer = fakemodel_and_tokenizer
|
211
|
+
model.to(device)
|
212
|
+
model.to(dtype)
|
213
|
+
|
214
|
+
texts = [
|
215
|
+
'My name is Roger',
|
216
|
+
'The capital of Morocco is Rabat',
|
217
|
+
'Google is owned by Alphabet'
|
218
|
+
]
|
219
|
+
|
220
|
+
multi_choices_parser = MultiChoicesParser([texts])
|
221
|
+
|
222
|
+
inputs = tokenizer(texts, return_tensors='pt', padding=True).to(device)
|
223
|
+
|
224
|
+
logprobs_global = divergent_logprob(inputs.input_ids, inputs.attention_mask, model, multi_choices_parser)
|
225
|
+
|
226
|
+
logprobs_individual = []
|
227
|
+
|
228
|
+
for text in texts:
|
229
|
+
inputs = tokenizer(text, return_tensors='pt', padding=True).to(device)
|
230
|
+
input_ids, attention_mask = inputs.input_ids, inputs.attention_mask
|
231
|
+
logprobs_individual.append(divergent_logprob(input_ids, attention_mask, model, multi_choices_parser))
|
232
|
+
logprobs_individual = torch.tensor(logprobs_global)
|
233
|
+
|
234
|
+
assert (logprobs_individual == logprobs_global).all()
|
@@ -73,7 +73,7 @@ wheels = [
|
|
73
73
|
|
74
74
|
[[package]]
|
75
75
|
name = "divergent-beamsearch"
|
76
|
-
version = "0.
|
76
|
+
version = "0.2.0"
|
77
77
|
source = { editable = "." }
|
78
78
|
dependencies = [
|
79
79
|
{ name = "multi-choices-parser" },
|
@@ -88,7 +88,7 @@ dev = [
|
|
88
88
|
|
89
89
|
[package.metadata]
|
90
90
|
requires-dist = [
|
91
|
-
{ name = "multi-choices-parser", specifier = ">=0.9.
|
91
|
+
{ name = "multi-choices-parser", specifier = ">=0.9.72" },
|
92
92
|
{ name = "torch", specifier = ">=2.0.0" },
|
93
93
|
{ name = "transformers", specifier = ">=4.47.1" },
|
94
94
|
]
|
@@ -221,11 +221,18 @@ wheels = [
|
|
221
221
|
|
222
222
|
[[package]]
|
223
223
|
name = "multi-choices-parser"
|
224
|
-
version = "0.9.
|
225
|
-
source = { registry = "https://pypi.org/simple" }
|
226
|
-
|
227
|
-
|
228
|
-
{ url = "https://files.pythonhosted.org/packages/3c/
|
224
|
+
version = "0.9.72"
|
225
|
+
source = { registry = "https://pypi.org/simple" }
|
226
|
+
wheels = [
|
227
|
+
{ url = "https://files.pythonhosted.org/packages/ab/14/7a99908c455ed355563c1a59c3953fd2e1e0b8bd3699f616adf44f31c019/multi_choices_parser-0.9.72-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7554b9928b663952d50dad2be070b33eac12a7cf0a5d0237ca273f075e598d09", size = 99165 },
|
228
|
+
{ url = "https://files.pythonhosted.org/packages/aa/3c/fb13affb1061050fb0f2988d1fdd0f37943e17abf1644ac681d6cda45615/multi_choices_parser-0.9.72-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4700eab86215bd4f0da9fcea0650e5336bc22d62a77625b2d3d1b1a83081b0d4", size = 139545 },
|
229
|
+
{ url = "https://files.pythonhosted.org/packages/47/c0/5b47daed1dd6cff64c602cdcefda285eacfdf71f43d0452ed2f68e17ae9e/multi_choices_parser-0.9.72-cp311-cp311-win_amd64.whl", hash = "sha256:65725c593363b8c207748478ca966e5fc0288118b95c2e6b7cc338003417a185", size = 105544 },
|
230
|
+
{ url = "https://files.pythonhosted.org/packages/51/98/10331d2da4c0c036720f1cd41a60f33cf35a4ac2aad963dd58e486d97ccb/multi_choices_parser-0.9.72-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:277ed1e6e4c7044313281caa5c20cb09eab518f27271001afea748793acc26a9", size = 99360 },
|
231
|
+
{ url = "https://files.pythonhosted.org/packages/98/6a/5c90c3b19013aa02b40ed6ef193213bfb4ad92e4500c8e1009e712c0d6db/multi_choices_parser-0.9.72-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:441ef6dd784c9d7fbf0effe66f2e910ad308604749924e0dccec79fd24cfdf2e", size = 138117 },
|
232
|
+
{ url = "https://files.pythonhosted.org/packages/07/13/4c601c9336b7a83e762937c2d75823964a9a9773903cba2696ec59107dbf/multi_choices_parser-0.9.72-cp312-cp312-win_amd64.whl", hash = "sha256:28ac8cea47639b434fc88e143f5d38a0bd5ab4ce9a040a036e532896185d672b", size = 105658 },
|
233
|
+
{ url = "https://files.pythonhosted.org/packages/db/9d/8ea1f8a87282da07b0d5044c682566a68eced933bb675c8936400bb72a54/multi_choices_parser-0.9.72-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:3dfd87c968a6e5618a0cacc3d29fa244cf427208829eeda82802fd60250ea1b3", size = 99398 },
|
234
|
+
{ url = "https://files.pythonhosted.org/packages/8b/8d/f0a244c59e13e4591e5be9f0793a22e3cde6b631801f9473e96fe44c76bb/multi_choices_parser-0.9.72-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c99dae2ba228c9362648ed66bd9790df07a71176f22938595487605b489a8dc8", size = 138403 },
|
235
|
+
{ url = "https://files.pythonhosted.org/packages/f3/f2/73e929b894fe379be5e1b8d373c9acf66c5b34da3f886edbe22ff8725593/multi_choices_parser-0.9.72-cp313-cp313-win_amd64.whl", hash = "sha256:9576300f71ba688f799832e8b86b3cb24ea74cde29aa4e70ac63ec7545e32790", size = 105658 },
|
229
236
|
]
|
230
237
|
|
231
238
|
[[package]]
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{divergent_beamsearch-0.1.8 → divergent_beamsearch-0.2.1}/src/divergent_beamsearch/__init__.py
RENAMED
File without changes
|