diploSHIC 1.0.6__tar.gz → 1.1.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {diploshic-1.0.6 → diploshic-1.1.0}/MANIFEST.in +0 -2
- {diploshic-1.0.6/diploSHIC.egg-info → diploshic-1.1.0}/PKG-INFO +61 -42
- {diploshic-1.0.6 → diploshic-1.1.0}/README.md +28 -28
- {diploshic-1.0.6 → diploshic-1.1.0/diploSHIC.egg-info}/PKG-INFO +61 -42
- {diploshic-1.0.6 → diploshic-1.1.0}/diploSHIC.egg-info/SOURCES.txt +3 -5
- diploshic-1.1.0/diploSHIC.egg-info/requires.txt +14 -0
- {diploshic-1.0.6 → diploshic-1.1.0}/diploshic/__init__.py +1 -1
- {diploshic-1.0.6 → diploshic-1.1.0}/diploshic/fvTools.py +302 -47
- {diploshic-1.0.6 → diploshic-1.1.0}/diploshic/makeFeatureVecsForChrArmFromVcfDiploid.py +29 -9
- {diploshic-1.0.6 → diploshic-1.1.0}/diploshic/makeFeatureVecsForChrArmFromVcf_ogSHIC.py +26 -9
- {diploshic-1.0.6 → diploshic-1.1.0}/diploshic/makeFeatureVecsForSingleMsDiploid.py +12 -4
- {diploshic-1.0.6 → diploshic-1.1.0}/diploshic/makeFeatureVecsForSingleMs_ogSHIC.py +24 -22
- {diploshic-1.0.6 → diploshic-1.1.0}/diploshic/msTools.py +9 -5
- diploshic-1.1.0/diploshic/numba_stats.py +350 -0
- diploshic-1.1.0/pyproject.toml +102 -0
- diploshic-1.1.0/tests/test_regression.py +41 -0
- diploshic-1.0.6/diploSHIC.egg-info/not-zip-safe +0 -1
- diploshic-1.0.6/diploSHIC.egg-info/requires.txt +0 -10
- diploshic-1.0.6/diploshic/shicstats.pyf +0 -50
- diploshic-1.0.6/diploshic/utils.c +0 -216
- diploshic-1.0.6/pyproject.toml +0 -4
- diploshic-1.0.6/setup.py +0 -41
- {diploshic-1.0.6 → diploshic-1.1.0}/LICENSE +0 -0
- {diploshic-1.0.6 → diploshic-1.1.0}/diploSHIC.egg-info/dependency_links.txt +0 -0
- {diploshic-1.0.6 → diploshic-1.1.0}/diploSHIC.egg-info/top_level.txt +0 -0
- {diploshic-1.0.6 → diploshic-1.1.0}/diploshic/diploSHIC +0 -0
- {diploshic-1.0.6 → diploshic-1.1.0}/diploshic/generateSimLaunchScript.py +0 -0
- {diploshic-1.0.6 → diploshic-1.1.0}/diploshic/makeTrainingSets.py +0 -0
- {diploshic-1.0.6 → diploshic-1.1.0}/diploshic/misc.py +0 -0
- {diploshic-1.0.6 → diploshic-1.1.0}/diploshic/setup.py +0 -0
- {diploshic-1.0.6 → diploshic-1.1.0}/diploshic/testing/hard.fvec +0 -0
- {diploshic-1.0.6 → diploshic-1.1.0}/diploshic/testing/linkedHard.fvec +0 -0
- {diploshic-1.0.6 → diploshic-1.1.0}/diploshic/testing/linkedSoft.fvec +0 -0
- {diploshic-1.0.6 → diploshic-1.1.0}/diploshic/testing/neut.fvec +0 -0
- {diploshic-1.0.6 → diploshic-1.1.0}/diploshic/testing/soft.fvec +0 -0
- {diploshic-1.0.6 → diploshic-1.1.0}/diploshic/training/hard.fvec +0 -0
- {diploshic-1.0.6 → diploshic-1.1.0}/diploshic/training/linkedHard.fvec +0 -0
- {diploshic-1.0.6 → diploshic-1.1.0}/diploshic/training/linkedSoft.fvec +0 -0
- {diploshic-1.0.6 → diploshic-1.1.0}/diploshic/training/neut.fvec +0 -0
- {diploshic-1.0.6 → diploshic-1.1.0}/diploshic/training/soft.fvec +0 -0
- {diploshic-1.0.6 → diploshic-1.1.0}/setup.cfg +0 -0
|
@@ -1,22 +1,41 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
2
|
Name: diploSHIC
|
|
3
|
-
Version: 1.0
|
|
4
|
-
Summary:
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
Author-email: adkern@uoregon.edu
|
|
3
|
+
Version: 1.1.0
|
|
4
|
+
Summary: A deep learning tool for identifying hard and soft selective sweeps in population genomic data
|
|
5
|
+
Author-email: Andrew Kern <adkern@uoregon.edu>
|
|
6
|
+
Maintainer-email: Andrew Kern <adkern@uoregon.edu>
|
|
8
7
|
License: MIT
|
|
8
|
+
Project-URL: Homepage, https://github.com/kr-colab/diploSHIC
|
|
9
|
+
Project-URL: Documentation, https://github.com/kr-colab/diploSHIC/wiki
|
|
10
|
+
Project-URL: Repository, https://github.com/kr-colab/diploSHIC.git
|
|
11
|
+
Project-URL: Issues, https://github.com/kr-colab/diploSHIC/issues
|
|
12
|
+
Keywords: population genetics,selective sweeps,deep learning,CNN,genomics,evolution
|
|
13
|
+
Classifier: Development Status :: 5 - Production/Stable
|
|
14
|
+
Classifier: Intended Audience :: Science/Research
|
|
15
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
16
|
+
Classifier: Operating System :: OS Independent
|
|
17
|
+
Classifier: Programming Language :: Python :: 3
|
|
18
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
19
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
20
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
21
|
+
Classifier: Topic :: Scientific/Engineering :: Bio-Informatics
|
|
22
|
+
Requires-Python: >=3.10
|
|
9
23
|
Description-Content-Type: text/markdown
|
|
10
24
|
License-File: LICENSE
|
|
11
|
-
Requires-Dist: numpy
|
|
12
|
-
Requires-Dist: scipy
|
|
13
|
-
Requires-Dist: matplotlib
|
|
14
|
-
Requires-Dist: pandas
|
|
15
|
-
Requires-Dist: scikit-allel
|
|
16
|
-
Requires-Dist: scikit-learn
|
|
17
|
-
Requires-Dist: tensorflow
|
|
18
|
-
Requires-Dist: keras
|
|
25
|
+
Requires-Dist: numpy>=1.20
|
|
26
|
+
Requires-Dist: scipy>=1.7
|
|
27
|
+
Requires-Dist: matplotlib>=3.5
|
|
28
|
+
Requires-Dist: pandas>=1.3
|
|
29
|
+
Requires-Dist: scikit-allel>=1.3
|
|
30
|
+
Requires-Dist: scikit-learn>=1.0
|
|
31
|
+
Requires-Dist: tensorflow<3.0,>=2.13
|
|
32
|
+
Requires-Dist: keras>=2.13
|
|
33
|
+
Requires-Dist: numba>=0.56
|
|
19
34
|
Provides-Extra: dev
|
|
35
|
+
Requires-Dist: pytest>=7.0; extra == "dev"
|
|
36
|
+
Requires-Dist: pytest-cov>=4.0; extra == "dev"
|
|
37
|
+
Requires-Dist: ruff>=0.1; extra == "dev"
|
|
38
|
+
Dynamic: license-file
|
|
20
39
|
|
|
21
40
|
# diploS/HIC
|
|
22
41
|
This repo contains the implementation for `diploS/HIC` as described in Kern and Schrider (2018; https://doi.org/10.1534/g3.118.200262), along
|
|
@@ -29,46 +48,38 @@ using simulation. 2) `diploS/HIC` training and performance evaluation. 3) Calcul
|
|
|
29
48
|
genetic simulations must be performed using separate software such as discoal (https://github.com/kern-lab/discoal)
|
|
30
49
|
|
|
31
50
|
## Installation
|
|
32
|
-
`diploS/HIC` has a number of dependencies that should be straightforward to install using python package managers
|
|
33
|
-
such as `conda` or `pip`. The complete list of dependencies looks like this:
|
|
34
51
|
|
|
35
|
-
|
|
36
|
-
- scipy
|
|
37
|
-
- pandas
|
|
38
|
-
- scikit-allel
|
|
39
|
-
- scikit-learn
|
|
40
|
-
- tensorflow
|
|
41
|
-
- keras
|
|
52
|
+
`diploS/HIC` requires Python 3.10+ and has the following main dependencies:
|
|
42
53
|
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
54
|
+
- numpy, scipy, pandas
|
|
55
|
+
- scikit-allel, scikit-learn
|
|
56
|
+
- tensorflow, keras
|
|
57
|
+
- numba
|
|
46
58
|
|
|
47
|
-
|
|
48
|
-
$ conda create -n diploshic python=3.9 --yes
|
|
49
|
-
```
|
|
59
|
+
### Install from PyPI (recommended)
|
|
50
60
|
|
|
51
|
-
|
|
52
|
-
which is a good thing. Now we are ready to install `diploS/HIC` itself. We recommend using the binarys that
|
|
53
|
-
we have packaged using pip. Simply type
|
|
54
|
-
|
|
55
|
-
```
|
|
61
|
+
```bash
|
|
56
62
|
pip install diploshic
|
|
57
63
|
```
|
|
58
64
|
|
|
59
|
-
|
|
65
|
+
Or using [uv](https://docs.astral.sh/uv/):
|
|
60
66
|
|
|
67
|
+
```bash
|
|
68
|
+
uv pip install diploshic
|
|
61
69
|
```
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
70
|
+
|
|
71
|
+
### Install from source
|
|
72
|
+
|
|
73
|
+
```bash
|
|
74
|
+
git clone https://github.com/kr-colab/diploSHIC.git
|
|
75
|
+
cd diploSHIC
|
|
76
|
+
pip install .
|
|
65
77
|
```
|
|
66
78
|
|
|
67
|
-
|
|
68
|
-
You will need to determine if
|
|
69
|
-
you want to use a CPU-only implementation (probably) or a GPU implementation of tensorflow. See
|
|
70
|
-
https://www.tensorflow.org/install/install_linux for install instructions.
|
|
79
|
+
### GPU support
|
|
71
80
|
|
|
81
|
+
By default, TensorFlow installs with CPU support. For GPU acceleration, see
|
|
82
|
+
the [TensorFlow GPU installation guide](https://www.tensorflow.org/install/gpu)
|
|
72
83
|
|
|
73
84
|
## Usage
|
|
74
85
|
The main program that you will interface with is `diploSHIC`. This script is installed by default
|
|
@@ -146,6 +157,14 @@ optional arguments:
|
|
|
146
157
|
information (marked by 'N'). If specified, simulations
|
|
147
158
|
will be masked in a manner mirroring windows drawn
|
|
148
159
|
from this file.
|
|
160
|
+
--vcfForMaskFileName VCFFORMASKFILENAME
|
|
161
|
+
Path to a VCF file that contains genotype information. This will be used to mask genotypes in a manner that mirrors how the true data are masked.
|
|
162
|
+
--popForMask POPFORMASK
|
|
163
|
+
The label of the population for which we should draw genotype information from the VCF for masking purposes.
|
|
164
|
+
--sampleToPopFileName SAMPLETOPOPFILENAME
|
|
165
|
+
Path to tab delimited file with population assignments (used for genotype masking); format: SampleID popID
|
|
166
|
+
--unmaskedGenoFracCutoff UNMASKEDGENOFRACCUTOFF
|
|
167
|
+
Fraction of unmasked genotypes required to retain a site (default=0.75)
|
|
149
168
|
--chrArmsForMasking CHRARMSFORMASKING
|
|
150
169
|
A comma-separated list (no spaces) of chromosome arms
|
|
151
170
|
from which we want to draw masking information (or
|
|
@@ -9,46 +9,38 @@ using simulation. 2) `diploS/HIC` training and performance evaluation. 3) Calcul
|
|
|
9
9
|
genetic simulations must be performed using separate software such as discoal (https://github.com/kern-lab/discoal)
|
|
10
10
|
|
|
11
11
|
## Installation
|
|
12
|
-
`diploS/HIC` has a number of dependencies that should be straightforward to install using python package managers
|
|
13
|
-
such as `conda` or `pip`. The complete list of dependencies looks like this:
|
|
14
12
|
|
|
15
|
-
|
|
16
|
-
- scipy
|
|
17
|
-
- pandas
|
|
18
|
-
- scikit-allel
|
|
19
|
-
- scikit-learn
|
|
20
|
-
- tensorflow
|
|
21
|
-
- keras
|
|
13
|
+
`diploS/HIC` requires Python 3.10+ and has the following main dependencies:
|
|
22
14
|
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
15
|
+
- numpy, scipy, pandas
|
|
16
|
+
- scikit-allel, scikit-learn
|
|
17
|
+
- tensorflow, keras
|
|
18
|
+
- numba
|
|
26
19
|
|
|
27
|
-
|
|
28
|
-
$ conda create -n diploshic python=3.9 --yes
|
|
29
|
-
```
|
|
20
|
+
### Install from PyPI (recommended)
|
|
30
21
|
|
|
31
|
-
|
|
32
|
-
which is a good thing. Now we are ready to install `diploS/HIC` itself. We recommend using the binarys that
|
|
33
|
-
we have packaged using pip. Simply type
|
|
34
|
-
|
|
35
|
-
```
|
|
22
|
+
```bash
|
|
36
23
|
pip install diploshic
|
|
37
24
|
```
|
|
38
25
|
|
|
39
|
-
|
|
26
|
+
Or using [uv](https://docs.astral.sh/uv/):
|
|
40
27
|
|
|
28
|
+
```bash
|
|
29
|
+
uv pip install diploshic
|
|
41
30
|
```
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
31
|
+
|
|
32
|
+
### Install from source
|
|
33
|
+
|
|
34
|
+
```bash
|
|
35
|
+
git clone https://github.com/kr-colab/diploSHIC.git
|
|
36
|
+
cd diploSHIC
|
|
37
|
+
pip install .
|
|
45
38
|
```
|
|
46
39
|
|
|
47
|
-
|
|
48
|
-
You will need to determine if
|
|
49
|
-
you want to use a CPU-only implementation (probably) or a GPU implementation of tensorflow. See
|
|
50
|
-
https://www.tensorflow.org/install/install_linux for install instructions.
|
|
40
|
+
### GPU support
|
|
51
41
|
|
|
42
|
+
By default, TensorFlow installs with CPU support. For GPU acceleration, see
|
|
43
|
+
the [TensorFlow GPU installation guide](https://www.tensorflow.org/install/gpu)
|
|
52
44
|
|
|
53
45
|
## Usage
|
|
54
46
|
The main program that you will interface with is `diploSHIC`. This script is installed by default
|
|
@@ -126,6 +118,14 @@ optional arguments:
|
|
|
126
118
|
information (marked by 'N'). If specified, simulations
|
|
127
119
|
will be masked in a manner mirroring windows drawn
|
|
128
120
|
from this file.
|
|
121
|
+
--vcfForMaskFileName VCFFORMASKFILENAME
|
|
122
|
+
Path to a VCF file that contains genotype information. This will be used to mask genotypes in a manner that mirrors how the true data are masked.
|
|
123
|
+
--popForMask POPFORMASK
|
|
124
|
+
The label of the population for which we should draw genotype information from the VCF for masking purposes.
|
|
125
|
+
--sampleToPopFileName SAMPLETOPOPFILENAME
|
|
126
|
+
Path to tab delimited file with population assignments (used for genotype masking); format: SampleID popID
|
|
127
|
+
--unmaskedGenoFracCutoff UNMASKEDGENOFRACCUTOFF
|
|
128
|
+
Fraction of unmasked genotypes required to retain a site (default=0.75)
|
|
129
129
|
--chrArmsForMasking CHRARMSFORMASKING
|
|
130
130
|
A comma-separated list (no spaces) of chromosome arms
|
|
131
131
|
from which we want to draw masking information (or
|
|
@@ -1,22 +1,41 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
2
|
Name: diploSHIC
|
|
3
|
-
Version: 1.0
|
|
4
|
-
Summary:
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
Author-email: adkern@uoregon.edu
|
|
3
|
+
Version: 1.1.0
|
|
4
|
+
Summary: A deep learning tool for identifying hard and soft selective sweeps in population genomic data
|
|
5
|
+
Author-email: Andrew Kern <adkern@uoregon.edu>
|
|
6
|
+
Maintainer-email: Andrew Kern <adkern@uoregon.edu>
|
|
8
7
|
License: MIT
|
|
8
|
+
Project-URL: Homepage, https://github.com/kr-colab/diploSHIC
|
|
9
|
+
Project-URL: Documentation, https://github.com/kr-colab/diploSHIC/wiki
|
|
10
|
+
Project-URL: Repository, https://github.com/kr-colab/diploSHIC.git
|
|
11
|
+
Project-URL: Issues, https://github.com/kr-colab/diploSHIC/issues
|
|
12
|
+
Keywords: population genetics,selective sweeps,deep learning,CNN,genomics,evolution
|
|
13
|
+
Classifier: Development Status :: 5 - Production/Stable
|
|
14
|
+
Classifier: Intended Audience :: Science/Research
|
|
15
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
16
|
+
Classifier: Operating System :: OS Independent
|
|
17
|
+
Classifier: Programming Language :: Python :: 3
|
|
18
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
19
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
20
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
21
|
+
Classifier: Topic :: Scientific/Engineering :: Bio-Informatics
|
|
22
|
+
Requires-Python: >=3.10
|
|
9
23
|
Description-Content-Type: text/markdown
|
|
10
24
|
License-File: LICENSE
|
|
11
|
-
Requires-Dist: numpy
|
|
12
|
-
Requires-Dist: scipy
|
|
13
|
-
Requires-Dist: matplotlib
|
|
14
|
-
Requires-Dist: pandas
|
|
15
|
-
Requires-Dist: scikit-allel
|
|
16
|
-
Requires-Dist: scikit-learn
|
|
17
|
-
Requires-Dist: tensorflow
|
|
18
|
-
Requires-Dist: keras
|
|
25
|
+
Requires-Dist: numpy>=1.20
|
|
26
|
+
Requires-Dist: scipy>=1.7
|
|
27
|
+
Requires-Dist: matplotlib>=3.5
|
|
28
|
+
Requires-Dist: pandas>=1.3
|
|
29
|
+
Requires-Dist: scikit-allel>=1.3
|
|
30
|
+
Requires-Dist: scikit-learn>=1.0
|
|
31
|
+
Requires-Dist: tensorflow<3.0,>=2.13
|
|
32
|
+
Requires-Dist: keras>=2.13
|
|
33
|
+
Requires-Dist: numba>=0.56
|
|
19
34
|
Provides-Extra: dev
|
|
35
|
+
Requires-Dist: pytest>=7.0; extra == "dev"
|
|
36
|
+
Requires-Dist: pytest-cov>=4.0; extra == "dev"
|
|
37
|
+
Requires-Dist: ruff>=0.1; extra == "dev"
|
|
38
|
+
Dynamic: license-file
|
|
20
39
|
|
|
21
40
|
# diploS/HIC
|
|
22
41
|
This repo contains the implementation for `diploS/HIC` as described in Kern and Schrider (2018; https://doi.org/10.1534/g3.118.200262), along
|
|
@@ -29,46 +48,38 @@ using simulation. 2) `diploS/HIC` training and performance evaluation. 3) Calcul
|
|
|
29
48
|
genetic simulations must be performed using separate software such as discoal (https://github.com/kern-lab/discoal)
|
|
30
49
|
|
|
31
50
|
## Installation
|
|
32
|
-
`diploS/HIC` has a number of dependencies that should be straightforward to install using python package managers
|
|
33
|
-
such as `conda` or `pip`. The complete list of dependencies looks like this:
|
|
34
51
|
|
|
35
|
-
|
|
36
|
-
- scipy
|
|
37
|
-
- pandas
|
|
38
|
-
- scikit-allel
|
|
39
|
-
- scikit-learn
|
|
40
|
-
- tensorflow
|
|
41
|
-
- keras
|
|
52
|
+
`diploS/HIC` requires Python 3.10+ and has the following main dependencies:
|
|
42
53
|
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
54
|
+
- numpy, scipy, pandas
|
|
55
|
+
- scikit-allel, scikit-learn
|
|
56
|
+
- tensorflow, keras
|
|
57
|
+
- numba
|
|
46
58
|
|
|
47
|
-
|
|
48
|
-
$ conda create -n diploshic python=3.9 --yes
|
|
49
|
-
```
|
|
59
|
+
### Install from PyPI (recommended)
|
|
50
60
|
|
|
51
|
-
|
|
52
|
-
which is a good thing. Now we are ready to install `diploS/HIC` itself. We recommend using the binarys that
|
|
53
|
-
we have packaged using pip. Simply type
|
|
54
|
-
|
|
55
|
-
```
|
|
61
|
+
```bash
|
|
56
62
|
pip install diploshic
|
|
57
63
|
```
|
|
58
64
|
|
|
59
|
-
|
|
65
|
+
Or using [uv](https://docs.astral.sh/uv/):
|
|
60
66
|
|
|
67
|
+
```bash
|
|
68
|
+
uv pip install diploshic
|
|
61
69
|
```
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
70
|
+
|
|
71
|
+
### Install from source
|
|
72
|
+
|
|
73
|
+
```bash
|
|
74
|
+
git clone https://github.com/kr-colab/diploSHIC.git
|
|
75
|
+
cd diploSHIC
|
|
76
|
+
pip install .
|
|
65
77
|
```
|
|
66
78
|
|
|
67
|
-
|
|
68
|
-
You will need to determine if
|
|
69
|
-
you want to use a CPU-only implementation (probably) or a GPU implementation of tensorflow. See
|
|
70
|
-
https://www.tensorflow.org/install/install_linux for install instructions.
|
|
79
|
+
### GPU support
|
|
71
80
|
|
|
81
|
+
By default, TensorFlow installs with CPU support. For GPU acceleration, see
|
|
82
|
+
the [TensorFlow GPU installation guide](https://www.tensorflow.org/install/gpu)
|
|
72
83
|
|
|
73
84
|
## Usage
|
|
74
85
|
The main program that you will interface with is `diploSHIC`. This script is installed by default
|
|
@@ -146,6 +157,14 @@ optional arguments:
|
|
|
146
157
|
information (marked by 'N'). If specified, simulations
|
|
147
158
|
will be masked in a manner mirroring windows drawn
|
|
148
159
|
from this file.
|
|
160
|
+
--vcfForMaskFileName VCFFORMASKFILENAME
|
|
161
|
+
Path to a VCF file that contains genotype information. This will be used to mask genotypes in a manner that mirrors how the true data are masked.
|
|
162
|
+
--popForMask POPFORMASK
|
|
163
|
+
The label of the population for which we should draw genotype information from the VCF for masking purposes.
|
|
164
|
+
--sampleToPopFileName SAMPLETOPOPFILENAME
|
|
165
|
+
Path to tab delimited file with population assignments (used for genotype masking); format: SampleID popID
|
|
166
|
+
--unmaskedGenoFracCutoff UNMASKEDGENOFRACCUTOFF
|
|
167
|
+
Fraction of unmasked genotypes required to retain a site (default=0.75)
|
|
149
168
|
--chrArmsForMasking CHRARMSFORMASKING
|
|
150
169
|
A comma-separated list (no spaces) of chromosome arms
|
|
151
170
|
from which we want to draw masking information (or
|
|
@@ -2,11 +2,9 @@ LICENSE
|
|
|
2
2
|
MANIFEST.in
|
|
3
3
|
README.md
|
|
4
4
|
pyproject.toml
|
|
5
|
-
setup.py
|
|
6
5
|
diploSHIC.egg-info/PKG-INFO
|
|
7
6
|
diploSHIC.egg-info/SOURCES.txt
|
|
8
7
|
diploSHIC.egg-info/dependency_links.txt
|
|
9
|
-
diploSHIC.egg-info/not-zip-safe
|
|
10
8
|
diploSHIC.egg-info/requires.txt
|
|
11
9
|
diploSHIC.egg-info/top_level.txt
|
|
12
10
|
diploshic/__init__.py
|
|
@@ -20,9 +18,8 @@ diploshic/makeFeatureVecsForSingleMs_ogSHIC.py
|
|
|
20
18
|
diploshic/makeTrainingSets.py
|
|
21
19
|
diploshic/misc.py
|
|
22
20
|
diploshic/msTools.py
|
|
21
|
+
diploshic/numba_stats.py
|
|
23
22
|
diploshic/setup.py
|
|
24
|
-
diploshic/shicstats.pyf
|
|
25
|
-
diploshic/utils.c
|
|
26
23
|
diploshic/testing/hard.fvec
|
|
27
24
|
diploshic/testing/linkedHard.fvec
|
|
28
25
|
diploshic/testing/linkedSoft.fvec
|
|
@@ -32,4 +29,5 @@ diploshic/training/hard.fvec
|
|
|
32
29
|
diploshic/training/linkedHard.fvec
|
|
33
30
|
diploshic/training/linkedSoft.fvec
|
|
34
31
|
diploshic/training/neut.fvec
|
|
35
|
-
diploshic/training/soft.fvec
|
|
32
|
+
diploshic/training/soft.fvec
|
|
33
|
+
tests/test_regression.py
|