divergent-beamsearch 0.1.7__tar.gz → 0.2.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: divergent-beamsearch
3
- Version: 0.1.7
3
+ Version: 0.2.0
4
4
  Summary: A variant of the beam search algorithm that focuses on finding answers that maximize the probability of generating an answer before diverging into another subject.
5
5
  License-File: LICENCE
6
6
  Requires-Python: >=3.11
@@ -1,6 +1,6 @@
1
1
  [project]
2
2
  name = "divergent-beamsearch"
3
- version = "0.1.7"
3
+ version = "0.2.0"
4
4
  description = "A variant of the beam search algorithm that focuses on finding answers that maximize the probability of generating an answer before diverging into another subject."
5
5
  readme = "README.md"
6
6
  requires-python = ">=3.11"
@@ -35,12 +35,17 @@ def apply_mask_tokens(pred : torch.Tensor, parsers_tokens):
35
35
  return pred[~pred.isinf().all(dim=-1)]
36
36
 
37
37
 
38
- def batched_inference_logits(model : GPT2LMHeadModel, input_ids : torch.Tensor, attention_mask : torch.Tensor | None = None, batch_size : int = 32) -> torch.Tensor:
38
+ def batched_inference_logits(model : GPT2LMHeadModel, input_ids : torch.Tensor,
39
+ attention_mask : torch.Tensor | None = None, batch_size : int = 32,
40
+ to_cpu=False) -> torch.Tensor:
39
41
  logits = []
40
42
  if attention_mask is None:
41
43
  attention_mask = torch.ones_like(input_ids)
42
44
  for i in range(0, input_ids.shape[0], batch_size):
43
- logits.append(model(input_ids[i:i+batch_size], attention_mask=attention_mask[i:i+batch_size]).logits)
45
+ l = model(input_ids[i:i+batch_size], attention_mask=attention_mask[i:i+batch_size]).logits
46
+ if to_cpu:
47
+ l = l.cpu()
48
+ logits.append(l)
44
49
  return torch.cat(logits, dim=0)
45
50
 
46
51
  def select_mask(source : list, mask : list[bool]) -> list:
@@ -82,8 +87,18 @@ def index_reduce_lists(x : torch.Tensor, indices : list[list[int]], reduce_func=
82
87
  values.append(reduce_func(x[i, index], dim=-1))
83
88
  return torch.tensor(values, dtype=x.dtype, device=x.device, requires_grad=x.requires_grad)
84
89
 
90
+ def pad_to_same_size(tensors : list[torch.Tensor], padding_value : int) -> torch.Tensor:
91
+ max_size = max(x.shape[-1] for x in tensors)
92
+ padded_tensors = []
93
+ for tensor in tensors:
94
+ pad = torch.full((tensor.shape[0], max_size - tensor.shape[1]), padding_value, dtype=torch.long)
95
+ padded_tensors.append(torch.cat([tensor, pad], dim=-1))
96
+ return torch.cat(padded_tensors, dim=0)
97
+
85
98
  @torch.no_grad()
86
- def divergent_beamsearch(input_ids : torch.Tensor, model : GPT2LMHeadModel, beam_size : int, max_length : int, parser : Parser, pad_token_id : int, batch_size=32, num_solutions = None, end_symb=DEFAULT_END_SYMB) -> tuple[torch.Tensor, torch.Tensor]:
99
+ def divergent_beamsearch(input_ids : torch.Tensor, model : GPT2LMHeadModel, beam_size : int,
100
+ max_length : int, parser : Parser, pad_token_id : int, batch_size=32,
101
+ num_solutions = None, end_symb=DEFAULT_END_SYMB, optimize_gpu_mem=True) -> tuple[torch.Tensor, torch.Tensor]:
87
102
  assert input_ids.shape[0] == 1, "Batch size must be 1"
88
103
  device = input_ids.device
89
104
  input_ids = input_ids.cpu()
@@ -106,7 +121,7 @@ def divergent_beamsearch(input_ids : torch.Tensor, model : GPT2LMHeadModel, beam
106
121
  for _ in range(max_length):
107
122
  if len(input_ids_unfinished) == 0:
108
123
  break
109
- pred = batched_inference_logits(model, input_ids_unfinished.to(device), batch_size=batch_size)[:, -1].cpu()
124
+ pred = batched_inference_logits(model, input_ids_unfinished.to(device), batch_size=batch_size, to_cpu=optimize_gpu_mem)[:, -1].cpu()
110
125
  parsers_tokens, can_end = get_parsers_tokens(parsers_unfinished, end_symb)
111
126
  logprobs = torch.log_softmax(pred, dim=-1)
112
127
  logprobs_filtered = apply_mask_tokens(logprobs, parsers_tokens)
@@ -130,8 +145,11 @@ def divergent_beamsearch(input_ids : torch.Tensor, model : GPT2LMHeadModel, beam
130
145
  scores_finished_current = scores_finished_current + log1mexp(logprob_other_ans)
131
146
  scores_finished = torch.cat([scores_finished, scores_finished_current])
132
147
  if len(solutions_finished_current):
133
- pad = torch.full((len(scores_finished_current), solutions_finished_current.shape[1] - solutions_finished.shape[1]), pad_token_id, dtype=torch.long)
134
- solutions_finished = torch.cat([solutions_finished.view(-1, solutions_finished_current.shape[1]+pad.shape[1]), torch.cat([solutions_finished_current, pad], dim=1)], dim=0)
148
+ if len(solutions_finished):
149
+ solutions_finished = pad_to_same_size([solutions_finished, solutions_finished_current],
150
+ padding_value=pad_token_id)
151
+ else:
152
+ solutions_finished = solutions_finished_current
135
153
  if solutions_finished.numel():
136
154
  # Keep num_solutions best solutions in finished
137
155
  order = scores_finished.argsort(descending=True)
@@ -164,19 +182,20 @@ def set_slice_row(x : torch.Tensor, slices : torch.IntTensor, value) -> torch.Te
164
182
  @torch.no_grad()
165
183
  def divergent_logprob(input_ids : torch.Tensor, attention_mask : torch.Tensor | None, model : GPT2LMHeadModel,
166
184
  parsers : Parser | list[Parser] | None, batch_size=32,
167
- start : int | torch.IntTensor = None, end_symb=DEFAULT_END_SYMB) -> torch.FloatTensor:
185
+ start : int | torch.IntTensor = None, end_symb=DEFAULT_END_SYMB, optimize_gpu_mem=True) -> torch.FloatTensor:
168
186
  if start is None:
169
- start = 0
187
+ start = 1
170
188
  if isinstance(start, int):
171
189
  start = torch.tensor([start]*input_ids.shape[0])
172
190
  assert start.shape[0] == input_ids.shape[0]
191
+ assert (start > 0).all()
173
192
  # -1 because next token offset
174
193
  start = start - 1
175
194
 
176
195
  if attention_mask is None:
177
196
  attention_mask = torch.ones_like(input_ids)
178
197
 
179
- logits = batched_inference_logits(model, input_ids, attention_mask, batch_size).cpu()
198
+ logits = batched_inference_logits(model, input_ids, attention_mask, batch_size, to_cpu=optimize_gpu_mem).cpu()
180
199
  input_ids = input_ids.cpu()
181
200
  attention_mask = attention_mask.cpu()
182
201
 
@@ -13,6 +13,7 @@ TEST_END_SYMBS = [DEFAULT_END_SYMB, 'tokenizer']
13
13
  def model_and_tokenizer():
14
14
  model = GPT2LMHeadModel.from_pretrained("gpt2")
15
15
  tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
16
+ tokenizer.pad_token = tokenizer.eos_token
16
17
  return model, tokenizer
17
18
 
18
19
  @pytest.fixture
@@ -32,6 +33,7 @@ def fakemodel_and_tokenizer():
32
33
  # Instantiate a model with the custom configuration
33
34
  model = GPT2LMHeadModel(config)
34
35
  model.eval()
36
+ tokenizer.pad_token = tokenizer.eos_token
35
37
 
36
38
  return model, tokenizer
37
39
 
@@ -44,11 +46,11 @@ def test_divergent_beamsearch(model_and_tokenizer, device, end_symb):
44
46
  model.to(device)
45
47
  prompt = "The capital of France is"
46
48
  input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
47
- beam_size = 5
49
+ beam_size = 10
48
50
  max_length = 10
49
51
  pad_token_id = tokenizer.eos_token_id
50
52
 
51
- possible_answers = [' Paris', ' Madrid', ' Paris Hilton']
53
+ possible_answers = [' Paris', ' Madrid', ' Paris Hilton', ' Bri bra brouuu Mario Brooos']
52
54
  tokenized_answers = tokenizer(possible_answers).input_ids
53
55
 
54
56
  if end_symb == 'tokenizer':
@@ -62,6 +64,9 @@ def test_divergent_beamsearch(model_and_tokenizer, device, end_symb):
62
64
  logprob_paris_hilton = logprob_paris + logprob_hilton
63
65
  logprob_madrid = model(input_ids).logits.cpu().log_softmax(dim=-1)[0, -1, tokenized_answers[1][0]]
64
66
  logprob_paris_diverge = logprob_paris + log1mexp(logprob_hilton)
67
+ input_garbage = torch.tensor(input_ids.tolist()[0] + tokenized_answers[-1]).unsqueeze(0).to(device)
68
+ logsoftmax_garbage = model(input_garbage).logits.log_softmax(-1)
69
+ logprob_garbage = torch.gather(logsoftmax_garbage[:, 4:-1, :], 2, input_garbage[:, 5:, None]).squeeze(-1).sum(-1)
65
70
 
66
71
  scores, solutions = divergent_beamsearch(
67
72
  input_ids=input_ids,
@@ -70,7 +75,7 @@ def test_divergent_beamsearch(model_and_tokenizer, device, end_symb):
70
75
  max_length=max_length,
71
76
  parser=multi_choices_parser,
72
77
  pad_token_id=pad_token_id,
73
- num_solutions=10,
78
+ num_solutions=beam_size,
74
79
  end_symb=end_symb
75
80
  )
76
81
  true_solutions = torch.nn.utils.rnn.pad_sequence([torch.tensor(ans) for ans in tokenized_answers], batch_first=True, padding_value=pad_token_id)
@@ -78,6 +83,7 @@ def test_divergent_beamsearch(model_and_tokenizer, device, end_symb):
78
83
  assert torch.isclose(scores[0], logprob_paris_diverge), "Beam search did not return the expected score"
79
84
  assert torch.isclose(scores[1], logprob_madrid), "Beam search did not return the expected score"
80
85
  assert torch.isclose(scores[2], logprob_paris_hilton), "Beam search did not return the expected score"
86
+ assert torch.isclose(scores[3], logprob_garbage), "Beam search did not return the expected score"
81
87
 
82
88
 
83
89
  @pytest.mark.parametrize("device", ['cpu', 'cuda'])
@@ -91,7 +97,6 @@ def test_divergent_logprob(fakemodel_and_tokenizer, device, end_symb):
91
97
  "The capital of France is Paris",
92
98
  "The top model Paris Hilton"
93
99
  ]
94
- tokenizer.pad_token = tokenizer.eos_token
95
100
  inp = tokenizer(prompts, return_tensors="pt", padding=True)
96
101
  input_ids = inp.input_ids.to(device)
97
102
  attention_mask = inp.attention_mask.to(device)
@@ -196,3 +201,32 @@ def test_vanilla_beamsearch(model_and_tokenizer, device):
196
201
  assert np.isclose(
197
202
  scores.cpu().numpy(), np.array([-8.1361, -8.7745, -9.1053]), atol=0.0001
198
203
  ).all()
204
+
205
+ @pytest.mark.parametrize("device", ['cpu', 'cuda'])
206
+ @pytest.mark.parametrize("dtype", [torch.bfloat16, torch.float32])
207
+ def test_element_wise_equivalence_divergent_logprob(fakemodel_and_tokenizer, device, dtype):
208
+ model, tokenizer = fakemodel_and_tokenizer
209
+ model.to(device)
210
+ model.to(dtype)
211
+
212
+ texts = [
213
+ 'My name is Roger',
214
+ 'The capital of Morocco is Rabat',
215
+ 'Google is owned by Alphabet'
216
+ ]
217
+
218
+ multi_choices_parser = MultiChoicesParser([texts])
219
+
220
+ inputs = tokenizer(texts, return_tensors='pt', padding=True).to(device)
221
+
222
+ logprobs_global = divergent_logprob(inputs.input_ids, inputs.attention_mask, model, multi_choices_parser)
223
+
224
+ logprobs_individual = []
225
+
226
+ for text in texts:
227
+ inputs = tokenizer(text, return_tensors='pt', padding=True).to(device)
228
+ input_ids, attention_mask = inputs.input_ids, inputs.attention_mask
229
+ logprobs_individual.append(divergent_logprob(input_ids, attention_mask, model, multi_choices_parser))
230
+ logprobs_individual = torch.tensor(logprobs_global)
231
+
232
+ assert (logprobs_individual == logprobs_global).all()