divergent-beamsearch 0.1.1__tar.gz → 0.1.2__tar.gz

Sign up to get free protection for your applications and to get access to all the features.
@@ -1,5 +1,5 @@
1
- **/__pycache__
2
- .pytest_cache
3
- .vscode
4
- .venv
1
+ **/__pycache__
2
+ .pytest_cache
3
+ .vscode
4
+ .venv
5
5
  dist
@@ -1,21 +1,21 @@
1
- MIT License
2
-
3
- Copyright (c) 2025 Hichem Ammar Khodja
4
-
5
- Permission is hereby granted, free of charge, to any person obtaining a copy
6
- of this software and associated documentation files (the "Software"), to deal
7
- in the Software without restriction, including without limitation the rights
8
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
- copies of the Software, and to permit persons to whom the Software is
10
- furnished to do so, subject to the following conditions:
11
-
12
- The above copyright notice and this permission notice shall be included in all
13
- copies or substantial portions of the Software.
14
-
15
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
1
+ MIT License
2
+
3
+ Copyright (c) 2025 Hichem Ammar Khodja
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
21
  SOFTWARE.
@@ -1,11 +1,11 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: divergent-beamsearch
3
- Version: 0.1.1
3
+ Version: 0.1.2
4
4
  Summary: A variant of the beam search algorithm that focuses on finding answers that maximize the probability of generating an answer before diverging into another subject.
5
5
  License-File: LICENCE
6
6
  Requires-Python: >=3.11
7
7
  Requires-Dist: multi-choices-parser>=0.9.57
8
- Requires-Dist: torch>=2.5.1
8
+ Requires-Dist: torch>=2.0.0
9
9
  Requires-Dist: transformers>=4.47.1
10
10
  Description-Content-Type: text/markdown
11
11
 
@@ -1,67 +1,67 @@
1
- # Divergent Beam Search
2
- ## Overview
3
-
4
- Divergent Beam Search is a variant of the beam search algorithm. Unlike the beam search where answers are constrained, which aims to find the answers with the highest probability of appearing, Divergent Beam Search focuses on finding answers that are not likely to be continued with another answer. Essentially, it finds the answers that maximize the probability of generating an answer before diverging into another subject given the prompt.
5
-
6
- The core idea of this algorithm can be roughly summarized in the following optimization problem:
7
-
8
- $$\max_{ans \in A} P(ans + diverging\ into\ another\ subject \mid prompt)$$
9
-
10
- It is important that the set of answers $A$ is sufficiently exhaustive for this method to work. Otherwise, the algorithm could unjustifiably conclude that an answer is not being followed by the answer while this longer answer exists but is not included in the set $A$.
11
-
12
- ## Installation
13
-
14
- To install the package, use the following command:
15
-
16
- ```bash
17
- pip install divergent-beamsearch
18
- ```
19
-
20
- ## Usage
21
-
22
- Here's a brief example of how to use `divergent-beamsearch`:
23
-
24
- ```python
25
- import torch
26
- from transformers import GPT2LMHeadModel, GPT2Tokenizer
27
- from multi_choices_parser import MultiChoicesParser
28
- from divergent_beamsearch import divergent_beamsearch
29
-
30
- # Load model and tokenizer
31
- model = GPT2LMHeadModel.from_pretrained("gpt2")
32
- tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
33
-
34
- # Define input prompt
35
- prompt = "The capital of France is"
36
- input_ids = tokenizer.encode(prompt, return_tensors="pt")
37
-
38
- # Define beam search parameters
39
- beam_size = 5
40
- max_length = 10
41
- pad_token_id = tokenizer.eos_token_id
42
-
43
- # Define possible answers
44
- possible_answers = [' Paris', ' Paris Hilton']
45
- tokenized_answers = tokenizer(possible_answers).input_ids
46
- multi_choices_parser = MultiChoicesParser([tokenized_answers])
47
-
48
- # Perform beam search
49
- scores, solutions = divergent_beamsearch(
50
- input_ids=input_ids,
51
- model=model,
52
- beam_size=beam_size,
53
- max_length=max_length,
54
- multi_choices_parser=multi_choices_parser,
55
- pad_token_id=pad_token_id,
56
- num_solutions=2
57
- )
58
-
59
- # Decode solutions
60
- decoded_solutions = [tokenizer.decode(solution, skip_special_tokens=True) for solution in solutions]
61
- print("Scores:", scores)
62
- print("Solutions:", decoded_solutions)
63
- ```
64
-
65
- ## License
66
-
67
- This project is licensed under the MIT License. See the [LICENSE](LICENSE) file for details.
1
+ # Divergent Beam Search
2
+ ## Overview
3
+
4
+ Divergent Beam Search is a variant of the beam search algorithm. Unlike the beam search where answers are constrained, which aims to find the answers with the highest probability of appearing, Divergent Beam Search focuses on finding answers that are not likely to be continued with another answer. Essentially, it finds the answers that maximize the probability of generating an answer before diverging into another subject given the prompt.
5
+
6
+ The core idea of this algorithm can be roughly summarized in the following optimization problem:
7
+
8
+ $$\max_{ans \in A} P(ans + diverging\ into\ another\ subject \mid prompt)$$
9
+
10
+ It is important that the set of answers $A$ is sufficiently exhaustive for this method to work. Otherwise, the algorithm could unjustifiably conclude that an answer is not being followed by the answer while this longer answer exists but is not included in the set $A$.
11
+
12
+ ## Installation
13
+
14
+ To install the package, use the following command:
15
+
16
+ ```bash
17
+ pip install divergent-beamsearch
18
+ ```
19
+
20
+ ## Usage
21
+
22
+ Here's a brief example of how to use `divergent-beamsearch`:
23
+
24
+ ```python
25
+ import torch
26
+ from transformers import GPT2LMHeadModel, GPT2Tokenizer
27
+ from multi_choices_parser import MultiChoicesParser
28
+ from divergent_beamsearch import divergent_beamsearch
29
+
30
+ # Load model and tokenizer
31
+ model = GPT2LMHeadModel.from_pretrained("gpt2")
32
+ tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
33
+
34
+ # Define input prompt
35
+ prompt = "The capital of France is"
36
+ input_ids = tokenizer.encode(prompt, return_tensors="pt")
37
+
38
+ # Define beam search parameters
39
+ beam_size = 5
40
+ max_length = 10
41
+ pad_token_id = tokenizer.eos_token_id
42
+
43
+ # Define possible answers
44
+ possible_answers = [' Paris', ' Paris Hilton']
45
+ tokenized_answers = tokenizer(possible_answers).input_ids
46
+ multi_choices_parser = MultiChoicesParser([tokenized_answers])
47
+
48
+ # Perform beam search
49
+ scores, solutions = divergent_beamsearch(
50
+ input_ids=input_ids,
51
+ model=model,
52
+ beam_size=beam_size,
53
+ max_length=max_length,
54
+ multi_choices_parser=multi_choices_parser,
55
+ pad_token_id=pad_token_id,
56
+ num_solutions=2
57
+ )
58
+
59
+ # Decode solutions
60
+ decoded_solutions = [tokenizer.decode(solution, skip_special_tokens=True) for solution in solutions]
61
+ print("Scores:", scores)
62
+ print("Solutions:", decoded_solutions)
63
+ ```
64
+
65
+ ## License
66
+
67
+ This project is licensed under the MIT License. See the [LICENSE](LICENSE) file for details.
@@ -1,12 +1,12 @@
1
1
  [project]
2
2
  name = "divergent-beamsearch"
3
- version = "0.1.1"
3
+ version = "0.1.2"
4
4
  description = "A variant of the beam search algorithm that focuses on finding answers that maximize the probability of generating an answer before diverging into another subject."
5
5
  readme = "README.md"
6
6
  requires-python = ">=3.11"
7
7
  dependencies = [
8
8
  "multi-choices-parser>=0.9.57",
9
- "torch>=2.5.1",
9
+ "torch>=2.0.0",
10
10
  "transformers>=4.47.1",
11
11
  ]
12
12
 
@@ -1,132 +1,146 @@
1
- import math
2
- import torch
3
- from transformers import GPT2LMHeadModel
4
- from multi_choices_parser import MultiChoicesParser, end_symb
5
-
6
-
7
- def get_parsers_tokens(parsers : list[MultiChoicesParser]) -> tuple[list, list[int]]:
8
- parsers_tokens = []
9
- can_end = []
10
- for parser in parsers:
11
- tokens = list(parser.next())
12
- if end_symb in tokens:
13
- can_end.append(True)
14
- tokens.remove(end_symb)
15
- else:
16
- can_end.append(False)
17
- parsers_tokens.append(tokens)
18
- return parsers_tokens, can_end
19
-
20
- def apply_mask_tokens(pred : torch.Tensor, parsers_tokens):
21
- mask = torch.ones_like(pred, dtype=torch.bool)
22
- for tokens in parsers_tokens:
23
- mask[:, tokens] = False
24
- pred[mask] = -float('inf')
25
- return pred[~pred.isinf().all(dim=-1)]
26
-
27
-
28
- def batched_inference_logits(model : GPT2LMHeadModel, input_ids : torch.Tensor, batch_size : int = 32) -> torch.Tensor:
29
- logits = []
30
- for i in range(0, input_ids.shape[0], batch_size):
31
- logits.append(model(input_ids[i:i+batch_size]).logits)
32
- return torch.cat(logits, dim=0)
33
-
34
- def select_mask(source : list, mask : list[bool]) -> list:
35
- assert len(source) == len(mask)
36
- return [x for x, m in zip(source, mask) if m]
37
-
38
-
39
- def log1mexp(x: torch.Tensor) -> torch.Tensor:
40
- """Numerically accurate evaluation of log(1 - exp(x)) for x < 0.
41
- See [Maechler2012accurate]_ for details.
42
- """
43
- mask = -math.log(2) < x # x < 0
44
- return torch.where(
45
- mask,
46
- (-x.expm1()).log(),
47
- (-x.exp()).log1p(),
48
- )
49
-
50
- class AcceptEverythingParser:
51
- def __init__(self, vocab_size : int):
52
- self.vocab_size = vocab_size
53
- self.tokens = tuple(range(vocab_size))
54
-
55
- def step(self, token):
56
- pass
57
-
58
- def next(self):
59
- return self.tokens
60
-
61
- def copy(self):
62
- return self
63
-
64
- @torch.no_grad()
65
- def divergent_beamsearch(input_ids : torch.Tensor, model : GPT2LMHeadModel, beam_size : int, max_length : int, multi_choices_parser : MultiChoicesParser, pad_token_id : int, batch_size=32, num_solutions = None) -> tuple[torch.Tensor, torch.Tensor]:
66
- assert input_ids.shape[0] == 1, "Batch size must be 1"
67
-
68
- if num_solutions is None:
69
- num_solutions = beam_size
70
- vanilla = multi_choices_parser is None
71
- if vanilla:
72
- multi_choices_parser = AcceptEverythingParser(model.config.vocab_size)
73
-
74
- parsers_unfinished = [multi_choices_parser]
75
- scores_finished = torch.tensor([], dtype=torch.float)
76
- solutions_finished = torch.tensor([], dtype=torch.long).view(0,0)
77
-
78
- input_ids_unfinished = input_ids
79
- scores_unfinished = torch.tensor([0.0], dtype=torch.float)
80
- solutions_unfinished = torch.tensor([], dtype=torch.long).view(1,0)
81
-
82
-
83
- for _ in range(max_length):
84
- if len(input_ids_unfinished) == 0:
85
- break
86
- pred = batched_inference_logits(model, input_ids_unfinished, batch_size)[:, -1].cpu()
87
- parsers_tokens, can_end = get_parsers_tokens(parsers_unfinished)
88
- # input_ids_unfinished = input_ids_unfinished[~torch.tensor(can_only_end)]
89
- logprobs = torch.log_softmax(pred, dim=-1)
90
- logprobs_filtered = apply_mask_tokens(logprobs, parsers_tokens)
91
- if len(logprobs_filtered):
92
- topk = torch.topk(logprobs_filtered, beam_size, dim=-1) # shape (batch_size, beam_size)
93
- values = topk.values + scores_unfinished.unsqueeze(-1)
94
- topk_global = values.flatten().topk(beam_size)
95
- best_tokens_row = topk_global.indices // beam_size
96
- best_tokens, best_tokens_logprobs = topk.indices[best_tokens_row, topk_global.indices % beam_size], topk.values[best_tokens_row, topk_global.indices % beam_size]
97
- notinf = ~best_tokens_logprobs.isinf()
98
- best_tokens, best_tokens_row, best_tokens_logprobs = best_tokens[notinf], best_tokens_row[notinf], best_tokens_logprobs[notinf]
99
- else:
100
- best_tokens = torch.tensor([], dtype=torch.long)
101
- best_tokens_row = torch.tensor([], dtype=torch.long)
102
- best_tokens_logprobs = torch.tensor([], dtype=torch.float)
103
-
104
-
105
- scores_finished_current = scores_unfinished[can_end]
106
- solutions_finished_current = solutions_unfinished[can_end]
107
- scores_finished_current = scores_finished_current + log1mexp(logprobs[can_end, select_mask(parsers_tokens, can_end)].logsumexp(dim=-1)).squeeze(-1)
108
- scores_finished = torch.cat([scores_finished, scores_finished_current])
109
- if len(solutions_finished_current):
110
- pad = torch.full((len(scores_finished_current), solutions_finished_current.shape[1] - solutions_finished.shape[1]), pad_token_id, dtype=torch.long)
111
- solutions_finished = torch.cat([solutions_finished.view(-1, solutions_finished_current.shape[1]+pad.shape[1]), torch.cat([solutions_finished_current, pad], dim=1)], dim=0)
112
- if solutions_finished.numel():
113
- # Keep num_solutions best solutions in finished
114
- order = scores_finished.argsort(descending=True)
115
- solutions_finished = solutions_finished[order][:num_solutions]
116
- scores_finished = scores_finished[order][:num_solutions]
117
-
118
-
119
- input_ids_unfinished = torch.cat([input_ids_unfinished[best_tokens_row], best_tokens.unsqueeze(-1)], dim=-1)
120
- scores_unfinished = scores_unfinished[best_tokens_row] + best_tokens_logprobs
121
- solutions_unfinished = torch.cat([solutions_unfinished[best_tokens_row], best_tokens.unsqueeze(-1)], dim=-1)
122
- parsers_unfinished = [parsers_unfinished[row].copy() for row in best_tokens_row]
123
- for parser, token in zip(parsers_unfinished, best_tokens.tolist()):
124
- parser.step(token)
125
-
126
- # Special case of vanilla beam search where all answers are valid
127
- if vanilla:
128
- order = scores_unfinished.argsort(descending=True)
129
- scores_finished = scores_unfinished[order][:num_solutions]
130
- solutions_finished = solutions_unfinished[order][:num_solutions]
131
-
132
- return scores_finished, solutions_finished
1
+ import math
2
+ import torch
3
+ from transformers import GPT2LMHeadModel
4
+ from multi_choices_parser import MultiChoicesParser, end_symb
5
+
6
+
7
+ class Parser:
8
+ def step(self, token):
9
+ raise NotImplementedError
10
+
11
+ def next(self):
12
+ raise NotImplementedError
13
+
14
+ def copy(self):
15
+ raise NotImplementedError
16
+
17
+ def get_parsers_tokens(parsers : list[Parser]) -> tuple[list, list[int]]:
18
+ parsers_tokens = []
19
+ can_end = []
20
+ for parser in parsers:
21
+ tokens = list(parser.next())
22
+ if end_symb in tokens:
23
+ can_end.append(True)
24
+ tokens.remove(end_symb)
25
+ else:
26
+ can_end.append(False)
27
+ parsers_tokens.append(tokens)
28
+ return parsers_tokens, can_end
29
+
30
+ def apply_mask_tokens(pred : torch.Tensor, parsers_tokens):
31
+ mask = torch.ones_like(pred, dtype=torch.bool)
32
+ for tokens in parsers_tokens:
33
+ mask[:, tokens] = False
34
+ pred[mask] = -float('inf')
35
+ return pred[~pred.isinf().all(dim=-1)]
36
+
37
+
38
+ def batched_inference_logits(model : GPT2LMHeadModel, input_ids : torch.Tensor, batch_size : int = 32) -> torch.Tensor:
39
+ logits = []
40
+ for i in range(0, input_ids.shape[0], batch_size):
41
+ logits.append(model(input_ids[i:i+batch_size]).logits)
42
+ return torch.cat(logits, dim=0)
43
+
44
+ def select_mask(source : list, mask : list[bool]) -> list:
45
+ assert len(source) == len(mask)
46
+ return [x for x, m in zip(source, mask) if m]
47
+
48
+
49
+ def log1mexp(x: torch.Tensor) -> torch.Tensor:
50
+ """Numerically accurate evaluation of log(1 - exp(x)) for x < 0.
51
+ See [Maechler2012accurate]_ for details.
52
+ """
53
+ mask = -math.log(2) < x # x < 0
54
+ return torch.where(
55
+ mask,
56
+ (-x.expm1()).log(),
57
+ (-x.exp()).log1p(),
58
+ )
59
+
60
+
61
+
62
+
63
+ class AcceptEverythingParser(Parser):
64
+ def __init__(self, vocab_size : int):
65
+ self.vocab_size = vocab_size
66
+ self.tokens = tuple(range(vocab_size))
67
+
68
+ def step(self, token):
69
+ pass
70
+
71
+ def next(self):
72
+ return self.tokens
73
+
74
+ def copy(self):
75
+ return self
76
+
77
+ @torch.no_grad()
78
+ def divergent_beamsearch(input_ids : torch.Tensor, model : GPT2LMHeadModel, beam_size : int, max_length : int, parser : Parser, pad_token_id : int, batch_size=32, num_solutions = None) -> tuple[torch.Tensor, torch.Tensor]:
79
+ assert input_ids.shape[0] == 1, "Batch size must be 1"
80
+ device = input_ids.device
81
+ input_ids = input_ids.cpu()
82
+
83
+ if num_solutions is None:
84
+ num_solutions = beam_size
85
+ vanilla = parser is None
86
+ if vanilla:
87
+ parser = AcceptEverythingParser(model.config.vocab_size)
88
+
89
+ parsers_unfinished = [parser]
90
+ scores_finished = torch.tensor([], dtype=torch.float)
91
+ solutions_finished = torch.tensor([], dtype=torch.long).view(0,0)
92
+
93
+ input_ids_unfinished = input_ids
94
+ scores_unfinished = torch.tensor([0.0], dtype=torch.float)
95
+ solutions_unfinished = torch.tensor([], dtype=torch.long).view(1,0)
96
+
97
+
98
+ for _ in range(max_length):
99
+ if len(input_ids_unfinished) == 0:
100
+ break
101
+ pred = batched_inference_logits(model, input_ids_unfinished.to(device), batch_size)[:, -1].cpu()
102
+ parsers_tokens, can_end = get_parsers_tokens(parsers_unfinished)
103
+ logprobs = torch.log_softmax(pred, dim=-1)
104
+ logprobs_filtered = apply_mask_tokens(logprobs, parsers_tokens)
105
+ if len(logprobs_filtered):
106
+ topk = torch.topk(logprobs_filtered, beam_size, dim=-1) # shape (batch_size, beam_size)
107
+ values = topk.values + scores_unfinished.unsqueeze(-1)
108
+ topk_global = values.flatten().topk(beam_size)
109
+ best_tokens_row = topk_global.indices // beam_size
110
+ best_tokens, best_tokens_logprobs = topk.indices[best_tokens_row, topk_global.indices % beam_size], topk.values[best_tokens_row, topk_global.indices % beam_size]
111
+ notinf = ~best_tokens_logprobs.isinf()
112
+ best_tokens, best_tokens_row, best_tokens_logprobs = best_tokens[notinf], best_tokens_row[notinf], best_tokens_logprobs[notinf]
113
+ else:
114
+ best_tokens = torch.tensor([], dtype=torch.long)
115
+ best_tokens_row = torch.tensor([], dtype=torch.long)
116
+ best_tokens_logprobs = torch.tensor([], dtype=torch.float)
117
+
118
+
119
+ scores_finished_current = scores_unfinished[can_end]
120
+ solutions_finished_current = solutions_unfinished[can_end]
121
+ scores_finished_current = scores_finished_current + log1mexp(logprobs[can_end, select_mask(parsers_tokens, can_end)].logsumexp(dim=-1)).squeeze(-1)
122
+ scores_finished = torch.cat([scores_finished, scores_finished_current])
123
+ if len(solutions_finished_current):
124
+ pad = torch.full((len(scores_finished_current), solutions_finished_current.shape[1] - solutions_finished.shape[1]), pad_token_id, dtype=torch.long)
125
+ solutions_finished = torch.cat([solutions_finished.view(-1, solutions_finished_current.shape[1]+pad.shape[1]), torch.cat([solutions_finished_current, pad], dim=1)], dim=0)
126
+ if solutions_finished.numel():
127
+ # Keep num_solutions best solutions in finished
128
+ order = scores_finished.argsort(descending=True)
129
+ solutions_finished = solutions_finished[order][:num_solutions]
130
+ scores_finished = scores_finished[order][:num_solutions]
131
+
132
+
133
+ input_ids_unfinished = torch.cat([input_ids_unfinished[best_tokens_row], best_tokens.unsqueeze(-1)], dim=-1)
134
+ scores_unfinished = scores_unfinished[best_tokens_row] + best_tokens_logprobs
135
+ solutions_unfinished = torch.cat([solutions_unfinished[best_tokens_row], best_tokens.unsqueeze(-1)], dim=-1)
136
+ parsers_unfinished = [parsers_unfinished[row].copy() for row in best_tokens_row]
137
+ for parser, token in zip(parsers_unfinished, best_tokens.tolist()):
138
+ parser.step(token)
139
+
140
+ # Special case of vanilla beam search where all answers are valid
141
+ if vanilla:
142
+ order = scores_unfinished.argsort(descending=True)
143
+ scores_finished = scores_unfinished[order][:num_solutions]
144
+ solutions_finished = solutions_unfinished[order][:num_solutions]
145
+
146
+ return scores_finished, solutions_finished
@@ -1,118 +1,125 @@
1
- import numpy as np
2
- import pytest
3
- import torch
4
- from transformers import GPT2LMHeadModel, GPT2Tokenizer
5
- from multi_choices_parser import MultiChoicesParser
6
- from divergent_beamsearch.algorithm import divergent_beamsearch, log1mexp
7
- from multi_choices_parser import MultiChoicesParser
8
-
9
- @pytest.fixture
10
- def model_and_tokenizer():
11
- model = GPT2LMHeadModel.from_pretrained("gpt2")
12
- tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
13
- return model, tokenizer
14
-
15
- def test_divergent_beamsearch(model_and_tokenizer):
16
- model, tokenizer = model_and_tokenizer
17
- prompt = "The capital of France is"
18
- input_ids = tokenizer.encode(prompt, return_tensors="pt")
19
- beam_size = 5
20
- max_length = 10
21
- pad_token_id = tokenizer.eos_token_id
22
-
23
- possible_answers = [' Paris', ' Paris Hilton']
24
- tokenized_answers = tokenizer(possible_answers).input_ids
25
- multi_choices_parser = MultiChoicesParser([tokenized_answers])
26
-
27
- logprob_paris = model(input_ids).logits.log_softmax(dim=-1)[0, -1, tokenized_answers[0][0]]
28
- logprob_hilton = model(torch.cat([input_ids, torch.tensor(tokenized_answers[1][0]).view(1,1)], dim=-1)).logits.log_softmax(dim=-1)[0, -1, tokenized_answers[1][1]]
29
- logprob_paris_hilton = logprob_paris + logprob_hilton
30
-
31
- scores, solutions = divergent_beamsearch(
32
- input_ids=input_ids,
33
- model=model,
34
- beam_size=beam_size,
35
- max_length=max_length,
36
- multi_choices_parser=multi_choices_parser,
37
- pad_token_id=pad_token_id,
38
- num_solutions=10
39
- )
40
- true_solutions = torch.nn.utils.rnn.pad_sequence([torch.tensor(ans) for ans in tokenized_answers], batch_first=True, padding_value=pad_token_id)
41
- assert (solutions == true_solutions).all(), "Beam search did not return the expected solutions"
42
- assert scores[0] == logprob_paris + log1mexp(logprob_hilton), "Beam search did not return the expected score"
43
- assert scores[1] == logprob_paris_hilton, "Beam search did not return the expected score"
44
-
45
- def test_vanilla_beamsearch(model_and_tokenizer):
46
- # Verify that divergent beam search where all answers are valid is equivalent to vanilla beam search
47
- # Results of beam search were compared with huggingface implementation (https://huggingface.co/spaces/m-ric/beam_search_visualizer)
48
- model, tok = model_and_tokenizer
49
- device = "cuda" if torch.cuda.is_available() else "cpu"
50
- model.eval()
51
- prompt = "The capital of France is"
52
- input_ids = tok(prompt, return_tensors="pt").input_ids.to(device)
53
- scores, sequences = divergent_beamsearch(
54
- input_ids, model, beam_size=3, max_length=1, pad_token_id=tok.eos_token_id, num_solutions=3, multi_choices_parser=None
55
- )
56
- sequences = [tok.decode(s) for s in sequences]
57
- assert sequences == [" the", " now", " a"]
58
- assert np.isclose(
59
- scores.cpu().numpy(), np.array([-2.4699, -3.0377, -3.0756]), atol=0.0001
60
- ).all()
61
-
62
- scores, sequences = divergent_beamsearch(
63
- input_ids, model, beam_size=3, max_length=2, pad_token_id=tok.eos_token_id, num_solutions=3, multi_choices_parser=None
64
- )
65
- sequences = [tok.decode(s) for s in sequences]
66
- assert sequences == [" the capital", " now home", " now the"]
67
- assert np.isclose(
68
- scores.cpu().numpy(), np.array([-4.2437, -5.3013, -5.3408]), atol=0.0001
69
- ).all()
70
-
71
- scores, sequences = divergent_beamsearch(
72
- input_ids, model, beam_size=3, max_length=3, pad_token_id=tok.eos_token_id, num_solutions=3, multi_choices_parser=None
73
- )
74
- sequences = [tok.decode(s) for s in sequences]
75
- assert sequences == [" the capital of", " now home to", " now the capital"]
76
- assert np.isclose(
77
- scores.cpu().numpy(), np.array([-4.3194, -5.3057, -7.7173]), atol=0.0001
78
- ).all()
79
-
80
- scores, sequences = divergent_beamsearch(
81
- input_ids, model, beam_size=3, max_length=4, pad_token_id=tok.eos_token_id, num_solutions=3, multi_choices_parser=None
82
- )
83
- sequences = [tok.decode(s) for s in sequences]
84
- assert sequences == [
85
- " the capital of the",
86
- " the capital of France",
87
- " the capital of a",
88
- ]
89
- assert np.isclose(
90
- scores.cpu().numpy(), np.array([-5.5825, -5.9150, -7.1716]), atol=0.0001
91
- ).all()
92
-
93
- scores, sequences = divergent_beamsearch(
94
- input_ids, model, beam_size=3, max_length=5, pad_token_id=tok.eos_token_id, num_solutions=3, multi_choices_parser=None
95
- )
96
- sequences = [tok.decode(s) for s in sequences]
97
- assert sequences == [
98
- " the capital of France,",
99
- " the capital of France.",
100
- " the capital of the French",
101
- ]
102
- assert np.isclose(
103
- scores.cpu().numpy(), np.array([-6.9453, -7.1549, -7.5727]), atol=0.0001
104
- ).all()
105
-
106
-
107
- scores, sequences = divergent_beamsearch(
108
- input_ids, model, beam_size=3, max_length=6, pad_token_id=tok.eos_token_id, num_solutions=3, multi_choices_parser=None
109
- )
110
- sequences = [tok.decode(s) for s in sequences]
111
- assert sequences == [
112
- " the capital of France, and",
113
- " the capital of the French Republic",
114
- " the capital of France. It",
115
- ]
116
- assert np.isclose(
117
- scores.cpu().numpy(), np.array([-8.1361, -8.7745, -9.1053]), atol=0.0001
1
+ import numpy as np
2
+ import pytest
3
+ import torch
4
+ from transformers import GPT2LMHeadModel, GPT2Tokenizer
5
+ from multi_choices_parser import MultiChoicesParser
6
+ from divergent_beamsearch.algorithm import divergent_beamsearch, log1mexp
7
+ from multi_choices_parser import MultiChoicesParser
8
+
9
+ @pytest.fixture
10
+ def model_and_tokenizer():
11
+ model = GPT2LMHeadModel.from_pretrained("gpt2")
12
+ tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
13
+ return model, tokenizer
14
+
15
+ @pytest.mark.parametrize("device", ['cpu', 'cuda'])
16
+ def test_divergent_beamsearch(model_and_tokenizer, device):
17
+ if device == 'cuda' and not torch.cuda.is_available():
18
+ pytest.skip("CUDA is not available on this machine.")
19
+ model, tokenizer = model_and_tokenizer
20
+ model.to(device)
21
+ prompt = "The capital of France is"
22
+ input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
23
+ beam_size = 5
24
+ max_length = 10
25
+ pad_token_id = tokenizer.eos_token_id
26
+
27
+ possible_answers = [' Paris', ' Paris Hilton']
28
+ tokenized_answers = tokenizer(possible_answers).input_ids
29
+ multi_choices_parser = MultiChoicesParser([tokenized_answers])
30
+
31
+ logprob_paris = model(input_ids).logits.cpu().log_softmax(dim=-1)[0, -1, tokenized_answers[0][0]]
32
+ logprob_hilton = model(torch.cat([input_ids, torch.tensor(tokenized_answers[1][0], device=device).view(1,1)], dim=-1)).logits.cpu().log_softmax(dim=-1)[0, -1, tokenized_answers[1][1]]
33
+ logprob_paris_hilton = logprob_paris + logprob_hilton
34
+
35
+ scores, solutions = divergent_beamsearch(
36
+ input_ids=input_ids,
37
+ model=model,
38
+ beam_size=beam_size,
39
+ max_length=max_length,
40
+ parser=multi_choices_parser,
41
+ pad_token_id=pad_token_id,
42
+ num_solutions=10
43
+ )
44
+ true_solutions = torch.nn.utils.rnn.pad_sequence([torch.tensor(ans) for ans in tokenized_answers], batch_first=True, padding_value=pad_token_id)
45
+ assert (solutions == true_solutions).all(), "Beam search did not return the expected solutions"
46
+ assert scores[0] == logprob_paris + log1mexp(logprob_hilton), "Beam search did not return the expected score"
47
+ assert scores[1] == logprob_paris_hilton, "Beam search did not return the expected score"
48
+
49
+ @pytest.mark.parametrize("device", ['cpu', 'cuda'])
50
+ def test_vanilla_beamsearch(model_and_tokenizer, device):
51
+ if device == 'cuda' and not torch.cuda.is_available():
52
+ pytest.skip("CUDA is not available on this machine.")
53
+ # Verify that divergent beam search where all answers are valid is equivalent to vanilla beam search
54
+ # Results of beam search were compared with huggingface implementation (https://huggingface.co/spaces/m-ric/beam_search_visualizer)
55
+ model, tok = model_and_tokenizer
56
+ model.to(device)
57
+ model.eval()
58
+ prompt = "The capital of France is"
59
+ input_ids = tok(prompt, return_tensors="pt").input_ids.to(device)
60
+ scores, sequences = divergent_beamsearch(
61
+ input_ids, model, beam_size=3, max_length=1, pad_token_id=tok.eos_token_id, num_solutions=3, parser=None
62
+ )
63
+ sequences = [tok.decode(s) for s in sequences]
64
+ assert sequences == [" the", " now", " a"]
65
+ assert np.isclose(
66
+ scores.cpu().numpy(), np.array([-2.4699, -3.0377, -3.0756]), atol=0.0001
67
+ ).all()
68
+
69
+ scores, sequences = divergent_beamsearch(
70
+ input_ids, model, beam_size=3, max_length=2, pad_token_id=tok.eos_token_id, num_solutions=3, parser=None
71
+ )
72
+ sequences = [tok.decode(s) for s in sequences]
73
+ assert sequences == [" the capital", " now home", " now the"]
74
+ assert np.isclose(
75
+ scores.cpu().numpy(), np.array([-4.2437, -5.3013, -5.3408]), atol=0.0001
76
+ ).all()
77
+
78
+ scores, sequences = divergent_beamsearch(
79
+ input_ids, model, beam_size=3, max_length=3, pad_token_id=tok.eos_token_id, num_solutions=3, parser=None
80
+ )
81
+ sequences = [tok.decode(s) for s in sequences]
82
+ assert sequences == [" the capital of", " now home to", " now the capital"]
83
+ assert np.isclose(
84
+ scores.cpu().numpy(), np.array([-4.3194, -5.3057, -7.7173]), atol=0.0001
85
+ ).all()
86
+
87
+ scores, sequences = divergent_beamsearch(
88
+ input_ids, model, beam_size=3, max_length=4, pad_token_id=tok.eos_token_id, num_solutions=3, parser=None
89
+ )
90
+ sequences = [tok.decode(s) for s in sequences]
91
+ assert sequences == [
92
+ " the capital of the",
93
+ " the capital of France",
94
+ " the capital of a",
95
+ ]
96
+ assert np.isclose(
97
+ scores.cpu().numpy(), np.array([-5.5825, -5.9150, -7.1716]), atol=0.0001
98
+ ).all()
99
+
100
+ scores, sequences = divergent_beamsearch(
101
+ input_ids, model, beam_size=3, max_length=5, pad_token_id=tok.eos_token_id, num_solutions=3, parser=None
102
+ )
103
+ sequences = [tok.decode(s) for s in sequences]
104
+ assert sequences == [
105
+ " the capital of France,",
106
+ " the capital of France.",
107
+ " the capital of the French",
108
+ ]
109
+ assert np.isclose(
110
+ scores.cpu().numpy(), np.array([-6.9453, -7.1549, -7.5727]), atol=0.0001
111
+ ).all()
112
+
113
+
114
+ scores, sequences = divergent_beamsearch(
115
+ input_ids, model, beam_size=3, max_length=6, pad_token_id=tok.eos_token_id, num_solutions=3, parser=None
116
+ )
117
+ sequences = [tok.decode(s) for s in sequences]
118
+ assert sequences == [
119
+ " the capital of France, and",
120
+ " the capital of the French Republic",
121
+ " the capital of France. It",
122
+ ]
123
+ assert np.isclose(
124
+ scores.cpu().numpy(), np.array([-8.1361, -8.7745, -9.1053]), atol=0.0001
118
125
  ).all()
@@ -89,7 +89,7 @@ dev = [
89
89
  [package.metadata]
90
90
  requires-dist = [
91
91
  { name = "multi-choices-parser", specifier = ">=0.9.57" },
92
- { name = "torch", specifier = ">=2.5.1" },
92
+ { name = "torch", specifier = ">=2.0.0" },
93
93
  { name = "transformers", specifier = ">=4.47.1" },
94
94
  ]
95
95