diffusiongym 2.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- diffusiongym-2.0/.editorconfig +16 -0
- diffusiongym-2.0/.envrc +2 -0
- diffusiongym-2.0/.github/workflows/docs.yml +22 -0
- diffusiongym-2.0/.github/workflows/test.yml +32 -0
- diffusiongym-2.0/.gitignore +188 -0
- diffusiongym-2.0/.pre-commit-config.yaml +27 -0
- diffusiongym-2.0/LICENSE +21 -0
- diffusiongym-2.0/PKG-INFO +98 -0
- diffusiongym-2.0/README.md +46 -0
- diffusiongym-2.0/diffusiongym/__init__.py +59 -0
- diffusiongym-2.0/diffusiongym/base_models/__init__.py +6 -0
- diffusiongym-2.0/diffusiongym/base_models/base.py +163 -0
- diffusiongym-2.0/diffusiongym/base_models/one_dim_gmm.py +202 -0
- diffusiongym-2.0/diffusiongym/environments/__init__.py +16 -0
- diffusiongym-2.0/diffusiongym/environments/base.py +383 -0
- diffusiongym-2.0/diffusiongym/environments/endpoint.py +90 -0
- diffusiongym-2.0/diffusiongym/environments/epsilon.py +91 -0
- diffusiongym-2.0/diffusiongym/environments/score.py +90 -0
- diffusiongym-2.0/diffusiongym/environments/velocity.py +95 -0
- diffusiongym-2.0/diffusiongym/images/__init__.py +17 -0
- diffusiongym-2.0/diffusiongym/images/base_models/cifar.py +102 -0
- diffusiongym-2.0/diffusiongym/images/base_models/dit.py +171 -0
- diffusiongym-2.0/diffusiongym/images/base_models/refl_data.json +40002 -0
- diffusiongym-2.0/diffusiongym/images/base_models/stable_diffusion.py +358 -0
- diffusiongym-2.0/diffusiongym/images/rewards/__init__.py +6 -0
- diffusiongym-2.0/diffusiongym/images/rewards/aesthetic.py +75 -0
- diffusiongym-2.0/diffusiongym/images/rewards/compression.py +84 -0
- diffusiongym-2.0/diffusiongym/make.py +136 -0
- diffusiongym-2.0/diffusiongym/molecules/__init__.py +39 -0
- diffusiongym-2.0/diffusiongym/molecules/flowmol.py +301 -0
- diffusiongym-2.0/diffusiongym/molecules/rewards/__init__.py +27 -0
- diffusiongym-2.0/diffusiongym/molecules/rewards/qed.py +33 -0
- diffusiongym-2.0/diffusiongym/molecules/rewards/utils.py +117 -0
- diffusiongym-2.0/diffusiongym/molecules/rewards/validity.py +30 -0
- diffusiongym-2.0/diffusiongym/molecules/rewards/xtb.py +236 -0
- diffusiongym-2.0/diffusiongym/molecules/types.py +220 -0
- diffusiongym-2.0/diffusiongym/py.typed +0 -0
- diffusiongym-2.0/diffusiongym/registry.py +171 -0
- diffusiongym-2.0/diffusiongym/rewards/__init__.py +11 -0
- diffusiongym-2.0/diffusiongym/rewards/base.py +26 -0
- diffusiongym-2.0/diffusiongym/rewards/one_dim.py +34 -0
- diffusiongym-2.0/diffusiongym/schedulers/__init__.py +15 -0
- diffusiongym-2.0/diffusiongym/schedulers/base.py +199 -0
- diffusiongym-2.0/diffusiongym/schedulers/noise_schedules.py +24 -0
- diffusiongym-2.0/diffusiongym/schedulers/schedulers.py +93 -0
- diffusiongym-2.0/diffusiongym/types.py +241 -0
- diffusiongym-2.0/diffusiongym/utils.py +258 -0
- diffusiongym-2.0/docs/Makefile +20 -0
- diffusiongym-2.0/docs/_static/teaser.gif +0 -0
- diffusiongym-2.0/docs/_templates/class.rst +8 -0
- diffusiongym-2.0/docs/api/base_models.rst +11 -0
- diffusiongym-2.0/docs/api/environments.rst +15 -0
- diffusiongym-2.0/docs/api/images.rst +18 -0
- diffusiongym-2.0/docs/api/molecules.rst +23 -0
- diffusiongym-2.0/docs/api/rewards.rst +11 -0
- diffusiongym-2.0/docs/api/schedulers.rst +16 -0
- diffusiongym-2.0/docs/api/types.rst +14 -0
- diffusiongym-2.0/docs/api.rst +14 -0
- diffusiongym-2.0/docs/changelog/includes/1.11.rst +8 -0
- diffusiongym-2.0/docs/changelog/includes/1.12.rst +6 -0
- diffusiongym-2.0/docs/changelog/includes/1.13.rst +7 -0
- diffusiongym-2.0/docs/changelog/includes/1.3.rst +4 -0
- diffusiongym-2.0/docs/changelog/includes/1.6.rst +7 -0
- diffusiongym-2.0/docs/changelog/includes/1.7.rst +4 -0
- diffusiongym-2.0/docs/changelog/includes/1.8.rst +4 -0
- diffusiongym-2.0/docs/changelog/includes/1.9.rst +7 -0
- diffusiongym-2.0/docs/changelog/includes/2.0.rst +8 -0
- diffusiongym-2.0/docs/changelog/index.rst +28 -0
- diffusiongym-2.0/docs/conf.py +106 -0
- diffusiongym-2.0/docs/index.rst +58 -0
- diffusiongym-2.0/docs/make.bat +35 -0
- diffusiongym-2.0/docs/math.rst +146 -0
- diffusiongym-2.0/docs/policies.rst +29 -0
- diffusiongym-2.0/docs/quickstart.rst +77 -0
- diffusiongym-2.0/docs/registries.rst +44 -0
- diffusiongym-2.0/docs/stable_diffusion.rst +181 -0
- diffusiongym-2.0/pixi.lock +4087 -0
- diffusiongym-2.0/pyproject.toml +152 -0
|
@@ -0,0 +1,16 @@
|
|
|
1
|
+
# http://editorconfig.org/#file-format-details
|
|
2
|
+
root = true
|
|
3
|
+
|
|
4
|
+
[*]
|
|
5
|
+
charset = utf-8
|
|
6
|
+
end_of_line = lf
|
|
7
|
+
indent_size = 4
|
|
8
|
+
indent_style = space
|
|
9
|
+
insert_final_newline = true
|
|
10
|
+
trim_trailing_whitespace = true
|
|
11
|
+
|
|
12
|
+
[*.md]
|
|
13
|
+
trim_trailing_whitespace = false
|
|
14
|
+
|
|
15
|
+
[Makefile]
|
|
16
|
+
indent_style = tab
|
diffusiongym-2.0/.envrc
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
1
|
+
name: Deploy Docs
|
|
2
|
+
|
|
3
|
+
on:
|
|
4
|
+
push:
|
|
5
|
+
branches: [main]
|
|
6
|
+
|
|
7
|
+
permissions:
|
|
8
|
+
contents: read
|
|
9
|
+
pages: write
|
|
10
|
+
id-token: write
|
|
11
|
+
|
|
12
|
+
jobs:
|
|
13
|
+
deploy:
|
|
14
|
+
runs-on: ubuntu-latest
|
|
15
|
+
steps:
|
|
16
|
+
- uses: actions/checkout@v4
|
|
17
|
+
- uses: prefix-dev/setup-pixi@v0.8.1
|
|
18
|
+
- run: pixi run -e dev sphinx-build -b html docs docs/_build/html
|
|
19
|
+
- uses: actions/upload-pages-artifact@v3
|
|
20
|
+
with:
|
|
21
|
+
path: docs/_build/html
|
|
22
|
+
- uses: actions/deploy-pages@v4
|
|
@@ -0,0 +1,32 @@
|
|
|
1
|
+
name: Test
|
|
2
|
+
|
|
3
|
+
on:
|
|
4
|
+
pull_request: {}
|
|
5
|
+
push:
|
|
6
|
+
branches: master
|
|
7
|
+
|
|
8
|
+
jobs:
|
|
9
|
+
test:
|
|
10
|
+
strategy:
|
|
11
|
+
matrix:
|
|
12
|
+
python-version: ['3.13']
|
|
13
|
+
os: [ubuntu-latest]
|
|
14
|
+
|
|
15
|
+
name: Python ${{ matrix.os }} ${{ matrix.python-version }}
|
|
16
|
+
runs-on: ${{ matrix.os }}
|
|
17
|
+
|
|
18
|
+
steps:
|
|
19
|
+
- uses: actions/checkout@v4
|
|
20
|
+
|
|
21
|
+
- uses: actions/setup-python@v5
|
|
22
|
+
with:
|
|
23
|
+
python-version: ${{ matrix.python-version }}
|
|
24
|
+
|
|
25
|
+
- uses: prefix-dev/setup-pixi@v0.8.8
|
|
26
|
+
with:
|
|
27
|
+
pixi-version: v0.48.0
|
|
28
|
+
cache: true
|
|
29
|
+
environments: dev
|
|
30
|
+
|
|
31
|
+
- run: pixi run fmt
|
|
32
|
+
- run: pixi run lint
|
|
@@ -0,0 +1,188 @@
|
|
|
1
|
+
# Created by https://www.toptal.com/developers/gitignore/api/python
|
|
2
|
+
# Edit at https://www.toptal.com/developers/gitignore?templates=python
|
|
3
|
+
|
|
4
|
+
### Python ###
|
|
5
|
+
# Byte-compiled / optimized / DLL files
|
|
6
|
+
__pycache__/
|
|
7
|
+
*.py[cod]
|
|
8
|
+
*$py.class
|
|
9
|
+
|
|
10
|
+
# C extensions
|
|
11
|
+
*.so
|
|
12
|
+
|
|
13
|
+
# Distribution / packaging
|
|
14
|
+
.Python
|
|
15
|
+
build/
|
|
16
|
+
develop-eggs/
|
|
17
|
+
dist/
|
|
18
|
+
downloads/
|
|
19
|
+
eggs/
|
|
20
|
+
.eggs/
|
|
21
|
+
lib/
|
|
22
|
+
lib64/
|
|
23
|
+
parts/
|
|
24
|
+
sdist/
|
|
25
|
+
var/
|
|
26
|
+
wheels/
|
|
27
|
+
share/python-wheels/
|
|
28
|
+
*.egg-info/
|
|
29
|
+
.installed.cfg
|
|
30
|
+
*.egg
|
|
31
|
+
MANIFEST
|
|
32
|
+
|
|
33
|
+
# PyInstaller
|
|
34
|
+
# Usually these files are written by a python script from a template
|
|
35
|
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
|
36
|
+
*.manifest
|
|
37
|
+
*.spec
|
|
38
|
+
|
|
39
|
+
# Installer logs
|
|
40
|
+
pip-log.txt
|
|
41
|
+
pip-delete-this-directory.txt
|
|
42
|
+
|
|
43
|
+
# Unit test / coverage reports
|
|
44
|
+
htmlcov/
|
|
45
|
+
.tox/
|
|
46
|
+
.nox/
|
|
47
|
+
.coverage
|
|
48
|
+
.coverage.*
|
|
49
|
+
.cache
|
|
50
|
+
nosetests.xml
|
|
51
|
+
coverage.xml
|
|
52
|
+
*.cover
|
|
53
|
+
*.py,cover
|
|
54
|
+
.hypothesis/
|
|
55
|
+
.pytest_cache/
|
|
56
|
+
cover/
|
|
57
|
+
|
|
58
|
+
# Translations
|
|
59
|
+
*.mo
|
|
60
|
+
*.pot
|
|
61
|
+
|
|
62
|
+
# Django stuff:
|
|
63
|
+
*.log
|
|
64
|
+
local_settings.py
|
|
65
|
+
db.sqlite3
|
|
66
|
+
db.sqlite3-journal
|
|
67
|
+
|
|
68
|
+
# Flask stuff:
|
|
69
|
+
instance/
|
|
70
|
+
.webassets-cache
|
|
71
|
+
|
|
72
|
+
# Scrapy stuff:
|
|
73
|
+
.scrapy
|
|
74
|
+
|
|
75
|
+
# Sphinx documentation
|
|
76
|
+
docs/_build/
|
|
77
|
+
|
|
78
|
+
# PyBuilder
|
|
79
|
+
.pybuilder/
|
|
80
|
+
target/
|
|
81
|
+
|
|
82
|
+
# Jupyter Notebook
|
|
83
|
+
.ipynb_checkpoints
|
|
84
|
+
|
|
85
|
+
# IPython
|
|
86
|
+
profile_default/
|
|
87
|
+
ipython_config.py
|
|
88
|
+
|
|
89
|
+
# pyenv
|
|
90
|
+
# For a library or package, you might want to ignore these files since the code is
|
|
91
|
+
# intended to run in multiple environments; otherwise, check them in:
|
|
92
|
+
# .python-version
|
|
93
|
+
|
|
94
|
+
# pipenv
|
|
95
|
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
|
96
|
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
|
97
|
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
|
98
|
+
# install all needed dependencies.
|
|
99
|
+
#Pipfile.lock
|
|
100
|
+
|
|
101
|
+
# poetry
|
|
102
|
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
|
103
|
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
|
104
|
+
# commonly ignored for libraries.
|
|
105
|
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
|
106
|
+
#poetry.lock
|
|
107
|
+
|
|
108
|
+
# pdm
|
|
109
|
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
|
110
|
+
#pdm.lock
|
|
111
|
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
|
112
|
+
# in version control.
|
|
113
|
+
# https://pdm.fming.dev/#use-with-ide
|
|
114
|
+
.pdm.toml
|
|
115
|
+
|
|
116
|
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
|
117
|
+
__pypackages__/
|
|
118
|
+
|
|
119
|
+
# Celery stuff
|
|
120
|
+
celerybeat-schedule
|
|
121
|
+
celerybeat.pid
|
|
122
|
+
|
|
123
|
+
# SageMath parsed files
|
|
124
|
+
*.sage.py
|
|
125
|
+
|
|
126
|
+
# Environments
|
|
127
|
+
.env
|
|
128
|
+
.venv
|
|
129
|
+
env/
|
|
130
|
+
venv/
|
|
131
|
+
ENV/
|
|
132
|
+
env.bak/
|
|
133
|
+
venv.bak/
|
|
134
|
+
|
|
135
|
+
# Spyder project settings
|
|
136
|
+
.spyderproject
|
|
137
|
+
.spyproject
|
|
138
|
+
|
|
139
|
+
# Rope project settings
|
|
140
|
+
.ropeproject
|
|
141
|
+
|
|
142
|
+
# mkdocs documentation
|
|
143
|
+
/site
|
|
144
|
+
|
|
145
|
+
# mypy
|
|
146
|
+
.mypy_cache/
|
|
147
|
+
.dmypy.json
|
|
148
|
+
dmypy.json
|
|
149
|
+
|
|
150
|
+
# Pyre type checker
|
|
151
|
+
.pyre/
|
|
152
|
+
|
|
153
|
+
# pytype static type analyzer
|
|
154
|
+
.pytype/
|
|
155
|
+
|
|
156
|
+
# Cython debug symbols
|
|
157
|
+
cython_debug/
|
|
158
|
+
|
|
159
|
+
# PyCharm
|
|
160
|
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
|
161
|
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
|
162
|
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
|
163
|
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
|
164
|
+
#.idea/
|
|
165
|
+
|
|
166
|
+
### Python Patch ###
|
|
167
|
+
# Poetry local configuration file - https://python-poetry.org/docs/configuration/#local-configuration
|
|
168
|
+
poetry.toml
|
|
169
|
+
|
|
170
|
+
# ruff
|
|
171
|
+
.ruff_cache/
|
|
172
|
+
|
|
173
|
+
# LSP config files
|
|
174
|
+
pyrightconfig.json
|
|
175
|
+
|
|
176
|
+
# End of https://www.toptal.com/developers/gitignore/api/python
|
|
177
|
+
|
|
178
|
+
# Pixi
|
|
179
|
+
.pixi
|
|
180
|
+
*.ipynb
|
|
181
|
+
|
|
182
|
+
docs/api/generated/
|
|
183
|
+
.DS_Store
|
|
184
|
+
*.png
|
|
185
|
+
jobs/
|
|
186
|
+
slurm-*
|
|
187
|
+
*.pt
|
|
188
|
+
scripts/
|
|
@@ -0,0 +1,27 @@
|
|
|
1
|
+
exclude: '.pixi/'
|
|
2
|
+
repos:
|
|
3
|
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
|
4
|
+
rev: v5.0.0 # this is optional, use `pre-commit autoupdate` to get the latest rev!
|
|
5
|
+
hooks:
|
|
6
|
+
- id: check-yaml
|
|
7
|
+
- id: check-toml
|
|
8
|
+
- id: end-of-file-fixer
|
|
9
|
+
- id: trailing-whitespace
|
|
10
|
+
|
|
11
|
+
- repo: local
|
|
12
|
+
hooks:
|
|
13
|
+
- id: ruff
|
|
14
|
+
name: ruff-format
|
|
15
|
+
stages: [pre-commit, pre-push]
|
|
16
|
+
language: system
|
|
17
|
+
entry: pixi run fmt
|
|
18
|
+
types: [python]
|
|
19
|
+
pass_filenames: false
|
|
20
|
+
|
|
21
|
+
- id: ruff
|
|
22
|
+
name: ruff-check
|
|
23
|
+
stages: [pre-commit, pre-push]
|
|
24
|
+
language: system
|
|
25
|
+
entry: pixi run lint
|
|
26
|
+
types: [python]
|
|
27
|
+
pass_filenames: false
|
diffusiongym-2.0/LICENSE
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2025 Cristian Perez Jensen
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
|
@@ -0,0 +1,98 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: diffusiongym
|
|
3
|
+
Version: 2.0
|
|
4
|
+
Summary: Diffusion Gym
|
|
5
|
+
Project-URL: Homepage, https://github.com/cristianpjensen/diffusiongym
|
|
6
|
+
Project-URL: Issues, https://github.com/cristianpjensen/diffusiongym/issues
|
|
7
|
+
Author: Cristian Perez Jensen
|
|
8
|
+
License: MIT License
|
|
9
|
+
|
|
10
|
+
Copyright (c) 2025 Cristian Perez Jensen
|
|
11
|
+
|
|
12
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
13
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
14
|
+
in the Software without restriction, including without limitation the rights
|
|
15
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
16
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
17
|
+
furnished to do so, subject to the following conditions:
|
|
18
|
+
|
|
19
|
+
The above copyright notice and this permission notice shall be included in all
|
|
20
|
+
copies or substantial portions of the Software.
|
|
21
|
+
|
|
22
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
23
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
24
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
25
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
26
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
27
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
28
|
+
SOFTWARE.
|
|
29
|
+
License-File: LICENSE
|
|
30
|
+
Requires-Python: <3.12,>=3.8
|
|
31
|
+
Requires-Dist: datasets==2.11.0
|
|
32
|
+
Requires-Dist: dgl==2.4
|
|
33
|
+
Requires-Dist: diffusers==0.33.1
|
|
34
|
+
Requires-Dist: meeko==0.6.1
|
|
35
|
+
Requires-Dist: numpy<2,>=1.24
|
|
36
|
+
Requires-Dist: open-clip-torch<3,>=2.26
|
|
37
|
+
Requires-Dist: pandas<3,>=2
|
|
38
|
+
Requires-Dist: polars<2,>=1.34.0
|
|
39
|
+
Requires-Dist: prody<3,>=2.4
|
|
40
|
+
Requires-Dist: pyarrow==11.0.0
|
|
41
|
+
Requires-Dist: pydantic<3,>=1.10
|
|
42
|
+
Requires-Dist: pyyaml<7,>=6
|
|
43
|
+
Requires-Dist: rdkit-stubs<0.9,>=0.6
|
|
44
|
+
Requires-Dist: rdkit<2025,>=2023.9.4
|
|
45
|
+
Requires-Dist: torch==2.3.1
|
|
46
|
+
Requires-Dist: torchdata<0.9,>=0.7
|
|
47
|
+
Requires-Dist: torchvision==0.18.1
|
|
48
|
+
Requires-Dist: tqdm<5,>=4.66
|
|
49
|
+
Requires-Dist: transformers>=4.36
|
|
50
|
+
Requires-Dist: typing-extensions<5,>=4.9
|
|
51
|
+
Description-Content-Type: text/markdown
|
|
52
|
+
|
|
53
|
+
# Diffusion Gym
|
|
54
|
+
|
|
55
|
+
<div align="center">
|
|
56
|
+
<img src="docs/_static/teaser.gif" width="100%" />
|
|
57
|
+
</div>
|
|
58
|
+
|
|
59
|
+
<p align="center">
|
|
60
|
+
<a href="https://github.com/cristianpjensen/diffusiongym/blob/master/LICENSE"><img alt="License" src="https://img.shields.io/github/license/cristianpjensen/diffusiongym"></a>
|
|
61
|
+
<a href="https://github.com/astral-sh/ruff"><img alt="Code style: ruff" src="https://img.shields.io/badge/code%20style-ruff-000000.svg"></a>
|
|
62
|
+
</p>
|
|
63
|
+
|
|
64
|
+
`diffusiongym` is a library for reward adaptation of any pre-trained flow model on any data modality.
|
|
65
|
+
|
|
66
|
+
## Installation
|
|
67
|
+
|
|
68
|
+
In order to install *diffusiongym*, execute the following command:
|
|
69
|
+
```bash
|
|
70
|
+
pip install diffusiongym
|
|
71
|
+
```
|
|
72
|
+
|
|
73
|
+
*diffusiongym* requires PyTorch 2.3.1, and there may be other hard dependencies. Please open an issue if
|
|
74
|
+
installation fails through the above command.
|
|
75
|
+
|
|
76
|
+
Molecule environments depend on [FlowMol](https://github.com/cristianpjensen/FlowMol),
|
|
77
|
+
which currently needs to be installed manually:
|
|
78
|
+
```bash
|
|
79
|
+
pip install git+https://github.com/cristianpjensen/FlowMol.git@8f4c98cbe68111e4e63480b250d925b6d960d3bc
|
|
80
|
+
```
|
|
81
|
+
|
|
82
|
+
Some image rewards depend on the clip package, which needs to be installed manually as well:
|
|
83
|
+
```bash
|
|
84
|
+
pip install git+https://github.com/openai/CLIP.git
|
|
85
|
+
```
|
|
86
|
+
|
|
87
|
+
## High-level overview
|
|
88
|
+
|
|
89
|
+
Diffusion and flow models are largely agnostic to their data modality. They only require that the underlying data type supports a small set of operations. Building on this idea, *diffusiongym* is designed to be fully modular. You only need to provide the following:
|
|
90
|
+
* Data type `YourDataType` that implements `DDProtocol`, which defines some functions necessary for interacting with it as a flow model.
|
|
91
|
+
* Base model `BaseModel[YourDataType]`, which defines the scheduler, how to sample $p_0$, how to compute the forward pass, and how to preprocess and postprocess data.
|
|
92
|
+
* Reward function `Reward[YourDataType]`.
|
|
93
|
+
|
|
94
|
+
Once these are defined, you can sample from the flow model and apply reward adaptation methods, such as Value Matching.
|
|
95
|
+
|
|
96
|
+
## Documentation
|
|
97
|
+
|
|
98
|
+
Much more information can be found in [the documentation](https://cristianpjensen.github.io/diffusiongym/), including tutorials and API references.
|
|
@@ -0,0 +1,46 @@
|
|
|
1
|
+
# Diffusion Gym
|
|
2
|
+
|
|
3
|
+
<div align="center">
|
|
4
|
+
<img src="docs/_static/teaser.gif" width="100%" />
|
|
5
|
+
</div>
|
|
6
|
+
|
|
7
|
+
<p align="center">
|
|
8
|
+
<a href="https://github.com/cristianpjensen/diffusiongym/blob/master/LICENSE"><img alt="License" src="https://img.shields.io/github/license/cristianpjensen/diffusiongym"></a>
|
|
9
|
+
<a href="https://github.com/astral-sh/ruff"><img alt="Code style: ruff" src="https://img.shields.io/badge/code%20style-ruff-000000.svg"></a>
|
|
10
|
+
</p>
|
|
11
|
+
|
|
12
|
+
`diffusiongym` is a library for reward adaptation of any pre-trained flow model on any data modality.
|
|
13
|
+
|
|
14
|
+
## Installation
|
|
15
|
+
|
|
16
|
+
In order to install *diffusiongym*, execute the following command:
|
|
17
|
+
```bash
|
|
18
|
+
pip install diffusiongym
|
|
19
|
+
```
|
|
20
|
+
|
|
21
|
+
*diffusiongym* requires PyTorch 2.3.1, and there may be other hard dependencies. Please open an issue if
|
|
22
|
+
installation fails through the above command.
|
|
23
|
+
|
|
24
|
+
Molecule environments depend on [FlowMol](https://github.com/cristianpjensen/FlowMol),
|
|
25
|
+
which currently needs to be installed manually:
|
|
26
|
+
```bash
|
|
27
|
+
pip install git+https://github.com/cristianpjensen/FlowMol.git@8f4c98cbe68111e4e63480b250d925b6d960d3bc
|
|
28
|
+
```
|
|
29
|
+
|
|
30
|
+
Some image rewards depend on the clip package, which needs to be installed manually as well:
|
|
31
|
+
```bash
|
|
32
|
+
pip install git+https://github.com/openai/CLIP.git
|
|
33
|
+
```
|
|
34
|
+
|
|
35
|
+
## High-level overview
|
|
36
|
+
|
|
37
|
+
Diffusion and flow models are largely agnostic to their data modality. They only require that the underlying data type supports a small set of operations. Building on this idea, *diffusiongym* is designed to be fully modular. You only need to provide the following:
|
|
38
|
+
* Data type `YourDataType` that implements `DDProtocol`, which defines some functions necessary for interacting with it as a flow model.
|
|
39
|
+
* Base model `BaseModel[YourDataType]`, which defines the scheduler, how to sample $p_0$, how to compute the forward pass, and how to preprocess and postprocess data.
|
|
40
|
+
* Reward function `Reward[YourDataType]`.
|
|
41
|
+
|
|
42
|
+
Once these are defined, you can sample from the flow model and apply reward adaptation methods, such as Value Matching.
|
|
43
|
+
|
|
44
|
+
## Documentation
|
|
45
|
+
|
|
46
|
+
Much more information can be found in [the documentation](https://cristianpjensen.github.io/diffusiongym/), including tutorials and API references.
|
|
@@ -0,0 +1,59 @@
|
|
|
1
|
+
"""Diffusion Gym package."""
|
|
2
|
+
|
|
3
|
+
from importlib.metadata import PackageNotFoundError, version
|
|
4
|
+
|
|
5
|
+
try:
|
|
6
|
+
__version__ = version("diffusiongym")
|
|
7
|
+
except PackageNotFoundError:
|
|
8
|
+
__version__ = "0.0.0"
|
|
9
|
+
|
|
10
|
+
from diffusiongym.base_models import BaseModel
|
|
11
|
+
from diffusiongym.environments import (
|
|
12
|
+
EndpointEnvironment,
|
|
13
|
+
Environment,
|
|
14
|
+
EpsilonEnvironment,
|
|
15
|
+
Sample,
|
|
16
|
+
ScoreEnvironment,
|
|
17
|
+
VelocityEnvironment,
|
|
18
|
+
)
|
|
19
|
+
from diffusiongym.make import construct_env, make
|
|
20
|
+
from diffusiongym.registry import base_model_registry, reward_registry
|
|
21
|
+
from diffusiongym.rewards import DummyReward, Reward
|
|
22
|
+
from diffusiongym.schedulers import (
|
|
23
|
+
ConstantNoiseSchedule,
|
|
24
|
+
CosineScheduler,
|
|
25
|
+
DiffusionScheduler,
|
|
26
|
+
MemorylessNoiseSchedule,
|
|
27
|
+
NoiseSchedule,
|
|
28
|
+
OptimalTransportScheduler,
|
|
29
|
+
Scheduler,
|
|
30
|
+
)
|
|
31
|
+
from diffusiongym.types import D, DDMixin, DDTensor
|
|
32
|
+
from diffusiongym.utils import train_base_model
|
|
33
|
+
|
|
34
|
+
__all__ = [
|
|
35
|
+
"BaseModel",
|
|
36
|
+
"ConstantNoiseSchedule",
|
|
37
|
+
"CosineScheduler",
|
|
38
|
+
"D",
|
|
39
|
+
"DDMixin",
|
|
40
|
+
"DDTensor",
|
|
41
|
+
"DiffusionScheduler",
|
|
42
|
+
"DummyReward",
|
|
43
|
+
"EndpointEnvironment",
|
|
44
|
+
"Environment",
|
|
45
|
+
"EpsilonEnvironment",
|
|
46
|
+
"MemorylessNoiseSchedule",
|
|
47
|
+
"NoiseSchedule",
|
|
48
|
+
"OptimalTransportScheduler",
|
|
49
|
+
"Reward",
|
|
50
|
+
"Sample",
|
|
51
|
+
"Scheduler",
|
|
52
|
+
"ScoreEnvironment",
|
|
53
|
+
"VelocityEnvironment",
|
|
54
|
+
"base_model_registry",
|
|
55
|
+
"construct_env",
|
|
56
|
+
"make",
|
|
57
|
+
"reward_registry",
|
|
58
|
+
"train_base_model",
|
|
59
|
+
]
|
|
@@ -0,0 +1,163 @@
|
|
|
1
|
+
"""Abstract base class for base models used in flow matching and diffusion models."""
|
|
2
|
+
|
|
3
|
+
from abc import ABC, abstractmethod
|
|
4
|
+
from typing import Any, Generic, Literal, Optional
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
from torch import nn
|
|
8
|
+
|
|
9
|
+
from diffusiongym.schedulers import Scheduler
|
|
10
|
+
from diffusiongym.types import D
|
|
11
|
+
|
|
12
|
+
OutputType = Literal["epsilon", "endpoint", "velocity", "score"]
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
class BaseModel(ABC, nn.Module, Generic[D]):
|
|
16
|
+
"""Abstract base class for base models used in flow matching and diffusion."""
|
|
17
|
+
|
|
18
|
+
output_type: OutputType
|
|
19
|
+
|
|
20
|
+
def __init__(self, device: Optional[torch.device]):
|
|
21
|
+
super().__init__()
|
|
22
|
+
|
|
23
|
+
if device is None:
|
|
24
|
+
device = torch.device("cpu")
|
|
25
|
+
|
|
26
|
+
self.device = device
|
|
27
|
+
|
|
28
|
+
@property
|
|
29
|
+
@abstractmethod
|
|
30
|
+
def scheduler(self) -> Scheduler[D]:
|
|
31
|
+
"""Base model-dependent scheduler used for sampling."""
|
|
32
|
+
|
|
33
|
+
@abstractmethod
|
|
34
|
+
def sample_p0(self, n: int, **kwargs: Any) -> tuple[D, dict[str, Any]]:
|
|
35
|
+
"""Sample n data points from the base distribution p0.
|
|
36
|
+
|
|
37
|
+
Parameters
|
|
38
|
+
----------
|
|
39
|
+
n : int
|
|
40
|
+
Number of samples to draw.
|
|
41
|
+
**kwargs : dict
|
|
42
|
+
Additional keyword arguments.
|
|
43
|
+
|
|
44
|
+
Returns
|
|
45
|
+
-------
|
|
46
|
+
samples : D
|
|
47
|
+
Samples from the base distribution p0.
|
|
48
|
+
kwargs : dict
|
|
49
|
+
Additional keyword arguments.
|
|
50
|
+
"""
|
|
51
|
+
|
|
52
|
+
@abstractmethod
|
|
53
|
+
def forward(self, x: D, t: torch.Tensor, **kwargs: Any) -> D:
|
|
54
|
+
"""Forward pass of the base model.
|
|
55
|
+
|
|
56
|
+
Parameters
|
|
57
|
+
----------
|
|
58
|
+
x : D
|
|
59
|
+
Input data.
|
|
60
|
+
t : torch.Tensor, shape (n,)
|
|
61
|
+
Time steps, values in [0, 1].
|
|
62
|
+
|
|
63
|
+
Returns
|
|
64
|
+
-------
|
|
65
|
+
output : D
|
|
66
|
+
Output of the model.
|
|
67
|
+
"""
|
|
68
|
+
|
|
69
|
+
def preprocess(self, x: D, **kwargs: Any) -> tuple[D, dict[str, Any]]:
|
|
70
|
+
"""Preprocess data and keyword arguments for the base model.
|
|
71
|
+
|
|
72
|
+
Parameters
|
|
73
|
+
----------
|
|
74
|
+
x : D
|
|
75
|
+
Input data to preprocess.
|
|
76
|
+
**kwargs : dict
|
|
77
|
+
Additional keyword arguments to preprocess.
|
|
78
|
+
|
|
79
|
+
Returns
|
|
80
|
+
-------
|
|
81
|
+
output : D
|
|
82
|
+
Preprocessed data.
|
|
83
|
+
kwargs : dict
|
|
84
|
+
Preprocessed keyword arguments.
|
|
85
|
+
"""
|
|
86
|
+
return x, kwargs
|
|
87
|
+
|
|
88
|
+
def postprocess(self, x: D) -> D:
|
|
89
|
+
"""Postprocess samples x_1 (e.g., decode with VAE).
|
|
90
|
+
|
|
91
|
+
Parameters
|
|
92
|
+
----------
|
|
93
|
+
x : D
|
|
94
|
+
Input data to postprocess.
|
|
95
|
+
|
|
96
|
+
Returns
|
|
97
|
+
-------
|
|
98
|
+
output : D
|
|
99
|
+
Postprocessed output.
|
|
100
|
+
"""
|
|
101
|
+
return x
|
|
102
|
+
|
|
103
|
+
def train_loss(
|
|
104
|
+
self,
|
|
105
|
+
x1: D,
|
|
106
|
+
xt: Optional[D] = None,
|
|
107
|
+
t: Optional[torch.Tensor] = None,
|
|
108
|
+
pred: Optional[D] = None,
|
|
109
|
+
**kwargs: Any,
|
|
110
|
+
) -> torch.Tensor:
|
|
111
|
+
"""Compute loss for a single batch training step.
|
|
112
|
+
|
|
113
|
+
Parameters
|
|
114
|
+
----------
|
|
115
|
+
x1 : D
|
|
116
|
+
Target data points.
|
|
117
|
+
xt : Optional[D], default=None
|
|
118
|
+
Noisy data points at time t. If None, will be sampled.
|
|
119
|
+
t : Optional[torch.Tensor], shape (len(x1),), default=None
|
|
120
|
+
Time steps. If None, will be sampled.
|
|
121
|
+
pred : Optional[D], default=None
|
|
122
|
+
Model predictions. If None, will be computed by the model.
|
|
123
|
+
**kwargs : dict
|
|
124
|
+
Keyword arguments
|
|
125
|
+
|
|
126
|
+
Returns
|
|
127
|
+
-------
|
|
128
|
+
loss : torch.Tensor, shape (len(x1),)
|
|
129
|
+
Computed loss for the training step.
|
|
130
|
+
"""
|
|
131
|
+
if t is None:
|
|
132
|
+
t = torch.rand(len(x1), device=x1.device)
|
|
133
|
+
|
|
134
|
+
assert t.shape == (len(x1),)
|
|
135
|
+
|
|
136
|
+
alpha = self.scheduler.alpha(x1, t)
|
|
137
|
+
beta = self.scheduler.beta(x1, t)
|
|
138
|
+
|
|
139
|
+
if xt is None:
|
|
140
|
+
x0 = x1.randn_like()
|
|
141
|
+
xt = alpha * x1 + beta * x0
|
|
142
|
+
else:
|
|
143
|
+
assert len(xt) == len(x1)
|
|
144
|
+
x0 = (xt - alpha * x1) / beta
|
|
145
|
+
|
|
146
|
+
if pred is None:
|
|
147
|
+
pred = self.forward(xt, t, **kwargs)
|
|
148
|
+
|
|
149
|
+
target = None
|
|
150
|
+
if self.output_type == "velocity":
|
|
151
|
+
alpha_dot = self.scheduler.alpha_dot(x1, t)
|
|
152
|
+
beta_dot = self.scheduler.beta_dot(x1, t)
|
|
153
|
+
target = alpha_dot * x1 + beta_dot * x0
|
|
154
|
+
elif self.output_type == "score":
|
|
155
|
+
target = -x0 / beta
|
|
156
|
+
elif self.output_type == "endpoint":
|
|
157
|
+
target = x1
|
|
158
|
+
elif self.output_type == "epsilon":
|
|
159
|
+
target = x0
|
|
160
|
+
else:
|
|
161
|
+
raise ValueError(f"Unknown output type: {self.output_type}")
|
|
162
|
+
|
|
163
|
+
return ((pred - target) ** 2).aggregate("mean")
|