diploSHIC 1.0.7__tar.gz → 1.1.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (41) hide show
  1. {diploSHIC-1.0.7 → diploshic-1.1.0}/MANIFEST.in +0 -2
  2. {diploSHIC-1.0.7/diploSHIC.egg-info → diploshic-1.1.0}/PKG-INFO +62 -44
  3. {diploSHIC-1.0.7 → diploshic-1.1.0}/README.md +28 -33
  4. {diploSHIC-1.0.7 → diploshic-1.1.0/diploSHIC.egg-info}/PKG-INFO +62 -44
  5. {diploSHIC-1.0.7 → diploshic-1.1.0}/diploSHIC.egg-info/SOURCES.txt +3 -5
  6. diploshic-1.1.0/diploSHIC.egg-info/requires.txt +14 -0
  7. {diploSHIC-1.0.7 → diploshic-1.1.0}/diploshic/__init__.py +1 -1
  8. {diploSHIC-1.0.7 → diploshic-1.1.0}/diploshic/fvTools.py +295 -45
  9. {diploSHIC-1.0.7 → diploshic-1.1.0}/diploshic/makeFeatureVecsForChrArmFromVcfDiploid.py +29 -9
  10. {diploSHIC-1.0.7 → diploshic-1.1.0}/diploshic/makeFeatureVecsForChrArmFromVcf_ogSHIC.py +26 -9
  11. {diploSHIC-1.0.7 → diploshic-1.1.0}/diploshic/makeFeatureVecsForSingleMsDiploid.py +12 -4
  12. {diploSHIC-1.0.7 → diploshic-1.1.0}/diploshic/makeFeatureVecsForSingleMs_ogSHIC.py +24 -22
  13. {diploSHIC-1.0.7 → diploshic-1.1.0}/diploshic/msTools.py +9 -5
  14. diploshic-1.1.0/diploshic/numba_stats.py +350 -0
  15. diploshic-1.1.0/pyproject.toml +102 -0
  16. diploshic-1.1.0/tests/test_regression.py +41 -0
  17. diploSHIC-1.0.7/diploSHIC.egg-info/not-zip-safe +0 -1
  18. diploSHIC-1.0.7/diploSHIC.egg-info/requires.txt +0 -10
  19. diploSHIC-1.0.7/diploshic/shicstats.pyf +0 -50
  20. diploSHIC-1.0.7/diploshic/utils.c +0 -216
  21. diploSHIC-1.0.7/pyproject.toml +0 -4
  22. diploSHIC-1.0.7/setup.py +0 -47
  23. {diploSHIC-1.0.7 → diploshic-1.1.0}/LICENSE +0 -0
  24. {diploSHIC-1.0.7 → diploshic-1.1.0}/diploSHIC.egg-info/dependency_links.txt +0 -0
  25. {diploSHIC-1.0.7 → diploshic-1.1.0}/diploSHIC.egg-info/top_level.txt +0 -0
  26. {diploSHIC-1.0.7 → diploshic-1.1.0}/diploshic/diploSHIC +0 -0
  27. {diploSHIC-1.0.7 → diploshic-1.1.0}/diploshic/generateSimLaunchScript.py +0 -0
  28. {diploSHIC-1.0.7 → diploshic-1.1.0}/diploshic/makeTrainingSets.py +0 -0
  29. {diploSHIC-1.0.7 → diploshic-1.1.0}/diploshic/misc.py +0 -0
  30. {diploSHIC-1.0.7 → diploshic-1.1.0}/diploshic/setup.py +0 -0
  31. {diploSHIC-1.0.7 → diploshic-1.1.0}/diploshic/testing/hard.fvec +0 -0
  32. {diploSHIC-1.0.7 → diploshic-1.1.0}/diploshic/testing/linkedHard.fvec +0 -0
  33. {diploSHIC-1.0.7 → diploshic-1.1.0}/diploshic/testing/linkedSoft.fvec +0 -0
  34. {diploSHIC-1.0.7 → diploshic-1.1.0}/diploshic/testing/neut.fvec +0 -0
  35. {diploSHIC-1.0.7 → diploshic-1.1.0}/diploshic/testing/soft.fvec +0 -0
  36. {diploSHIC-1.0.7 → diploshic-1.1.0}/diploshic/training/hard.fvec +0 -0
  37. {diploSHIC-1.0.7 → diploshic-1.1.0}/diploshic/training/linkedHard.fvec +0 -0
  38. {diploSHIC-1.0.7 → diploshic-1.1.0}/diploshic/training/linkedSoft.fvec +0 -0
  39. {diploSHIC-1.0.7 → diploshic-1.1.0}/diploshic/training/neut.fvec +0 -0
  40. {diploSHIC-1.0.7 → diploshic-1.1.0}/diploshic/training/soft.fvec +0 -0
  41. {diploSHIC-1.0.7 → diploshic-1.1.0}/setup.cfg +0 -0
@@ -1,5 +1,3 @@
1
- include diploshic/shicstats.pyf
2
1
  include diploshic/testEmpirical.fvec
3
2
  include diploshic/testing/*
4
3
  include diploshic/training/*
5
- include diploshic/utils.c
@@ -1,16 +1,41 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.4
2
2
  Name: diploSHIC
3
- Version: 1.0.7
4
- Summary: diploSHIC
5
- Home-page: https://github.com/kr-colab/diploSHIC
6
- Author: Andrew Kern
7
- Author-email: adkern@uoregon.edu
3
+ Version: 1.1.0
4
+ Summary: A deep learning tool for identifying hard and soft selective sweeps in population genomic data
5
+ Author-email: Andrew Kern <adkern@uoregon.edu>
6
+ Maintainer-email: Andrew Kern <adkern@uoregon.edu>
8
7
  License: MIT
9
- Platform: UNKNOWN
10
- Requires-Python: <3.12,>=3.10
8
+ Project-URL: Homepage, https://github.com/kr-colab/diploSHIC
9
+ Project-URL: Documentation, https://github.com/kr-colab/diploSHIC/wiki
10
+ Project-URL: Repository, https://github.com/kr-colab/diploSHIC.git
11
+ Project-URL: Issues, https://github.com/kr-colab/diploSHIC/issues
12
+ Keywords: population genetics,selective sweeps,deep learning,CNN,genomics,evolution
13
+ Classifier: Development Status :: 5 - Production/Stable
14
+ Classifier: Intended Audience :: Science/Research
15
+ Classifier: License :: OSI Approved :: MIT License
16
+ Classifier: Operating System :: OS Independent
17
+ Classifier: Programming Language :: Python :: 3
18
+ Classifier: Programming Language :: Python :: 3.10
19
+ Classifier: Programming Language :: Python :: 3.11
20
+ Classifier: Programming Language :: Python :: 3.12
21
+ Classifier: Topic :: Scientific/Engineering :: Bio-Informatics
22
+ Requires-Python: >=3.10
11
23
  Description-Content-Type: text/markdown
12
- Provides-Extra: dev
13
24
  License-File: LICENSE
25
+ Requires-Dist: numpy>=1.20
26
+ Requires-Dist: scipy>=1.7
27
+ Requires-Dist: matplotlib>=3.5
28
+ Requires-Dist: pandas>=1.3
29
+ Requires-Dist: scikit-allel>=1.3
30
+ Requires-Dist: scikit-learn>=1.0
31
+ Requires-Dist: tensorflow<3.0,>=2.13
32
+ Requires-Dist: keras>=2.13
33
+ Requires-Dist: numba>=0.56
34
+ Provides-Extra: dev
35
+ Requires-Dist: pytest>=7.0; extra == "dev"
36
+ Requires-Dist: pytest-cov>=4.0; extra == "dev"
37
+ Requires-Dist: ruff>=0.1; extra == "dev"
38
+ Dynamic: license-file
14
39
 
15
40
  # diploS/HIC
16
41
  This repo contains the implementation for `diploS/HIC` as described in Kern and Schrider (2018; https://doi.org/10.1534/g3.118.200262), along
@@ -23,51 +48,38 @@ using simulation. 2) `diploS/HIC` training and performance evaluation. 3) Calcul
23
48
  genetic simulations must be performed using separate software such as discoal (https://github.com/kern-lab/discoal)
24
49
 
25
50
  ## Installation
26
- `diploS/HIC` has a number of dependencies that should be straightforward to install using python package managers
27
- such as `conda` or `pip`. The complete list of dependencies looks like this:
28
-
29
- - numpy
30
- - scipy
31
- - pandas
32
- - scikit-allel
33
- - scikit-learn
34
- - tensorflow
35
- - keras
36
51
 
37
- ## Install on linux
38
- I'm going to focus on the steps involved to install on a linux machine using Anaconda as our python source / main
39
- package manager. Assuming you have conda installed, create a new conda env
52
+ `diploS/HIC` requires Python 3.10+ and has the following main dependencies:
40
53
 
41
- ```
42
- $ conda create -n diploshic python=3.10 --yes
43
- ```
54
+ - numpy, scipy, pandas
55
+ - scikit-allel, scikit-learn
56
+ - tensorflow, keras
57
+ - numba
44
58
 
45
- Note that because I'm using the Anaconda version of python, pip will only install this in the anaconda directory
46
- which is a good thing. Now we are ready to install `diploS/HIC` itself. We recommend using the binarys that
47
- we have packaged using pip. Simply type
59
+ ### Install from PyPI (recommended)
48
60
 
49
- ```
61
+ ```bash
50
62
  pip install diploshic
51
63
  ```
52
64
 
53
- or if you prefer you can clone and build the repo yourself
65
+ Or using [uv](https://docs.astral.sh/uv/):
54
66
 
67
+ ```bash
68
+ uv pip install diploshic
55
69
  ```
56
- $ git clone https://github.com/kern-lab/diploSHIC.git
57
- $ cd diploSHIC
58
- $ pip install .
59
- ```
60
70
 
61
- This should automatically install all the dependencies including tensorflow.
62
- You will need to determine if
63
- you want to use a CPU-only implementation (probably) or a GPU implementation of tensorflow. See
64
- https://www.tensorflow.org/install/install_linux for install instructions.
71
+ ### Install from source
72
+
73
+ ```bash
74
+ git clone https://github.com/kr-colab/diploSHIC.git
75
+ cd diploSHIC
76
+ pip install .
77
+ ```
65
78
 
66
- ## Mac Installation
79
+ ### GPU support
67
80
 
68
- 1. install new versions of the compilers etc using brew (this seems to be the root of the issue) `brew install gcc gfortran libomp`
69
- 2. set these environment variables export SYSTEM_VERSION_COMPAT=1 \\n && export LDFLAGS="-L/Library/Developer/CommandLineTools/SDKs/MacOSX.sdk/usr/lib"
70
- build the diploshic packge from the root of the repo dir with pip install .
81
+ By default, TensorFlow installs with CPU support. For GPU acceleration, see
82
+ the [TensorFlow GPU installation guide](https://www.tensorflow.org/install/gpu)
71
83
 
72
84
  ## Usage
73
85
  The main program that you will interface with is `diploSHIC`. This script is installed by default
@@ -145,6 +157,14 @@ optional arguments:
145
157
  information (marked by 'N'). If specified, simulations
146
158
  will be masked in a manner mirroring windows drawn
147
159
  from this file.
160
+ --vcfForMaskFileName VCFFORMASKFILENAME
161
+ Path to a VCF file that contains genotype information. This will be used to mask genotypes in a manner that mirrors how the true data are masked.
162
+ --popForMask POPFORMASK
163
+ The label of the population for which we should draw genotype information from the VCF for masking purposes.
164
+ --sampleToPopFileName SAMPLETOPOPFILENAME
165
+ Path to tab delimited file with population assignments (used for genotype masking); format: SampleID popID
166
+ --unmaskedGenoFracCutoff UNMASKEDGENOFRACCUTOFF
167
+ Fraction of unmasked genotypes required to retain a site (default=0.75)
148
168
  --chrArmsForMasking CHRARMSFORMASKING
149
169
  A comma-separated list (no spaces) of chromosome arms
150
170
  from which we want to draw masking information (or
@@ -358,5 +378,3 @@ the output predictions will be saved in `testEmpirical.preds` and should be stra
358
378
  In the interest of showing the user the whole enchilada when it comes to the workflow, I've provided the user
359
379
  with a more detailed example on the wiki of this repo. That example can be found here: https://github.com/kern-lab/diploSHIC/wiki/A-soup-to-nuts-example
360
380
 
361
-
362
-
@@ -9,51 +9,38 @@ using simulation. 2) `diploS/HIC` training and performance evaluation. 3) Calcul
9
9
  genetic simulations must be performed using separate software such as discoal (https://github.com/kern-lab/discoal)
10
10
 
11
11
  ## Installation
12
- `diploS/HIC` has a number of dependencies that should be straightforward to install using python package managers
13
- such as `conda` or `pip`. The complete list of dependencies looks like this:
14
12
 
15
- - numpy
16
- - scipy
17
- - pandas
18
- - scikit-allel
19
- - scikit-learn
20
- - tensorflow
21
- - keras
13
+ `diploS/HIC` requires Python 3.10+ and has the following main dependencies:
22
14
 
23
- ## Install on linux
24
- I'm going to focus on the steps involved to install on a linux machine using Anaconda as our python source / main
25
- package manager. Assuming you have conda installed, create a new conda env
15
+ - numpy, scipy, pandas
16
+ - scikit-allel, scikit-learn
17
+ - tensorflow, keras
18
+ - numba
26
19
 
27
- ```
28
- $ conda create -n diploshic python=3.10 --yes
29
- ```
20
+ ### Install from PyPI (recommended)
30
21
 
31
- Note that because I'm using the Anaconda version of python, pip will only install this in the anaconda directory
32
- which is a good thing. Now we are ready to install `diploS/HIC` itself. We recommend using the binarys that
33
- we have packaged using pip. Simply type
34
-
35
- ```
22
+ ```bash
36
23
  pip install diploshic
37
24
  ```
38
25
 
39
- or if you prefer you can clone and build the repo yourself
26
+ Or using [uv](https://docs.astral.sh/uv/):
40
27
 
28
+ ```bash
29
+ uv pip install diploshic
41
30
  ```
42
- $ git clone https://github.com/kern-lab/diploSHIC.git
43
- $ cd diploSHIC
44
- $ pip install .
45
- ```
46
31
 
47
- This should automatically install all the dependencies including tensorflow.
48
- You will need to determine if
49
- you want to use a CPU-only implementation (probably) or a GPU implementation of tensorflow. See
50
- https://www.tensorflow.org/install/install_linux for install instructions.
32
+ ### Install from source
33
+
34
+ ```bash
35
+ git clone https://github.com/kr-colab/diploSHIC.git
36
+ cd diploSHIC
37
+ pip install .
38
+ ```
51
39
 
52
- ## Mac Installation
40
+ ### GPU support
53
41
 
54
- 1. install new versions of the compilers etc using brew (this seems to be the root of the issue) `brew install gcc gfortran libomp`
55
- 2. set these environment variables export SYSTEM_VERSION_COMPAT=1 \\n && export LDFLAGS="-L/Library/Developer/CommandLineTools/SDKs/MacOSX.sdk/usr/lib"
56
- build the diploshic packge from the root of the repo dir with pip install .
42
+ By default, TensorFlow installs with CPU support. For GPU acceleration, see
43
+ the [TensorFlow GPU installation guide](https://www.tensorflow.org/install/gpu)
57
44
 
58
45
  ## Usage
59
46
  The main program that you will interface with is `diploSHIC`. This script is installed by default
@@ -131,6 +118,14 @@ optional arguments:
131
118
  information (marked by 'N'). If specified, simulations
132
119
  will be masked in a manner mirroring windows drawn
133
120
  from this file.
121
+ --vcfForMaskFileName VCFFORMASKFILENAME
122
+ Path to a VCF file that contains genotype information. This will be used to mask genotypes in a manner that mirrors how the true data are masked.
123
+ --popForMask POPFORMASK
124
+ The label of the population for which we should draw genotype information from the VCF for masking purposes.
125
+ --sampleToPopFileName SAMPLETOPOPFILENAME
126
+ Path to tab delimited file with population assignments (used for genotype masking); format: SampleID popID
127
+ --unmaskedGenoFracCutoff UNMASKEDGENOFRACCUTOFF
128
+ Fraction of unmasked genotypes required to retain a site (default=0.75)
134
129
  --chrArmsForMasking CHRARMSFORMASKING
135
130
  A comma-separated list (no spaces) of chromosome arms
136
131
  from which we want to draw masking information (or
@@ -1,16 +1,41 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.4
2
2
  Name: diploSHIC
3
- Version: 1.0.7
4
- Summary: diploSHIC
5
- Home-page: https://github.com/kr-colab/diploSHIC
6
- Author: Andrew Kern
7
- Author-email: adkern@uoregon.edu
3
+ Version: 1.1.0
4
+ Summary: A deep learning tool for identifying hard and soft selective sweeps in population genomic data
5
+ Author-email: Andrew Kern <adkern@uoregon.edu>
6
+ Maintainer-email: Andrew Kern <adkern@uoregon.edu>
8
7
  License: MIT
9
- Platform: UNKNOWN
10
- Requires-Python: <3.12,>=3.10
8
+ Project-URL: Homepage, https://github.com/kr-colab/diploSHIC
9
+ Project-URL: Documentation, https://github.com/kr-colab/diploSHIC/wiki
10
+ Project-URL: Repository, https://github.com/kr-colab/diploSHIC.git
11
+ Project-URL: Issues, https://github.com/kr-colab/diploSHIC/issues
12
+ Keywords: population genetics,selective sweeps,deep learning,CNN,genomics,evolution
13
+ Classifier: Development Status :: 5 - Production/Stable
14
+ Classifier: Intended Audience :: Science/Research
15
+ Classifier: License :: OSI Approved :: MIT License
16
+ Classifier: Operating System :: OS Independent
17
+ Classifier: Programming Language :: Python :: 3
18
+ Classifier: Programming Language :: Python :: 3.10
19
+ Classifier: Programming Language :: Python :: 3.11
20
+ Classifier: Programming Language :: Python :: 3.12
21
+ Classifier: Topic :: Scientific/Engineering :: Bio-Informatics
22
+ Requires-Python: >=3.10
11
23
  Description-Content-Type: text/markdown
12
- Provides-Extra: dev
13
24
  License-File: LICENSE
25
+ Requires-Dist: numpy>=1.20
26
+ Requires-Dist: scipy>=1.7
27
+ Requires-Dist: matplotlib>=3.5
28
+ Requires-Dist: pandas>=1.3
29
+ Requires-Dist: scikit-allel>=1.3
30
+ Requires-Dist: scikit-learn>=1.0
31
+ Requires-Dist: tensorflow<3.0,>=2.13
32
+ Requires-Dist: keras>=2.13
33
+ Requires-Dist: numba>=0.56
34
+ Provides-Extra: dev
35
+ Requires-Dist: pytest>=7.0; extra == "dev"
36
+ Requires-Dist: pytest-cov>=4.0; extra == "dev"
37
+ Requires-Dist: ruff>=0.1; extra == "dev"
38
+ Dynamic: license-file
14
39
 
15
40
  # diploS/HIC
16
41
  This repo contains the implementation for `diploS/HIC` as described in Kern and Schrider (2018; https://doi.org/10.1534/g3.118.200262), along
@@ -23,51 +48,38 @@ using simulation. 2) `diploS/HIC` training and performance evaluation. 3) Calcul
23
48
  genetic simulations must be performed using separate software such as discoal (https://github.com/kern-lab/discoal)
24
49
 
25
50
  ## Installation
26
- `diploS/HIC` has a number of dependencies that should be straightforward to install using python package managers
27
- such as `conda` or `pip`. The complete list of dependencies looks like this:
28
-
29
- - numpy
30
- - scipy
31
- - pandas
32
- - scikit-allel
33
- - scikit-learn
34
- - tensorflow
35
- - keras
36
51
 
37
- ## Install on linux
38
- I'm going to focus on the steps involved to install on a linux machine using Anaconda as our python source / main
39
- package manager. Assuming you have conda installed, create a new conda env
52
+ `diploS/HIC` requires Python 3.10+ and has the following main dependencies:
40
53
 
41
- ```
42
- $ conda create -n diploshic python=3.10 --yes
43
- ```
54
+ - numpy, scipy, pandas
55
+ - scikit-allel, scikit-learn
56
+ - tensorflow, keras
57
+ - numba
44
58
 
45
- Note that because I'm using the Anaconda version of python, pip will only install this in the anaconda directory
46
- which is a good thing. Now we are ready to install `diploS/HIC` itself. We recommend using the binarys that
47
- we have packaged using pip. Simply type
59
+ ### Install from PyPI (recommended)
48
60
 
49
- ```
61
+ ```bash
50
62
  pip install diploshic
51
63
  ```
52
64
 
53
- or if you prefer you can clone and build the repo yourself
65
+ Or using [uv](https://docs.astral.sh/uv/):
54
66
 
67
+ ```bash
68
+ uv pip install diploshic
55
69
  ```
56
- $ git clone https://github.com/kern-lab/diploSHIC.git
57
- $ cd diploSHIC
58
- $ pip install .
59
- ```
60
70
 
61
- This should automatically install all the dependencies including tensorflow.
62
- You will need to determine if
63
- you want to use a CPU-only implementation (probably) or a GPU implementation of tensorflow. See
64
- https://www.tensorflow.org/install/install_linux for install instructions.
71
+ ### Install from source
72
+
73
+ ```bash
74
+ git clone https://github.com/kr-colab/diploSHIC.git
75
+ cd diploSHIC
76
+ pip install .
77
+ ```
65
78
 
66
- ## Mac Installation
79
+ ### GPU support
67
80
 
68
- 1. install new versions of the compilers etc using brew (this seems to be the root of the issue) `brew install gcc gfortran libomp`
69
- 2. set these environment variables export SYSTEM_VERSION_COMPAT=1 \\n && export LDFLAGS="-L/Library/Developer/CommandLineTools/SDKs/MacOSX.sdk/usr/lib"
70
- build the diploshic packge from the root of the repo dir with pip install .
81
+ By default, TensorFlow installs with CPU support. For GPU acceleration, see
82
+ the [TensorFlow GPU installation guide](https://www.tensorflow.org/install/gpu)
71
83
 
72
84
  ## Usage
73
85
  The main program that you will interface with is `diploSHIC`. This script is installed by default
@@ -145,6 +157,14 @@ optional arguments:
145
157
  information (marked by 'N'). If specified, simulations
146
158
  will be masked in a manner mirroring windows drawn
147
159
  from this file.
160
+ --vcfForMaskFileName VCFFORMASKFILENAME
161
+ Path to a VCF file that contains genotype information. This will be used to mask genotypes in a manner that mirrors how the true data are masked.
162
+ --popForMask POPFORMASK
163
+ The label of the population for which we should draw genotype information from the VCF for masking purposes.
164
+ --sampleToPopFileName SAMPLETOPOPFILENAME
165
+ Path to tab delimited file with population assignments (used for genotype masking); format: SampleID popID
166
+ --unmaskedGenoFracCutoff UNMASKEDGENOFRACCUTOFF
167
+ Fraction of unmasked genotypes required to retain a site (default=0.75)
148
168
  --chrArmsForMasking CHRARMSFORMASKING
149
169
  A comma-separated list (no spaces) of chromosome arms
150
170
  from which we want to draw masking information (or
@@ -358,5 +378,3 @@ the output predictions will be saved in `testEmpirical.preds` and should be stra
358
378
  In the interest of showing the user the whole enchilada when it comes to the workflow, I've provided the user
359
379
  with a more detailed example on the wiki of this repo. That example can be found here: https://github.com/kern-lab/diploSHIC/wiki/A-soup-to-nuts-example
360
380
 
361
-
362
-
@@ -2,11 +2,9 @@ LICENSE
2
2
  MANIFEST.in
3
3
  README.md
4
4
  pyproject.toml
5
- setup.py
6
5
  diploSHIC.egg-info/PKG-INFO
7
6
  diploSHIC.egg-info/SOURCES.txt
8
7
  diploSHIC.egg-info/dependency_links.txt
9
- diploSHIC.egg-info/not-zip-safe
10
8
  diploSHIC.egg-info/requires.txt
11
9
  diploSHIC.egg-info/top_level.txt
12
10
  diploshic/__init__.py
@@ -20,9 +18,8 @@ diploshic/makeFeatureVecsForSingleMs_ogSHIC.py
20
18
  diploshic/makeTrainingSets.py
21
19
  diploshic/misc.py
22
20
  diploshic/msTools.py
21
+ diploshic/numba_stats.py
23
22
  diploshic/setup.py
24
- diploshic/shicstats.pyf
25
- diploshic/utils.c
26
23
  diploshic/testing/hard.fvec
27
24
  diploshic/testing/linkedHard.fvec
28
25
  diploshic/testing/linkedSoft.fvec
@@ -32,4 +29,5 @@ diploshic/training/hard.fvec
32
29
  diploshic/training/linkedHard.fvec
33
30
  diploshic/training/linkedSoft.fvec
34
31
  diploshic/training/neut.fvec
35
- diploshic/training/soft.fvec
32
+ diploshic/training/soft.fvec
33
+ tests/test_regression.py
@@ -0,0 +1,14 @@
1
+ numpy>=1.20
2
+ scipy>=1.7
3
+ matplotlib>=3.5
4
+ pandas>=1.3
5
+ scikit-allel>=1.3
6
+ scikit-learn>=1.0
7
+ tensorflow<3.0,>=2.13
8
+ keras>=2.13
9
+ numba>=0.56
10
+
11
+ [dev]
12
+ pytest>=7.0
13
+ pytest-cov>=4.0
14
+ ruff>=0.1
@@ -1,3 +1,3 @@
1
1
  from diploshic.fvTools import *
2
2
  from diploshic.msTools import *
3
- from diploshic.shicstats import *
3
+ from diploshic.numba_stats import *