dgenerate-ultralytics-headless 8.3.253__tar.gz → 8.4.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/PKG-INFO +31 -39
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/README.md +30 -38
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/dgenerate_ultralytics_headless.egg-info/PKG-INFO +31 -39
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/dgenerate_ultralytics_headless.egg-info/SOURCES.txt +11 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/tests/__init__.py +2 -2
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/tests/conftest.py +1 -1
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/tests/test_cuda.py +8 -2
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/tests/test_engine.py +8 -8
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/tests/test_exports.py +13 -4
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/tests/test_integrations.py +9 -9
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/tests/test_python.py +14 -14
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/tests/test_solutions.py +3 -3
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/__init__.py +1 -1
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/__init__.py +6 -6
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/default.yaml +3 -1
- dgenerate_ultralytics_headless-8.4.1/ultralytics/cfg/models/26/yolo26-cls.yaml +33 -0
- dgenerate_ultralytics_headless-8.4.1/ultralytics/cfg/models/26/yolo26-obb.yaml +52 -0
- dgenerate_ultralytics_headless-8.4.1/ultralytics/cfg/models/26/yolo26-p2.yaml +60 -0
- dgenerate_ultralytics_headless-8.4.1/ultralytics/cfg/models/26/yolo26-p6.yaml +62 -0
- dgenerate_ultralytics_headless-8.4.1/ultralytics/cfg/models/26/yolo26-pose.yaml +53 -0
- dgenerate_ultralytics_headless-8.4.1/ultralytics/cfg/models/26/yolo26-seg.yaml +52 -0
- dgenerate_ultralytics_headless-8.4.1/ultralytics/cfg/models/26/yolo26.yaml +52 -0
- dgenerate_ultralytics_headless-8.4.1/ultralytics/cfg/models/26/yoloe-26-seg.yaml +53 -0
- dgenerate_ultralytics_headless-8.4.1/ultralytics/cfg/models/26/yoloe-26.yaml +53 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/data/augment.py +7 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/data/dataset.py +1 -1
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/engine/exporter.py +9 -4
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/engine/model.py +1 -1
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/engine/trainer.py +40 -15
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/engine/tuner.py +15 -7
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/fastsam/predict.py +1 -1
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/yolo/detect/train.py +3 -2
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/yolo/detect/val.py +6 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/yolo/model.py +1 -1
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/yolo/obb/predict.py +1 -1
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/yolo/obb/train.py +1 -1
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/yolo/pose/train.py +1 -1
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/yolo/segment/predict.py +1 -1
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/yolo/segment/train.py +1 -1
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/yolo/segment/val.py +3 -1
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/yolo/yoloe/train.py +6 -1
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/yolo/yoloe/train_seg.py +6 -1
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/nn/autobackend.py +3 -3
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/nn/modules/__init__.py +8 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/nn/modules/block.py +128 -8
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/nn/modules/head.py +789 -204
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/nn/tasks.py +74 -29
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/nn/text_model.py +5 -2
- dgenerate_ultralytics_headless-8.4.1/ultralytics/optim/__init__.py +5 -0
- dgenerate_ultralytics_headless-8.4.1/ultralytics/optim/muon.py +338 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/callbacks/platform.py +9 -7
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/downloads.py +3 -1
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/export/engine.py +19 -10
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/export/imx.py +22 -11
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/export/tensorflow.py +21 -21
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/loss.py +587 -203
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/metrics.py +1 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/ops.py +11 -2
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/tal.py +98 -19
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/LICENSE +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/dgenerate_ultralytics_headless.egg-info/dependency_links.txt +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/dgenerate_ultralytics_headless.egg-info/entry_points.txt +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/dgenerate_ultralytics_headless.egg-info/requires.txt +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/dgenerate_ultralytics_headless.egg-info/top_level.txt +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/pyproject.toml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/setup.cfg +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/tests/test_cli.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/assets/bus.jpg +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/assets/zidane.jpg +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/datasets/Argoverse.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/datasets/DOTAv1.5.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/datasets/DOTAv1.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/datasets/GlobalWheat2020.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/datasets/HomeObjects-3K.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/datasets/ImageNet.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/datasets/Objects365.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/datasets/SKU-110K.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/datasets/TT100K.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/datasets/VOC.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/datasets/VisDrone.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/datasets/african-wildlife.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/datasets/brain-tumor.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/datasets/carparts-seg.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/datasets/coco-pose.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/datasets/coco.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/datasets/coco128-seg.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/datasets/coco128.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/datasets/coco8-grayscale.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/datasets/coco8-multispectral.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/datasets/coco8-pose.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/datasets/coco8-seg.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/datasets/coco8.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/datasets/construction-ppe.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/datasets/crack-seg.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/datasets/dog-pose.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/datasets/dota8-multispectral.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/datasets/dota8.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/datasets/hand-keypoints.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/datasets/kitti.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/datasets/lvis.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/datasets/medical-pills.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/datasets/open-images-v7.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/datasets/package-seg.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/datasets/signature.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/datasets/tiger-pose.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/datasets/xView.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/11/yolo11-cls.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/11/yolo11-obb.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/11/yolo11-pose.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/11/yolo11-seg.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/11/yolo11.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/11/yoloe-11-seg.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/11/yoloe-11.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/12/yolo12-cls.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/12/yolo12-obb.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/12/yolo12-pose.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/12/yolo12-seg.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/12/yolo12.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v10/yolov10b.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v10/yolov10l.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v10/yolov10m.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v10/yolov10n.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v10/yolov10s.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v10/yolov10x.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v3/yolov3-spp.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v3/yolov3-tiny.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v3/yolov3.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v5/yolov5-p6.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v5/yolov5.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v6/yolov6.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v8/yoloe-v8.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v8/yolov8-cls.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v8/yolov8-ghost.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v8/yolov8-obb.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v8/yolov8-p2.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v8/yolov8-p6.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v8/yolov8-pose.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v8/yolov8-seg.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v8/yolov8-world.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v8/yolov8-worldv2.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v8/yolov8.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v9/yolov9c-seg.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v9/yolov9c.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v9/yolov9e-seg.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v9/yolov9e.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v9/yolov9m.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v9/yolov9s.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/models/v9/yolov9t.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/trackers/botsort.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/cfg/trackers/bytetrack.yaml +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/data/__init__.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/data/annotator.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/data/base.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/data/build.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/data/converter.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/data/loaders.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/data/scripts/download_weights.sh +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/data/scripts/get_coco.sh +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/data/scripts/get_coco128.sh +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/data/scripts/get_imagenet.sh +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/data/split.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/data/split_dota.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/data/utils.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/engine/__init__.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/engine/predictor.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/engine/results.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/engine/validator.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/hub/__init__.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/hub/auth.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/hub/google/__init__.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/hub/session.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/hub/utils.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/__init__.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/fastsam/__init__.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/fastsam/model.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/fastsam/utils.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/fastsam/val.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/nas/__init__.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/nas/model.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/nas/predict.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/nas/val.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/rtdetr/__init__.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/rtdetr/model.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/rtdetr/predict.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/rtdetr/train.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/rtdetr/val.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/sam/__init__.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/sam/amg.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/sam/build.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/sam/build_sam3.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/sam/model.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/sam/modules/__init__.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/sam/modules/blocks.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/sam/modules/decoders.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/sam/modules/encoders.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/sam/modules/memory_attention.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/sam/modules/sam.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/sam/modules/tiny_encoder.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/sam/modules/transformer.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/sam/modules/utils.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/sam/predict.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/sam/sam3/__init__.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/sam/sam3/decoder.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/sam/sam3/encoder.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/sam/sam3/geometry_encoders.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/sam/sam3/maskformer_segmentation.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/sam/sam3/model_misc.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/sam/sam3/necks.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/sam/sam3/sam3_image.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/sam/sam3/text_encoder_ve.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/sam/sam3/vitdet.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/sam/sam3/vl_combiner.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/utils/__init__.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/utils/loss.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/utils/ops.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/yolo/__init__.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/yolo/classify/__init__.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/yolo/classify/predict.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/yolo/classify/train.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/yolo/classify/val.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/yolo/detect/__init__.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/yolo/detect/predict.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/yolo/obb/__init__.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/yolo/obb/val.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/yolo/pose/__init__.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/yolo/pose/predict.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/yolo/pose/val.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/yolo/segment/__init__.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/yolo/world/__init__.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/yolo/world/train.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/yolo/world/train_world.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/yolo/yoloe/__init__.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/yolo/yoloe/predict.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/models/yolo/yoloe/val.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/nn/__init__.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/nn/modules/activation.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/nn/modules/conv.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/nn/modules/transformer.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/nn/modules/utils.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/py.typed +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/solutions/__init__.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/solutions/ai_gym.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/solutions/analytics.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/solutions/config.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/solutions/distance_calculation.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/solutions/heatmap.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/solutions/instance_segmentation.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/solutions/object_blurrer.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/solutions/object_counter.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/solutions/object_cropper.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/solutions/parking_management.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/solutions/queue_management.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/solutions/region_counter.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/solutions/security_alarm.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/solutions/similarity_search.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/solutions/solutions.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/solutions/speed_estimation.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/solutions/streamlit_inference.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/solutions/templates/similarity-search.html +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/solutions/trackzone.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/solutions/vision_eye.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/trackers/__init__.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/trackers/basetrack.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/trackers/bot_sort.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/trackers/byte_tracker.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/trackers/track.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/trackers/utils/__init__.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/trackers/utils/gmc.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/trackers/utils/kalman_filter.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/trackers/utils/matching.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/__init__.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/autobatch.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/autodevice.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/benchmarks.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/callbacks/__init__.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/callbacks/base.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/callbacks/clearml.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/callbacks/comet.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/callbacks/dvc.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/callbacks/hub.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/callbacks/mlflow.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/callbacks/neptune.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/callbacks/raytune.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/callbacks/tensorboard.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/callbacks/wb.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/checks.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/cpu.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/dist.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/errors.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/events.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/export/__init__.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/files.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/git.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/instance.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/logger.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/nms.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/patches.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/plotting.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/torch_utils.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/tqdm.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/triton.py +0 -0
- {dgenerate_ultralytics_headless-8.3.253 → dgenerate_ultralytics_headless-8.4.1}/ultralytics/utils/tuner.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: dgenerate-ultralytics-headless
|
|
3
|
-
Version: 8.
|
|
3
|
+
Version: 8.4.1
|
|
4
4
|
Summary: Automatically built Ultralytics package with python-opencv-headless dependency instead of python-opencv
|
|
5
5
|
Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
|
|
6
6
|
Maintainer-email: Ultralytics <hello@ultralytics.com>
|
|
@@ -129,7 +129,6 @@ The workflow runs automatically every day at midnight UTC to check for new Ultra
|
|
|
129
129
|
<div>
|
|
130
130
|
<a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yml/badge.svg" alt="Ultralytics CI"></a>
|
|
131
131
|
<a href="https://clickpy.clickhouse.com/dashboard/ultralytics"><img src="https://static.pepy.tech/badge/ultralytics" alt="Ultralytics Downloads"></a>
|
|
132
|
-
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="Ultralytics YOLO Citation"></a>
|
|
133
132
|
<a href="https://discord.com/invite/ultralytics"><img alt="Ultralytics Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a>
|
|
134
133
|
<a href="https://community.ultralytics.com/"><img alt="Ultralytics Forums" src="https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue"></a>
|
|
135
134
|
<a href="https://www.reddit.com/r/ultralytics/"><img alt="Ultralytics Reddit" src="https://img.shields.io/reddit/subreddit-subscribers/ultralytics?style=flat&logo=reddit&logoColor=white&label=Reddit&color=blue"></a>
|
|
@@ -197,8 +196,8 @@ For alternative installation methods, including [Conda](https://anaconda.org/con
|
|
|
197
196
|
You can use Ultralytics YOLO directly from the Command Line Interface (CLI) with the `yolo` command:
|
|
198
197
|
|
|
199
198
|
```bash
|
|
200
|
-
# Predict using a pretrained YOLO model (e.g.,
|
|
201
|
-
yolo predict model=
|
|
199
|
+
# Predict using a pretrained YOLO model (e.g., YOLO26n) on an image
|
|
200
|
+
yolo predict model=yolo26n.pt source='https://ultralytics.com/images/bus.jpg'
|
|
202
201
|
```
|
|
203
202
|
|
|
204
203
|
The `yolo` command supports various tasks and modes, accepting additional arguments like `imgsz=640`. Explore the YOLO [CLI Docs](https://docs.ultralytics.com/usage/cli/) for more examples.
|
|
@@ -210,8 +209,8 @@ Ultralytics YOLO can also be integrated directly into your Python projects. It a
|
|
|
210
209
|
```python
|
|
211
210
|
from ultralytics import YOLO
|
|
212
211
|
|
|
213
|
-
# Load a pretrained
|
|
214
|
-
model = YOLO("
|
|
212
|
+
# Load a pretrained YOLO26n model
|
|
213
|
+
model = YOLO("yolo26n.pt")
|
|
215
214
|
|
|
216
215
|
# Train the model on the COCO8 dataset for 100 epochs
|
|
217
216
|
train_results = model.train(
|
|
@@ -238,7 +237,7 @@ Discover more examples in the YOLO [Python Docs](https://docs.ultralytics.com/us
|
|
|
238
237
|
|
|
239
238
|
## ✨ Models
|
|
240
239
|
|
|
241
|
-
Ultralytics supports a wide range of YOLO models, from early versions like [YOLOv3](https://docs.ultralytics.com/models/yolov3/) to the latest [
|
|
240
|
+
Ultralytics supports a wide range of YOLO models, from early versions like [YOLOv3](https://docs.ultralytics.com/models/yolov3/) to the latest [YOLO26](https://docs.ultralytics.com/models/yolo26/). The tables below showcase YOLO26 models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset for [Detection](https://docs.ultralytics.com/tasks/detect/), [Segmentation](https://docs.ultralytics.com/tasks/segment/), and [Pose Estimation](https://docs.ultralytics.com/tasks/pose/). Additionally, [Classification](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset are available. [Tracking](https://docs.ultralytics.com/modes/track/) mode is compatible with all Detection, Segmentation, and Pose models. All [Models](https://docs.ultralytics.com/models/) are automatically downloaded from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) upon first use.
|
|
242
241
|
|
|
243
242
|
<a href="https://docs.ultralytics.com/tasks/" target="_blank">
|
|
244
243
|
<img width="100%" src="https://github.com/ultralytics/docs/releases/download/0/ultralytics-yolov8-tasks-banner.avif" alt="Ultralytics YOLO supported tasks">
|
|
@@ -252,11 +251,11 @@ Explore the [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usa
|
|
|
252
251
|
|
|
253
252
|
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
254
253
|
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
255
|
-
| [
|
|
256
|
-
| [
|
|
257
|
-
| [
|
|
258
|
-
| [
|
|
259
|
-
| [
|
|
254
|
+
| [YOLO26n](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n.pt) | 640 | 40.9 | 38.9 ± 0.7 | 1.7 ± 0.0 | 2.4 | 5.4 |
|
|
255
|
+
| [YOLO26s](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s.pt) | 640 | 48.6 | 87.2 ± 0.9 | 2.5 ± 0.0 | 9.5 | 20.7 |
|
|
256
|
+
| [YOLO26m](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m.pt) | 640 | 53.1 | 220.0 ± 1.4 | 4.7 ± 0.1 | 20.4 | 68.2 |
|
|
257
|
+
| [YOLO26l](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l.pt) | 640 | 55.0 | 286.2 ± 2.0 | 6.2 ± 0.2 | 24.8 | 86.4 |
|
|
258
|
+
| [YOLO26x](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x.pt) | 640 | 57.5 | 525.8 ± 4.0 | 11.8 ± 0.2 | 55.7 | 193.9 |
|
|
260
259
|
|
|
261
260
|
- **mAP<sup>val</sup>** values refer to single-model single-scale performance on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val detect data=coco.yaml device=0`
|
|
262
261
|
- **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val detect data=coco.yaml batch=1 device=0|cpu`
|
|
@@ -269,11 +268,11 @@ Refer to the [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) fo
|
|
|
269
268
|
|
|
270
269
|
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
271
270
|
| -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
272
|
-
| [
|
|
273
|
-
| [
|
|
274
|
-
| [
|
|
275
|
-
| [
|
|
276
|
-
| [
|
|
271
|
+
| [YOLO26n-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-seg.pt) | 640 | 39.6 | 33.9 | 53.3 ± 0.5 | 2.1 ± 0.0 | 2.7 | 9.1 |
|
|
272
|
+
| [YOLO26s-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-seg.pt) | 640 | 47.3 | 40.0 | 118.4 ± 0.9 | 3.3 ± 0.0 | 10.4 | 34.2 |
|
|
273
|
+
| [YOLO26m-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-seg.pt) | 640 | 52.5 | 44.1 | 328.2 ± 2.4 | 6.7 ± 0.1 | 23.6 | 121.5 |
|
|
274
|
+
| [YOLO26l-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-seg.pt) | 640 | 54.4 | 45.5 | 387.0 ± 3.7 | 8.0 ± 0.1 | 28.0 | 139.8 |
|
|
275
|
+
| [YOLO26x-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-seg.pt) | 640 | 56.5 | 47.0 | 787.0 ± 6.8 | 16.4 ± 0.1 | 62.8 | 313.5 |
|
|
277
276
|
|
|
278
277
|
- **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val segment data=coco.yaml device=0`
|
|
279
278
|
- **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val segment data=coco.yaml batch=1 device=0|cpu`
|
|
@@ -286,11 +285,11 @@ Consult the [Classification Docs](https://docs.ultralytics.com/tasks/classify/)
|
|
|
286
285
|
|
|
287
286
|
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 224 |
|
|
288
287
|
| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
|
|
289
|
-
| [
|
|
290
|
-
| [
|
|
291
|
-
| [
|
|
292
|
-
| [
|
|
293
|
-
| [
|
|
288
|
+
| [YOLO26n-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-cls.pt) | 224 | 71.4 | 90.1 | 5.0 ± 0.3 | 1.1 ± 0.0 | 2.8 | 0.5 |
|
|
289
|
+
| [YOLO26s-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-cls.pt) | 224 | 76.0 | 92.9 | 7.9 ± 0.2 | 1.3 ± 0.0 | 6.7 | 1.6 |
|
|
290
|
+
| [YOLO26m-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-cls.pt) | 224 | 78.1 | 94.2 | 17.2 ± 0.4 | 2.0 ± 0.0 | 11.6 | 4.9 |
|
|
291
|
+
| [YOLO26l-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-cls.pt) | 224 | 79.0 | 94.6 | 23.2 ± 0.3 | 2.8 ± 0.0 | 14.1 | 6.2 |
|
|
292
|
+
| [YOLO26x-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-cls.pt) | 224 | 79.9 | 95.0 | 41.4 ± 0.9 | 3.8 ± 0.0 | 29.6 | 13.6 |
|
|
294
293
|
|
|
295
294
|
- **acc** values represent model accuracy on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce with `yolo val classify data=path/to/ImageNet device=0`
|
|
296
295
|
- **Speed** metrics are averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
|
|
@@ -303,11 +302,11 @@ See the [Pose Estimation Docs](https://docs.ultralytics.com/tasks/pose/) for usa
|
|
|
303
302
|
|
|
304
303
|
| Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
305
304
|
| ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
306
|
-
| [
|
|
307
|
-
| [
|
|
308
|
-
| [
|
|
309
|
-
| [
|
|
310
|
-
| [
|
|
305
|
+
| [YOLO26n-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-pose.pt) | 640 | 57.2 | 83.3 | 40.3 ± 0.5 | 1.8 ± 0.0 | 2.9 | 7.5 |
|
|
306
|
+
| [YOLO26s-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-pose.pt) | 640 | 63.0 | 86.6 | 85.3 ± 0.9 | 2.7 ± 0.0 | 10.4 | 23.9 |
|
|
307
|
+
| [YOLO26m-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-pose.pt) | 640 | 68.8 | 89.6 | 218.0 ± 1.5 | 5.0 ± 0.1 | 21.5 | 73.1 |
|
|
308
|
+
| [YOLO26l-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-pose.pt) | 640 | 70.4 | 90.5 | 275.4 ± 2.4 | 6.5 ± 0.1 | 25.9 | 91.3 |
|
|
309
|
+
| [YOLO26x-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-pose.pt) | 640 | 71.6 | 91.6 | 565.4 ± 3.0 | 12.2 ± 0.2 | 57.6 | 201.7 |
|
|
311
310
|
|
|
312
311
|
- **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO Keypoints val2017](https://docs.ultralytics.com/datasets/pose/coco/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val pose data=coco-pose.yaml device=0`
|
|
313
312
|
- **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
|
|
@@ -320,11 +319,11 @@ Check the [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples
|
|
|
320
319
|
|
|
321
320
|
| Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
322
321
|
| -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
323
|
-
| [
|
|
324
|
-
| [
|
|
325
|
-
| [
|
|
326
|
-
| [
|
|
327
|
-
| [
|
|
322
|
+
| [YOLO26n-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-obb.pt) | 1024 | 78.9 | 97.7 ± 0.9 | 2.8 ± 0.0 | 2.5 | 14.0 |
|
|
323
|
+
| [YOLO26s-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-obb.pt) | 1024 | 80.9 | 218.0 ± 1.4 | 4.9 ± 0.1 | 9.8 | 55.1 |
|
|
324
|
+
| [YOLO26m-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-obb.pt) | 1024 | 81.0 | 579.2 ± 3.8 | 10.2 ± 0.3 | 21.2 | 183.3 |
|
|
325
|
+
| [YOLO26l-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-obb.pt) | 1024 | 81.6 | 735.6 ± 3.1 | 13.0 ± 0.2 | 25.6 | 230.0 |
|
|
326
|
+
| [YOLO26x-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-obb.pt) | 1024 | 81.7 | 1485.7 ± 11.5 | 30.5 ± 0.9 | 57.6 | 516.5 |
|
|
328
327
|
|
|
329
328
|
- **mAP<sup>test</sup>** values are for single-model multiscale performance on the [DOTAv1 test set](https://captain-whu.github.io/DOTA/dataset.html). <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to the [DOTA evaluation server](https://captain-whu.github.io/DOTA/evaluation.html).
|
|
330
329
|
- **Speed** metrics are averaged over [DOTAv1 val images](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10) using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
|
|
@@ -359,13 +358,6 @@ Our key integrations with leading AI platforms extend the functionality of Ultra
|
|
|
359
358
|
| :-----------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------: |
|
|
360
359
|
| Streamline YOLO workflows: Label, train, and deploy effortlessly with [Ultralytics HUB](https://hub.ultralytics.com/). Try now! | Track experiments, hyperparameters, and results with [Weights & Biases](https://docs.ultralytics.com/integrations/weights-biases/). | Free forever, [Comet ML](https://docs.ultralytics.com/integrations/comet/) lets you save YOLO models, resume training, and interactively visualize predictions. | Run YOLO inference up to 6x faster with [Neural Magic DeepSparse](https://docs.ultralytics.com/integrations/neural-magic/). |
|
|
361
360
|
|
|
362
|
-
## 🌟 Ultralytics HUB
|
|
363
|
-
|
|
364
|
-
Experience seamless AI with [Ultralytics HUB](https://hub.ultralytics.com/), the all-in-one platform for data visualization, training YOLO models, and deployment—no coding required. Transform images into actionable insights and bring your AI visions to life effortlessly using our cutting-edge platform and user-friendly [Ultralytics App](https://www.ultralytics.com/app-install). Start your journey for **Free** today!
|
|
365
|
-
|
|
366
|
-
<a href="https://www.ultralytics.com/hub" target="_blank">
|
|
367
|
-
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png" alt="Ultralytics HUB preview image"></a>
|
|
368
|
-
|
|
369
361
|
## 🤝 Contribute
|
|
370
362
|
|
|
371
363
|
We thrive on community collaboration! Ultralytics YOLO wouldn't be the SOTA framework it is without contributions from developers like you. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing/) to get started. We also welcome your feedback—share your experience by completing our [Survey](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey). A huge **Thank You** 🙏 to everyone who contributes!
|
|
@@ -40,7 +40,6 @@ The workflow runs automatically every day at midnight UTC to check for new Ultra
|
|
|
40
40
|
<div>
|
|
41
41
|
<a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yml/badge.svg" alt="Ultralytics CI"></a>
|
|
42
42
|
<a href="https://clickpy.clickhouse.com/dashboard/ultralytics"><img src="https://static.pepy.tech/badge/ultralytics" alt="Ultralytics Downloads"></a>
|
|
43
|
-
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="Ultralytics YOLO Citation"></a>
|
|
44
43
|
<a href="https://discord.com/invite/ultralytics"><img alt="Ultralytics Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a>
|
|
45
44
|
<a href="https://community.ultralytics.com/"><img alt="Ultralytics Forums" src="https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue"></a>
|
|
46
45
|
<a href="https://www.reddit.com/r/ultralytics/"><img alt="Ultralytics Reddit" src="https://img.shields.io/reddit/subreddit-subscribers/ultralytics?style=flat&logo=reddit&logoColor=white&label=Reddit&color=blue"></a>
|
|
@@ -108,8 +107,8 @@ For alternative installation methods, including [Conda](https://anaconda.org/con
|
|
|
108
107
|
You can use Ultralytics YOLO directly from the Command Line Interface (CLI) with the `yolo` command:
|
|
109
108
|
|
|
110
109
|
```bash
|
|
111
|
-
# Predict using a pretrained YOLO model (e.g.,
|
|
112
|
-
yolo predict model=
|
|
110
|
+
# Predict using a pretrained YOLO model (e.g., YOLO26n) on an image
|
|
111
|
+
yolo predict model=yolo26n.pt source='https://ultralytics.com/images/bus.jpg'
|
|
113
112
|
```
|
|
114
113
|
|
|
115
114
|
The `yolo` command supports various tasks and modes, accepting additional arguments like `imgsz=640`. Explore the YOLO [CLI Docs](https://docs.ultralytics.com/usage/cli/) for more examples.
|
|
@@ -121,8 +120,8 @@ Ultralytics YOLO can also be integrated directly into your Python projects. It a
|
|
|
121
120
|
```python
|
|
122
121
|
from ultralytics import YOLO
|
|
123
122
|
|
|
124
|
-
# Load a pretrained
|
|
125
|
-
model = YOLO("
|
|
123
|
+
# Load a pretrained YOLO26n model
|
|
124
|
+
model = YOLO("yolo26n.pt")
|
|
126
125
|
|
|
127
126
|
# Train the model on the COCO8 dataset for 100 epochs
|
|
128
127
|
train_results = model.train(
|
|
@@ -149,7 +148,7 @@ Discover more examples in the YOLO [Python Docs](https://docs.ultralytics.com/us
|
|
|
149
148
|
|
|
150
149
|
## ✨ Models
|
|
151
150
|
|
|
152
|
-
Ultralytics supports a wide range of YOLO models, from early versions like [YOLOv3](https://docs.ultralytics.com/models/yolov3/) to the latest [
|
|
151
|
+
Ultralytics supports a wide range of YOLO models, from early versions like [YOLOv3](https://docs.ultralytics.com/models/yolov3/) to the latest [YOLO26](https://docs.ultralytics.com/models/yolo26/). The tables below showcase YOLO26 models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset for [Detection](https://docs.ultralytics.com/tasks/detect/), [Segmentation](https://docs.ultralytics.com/tasks/segment/), and [Pose Estimation](https://docs.ultralytics.com/tasks/pose/). Additionally, [Classification](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset are available. [Tracking](https://docs.ultralytics.com/modes/track/) mode is compatible with all Detection, Segmentation, and Pose models. All [Models](https://docs.ultralytics.com/models/) are automatically downloaded from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) upon first use.
|
|
153
152
|
|
|
154
153
|
<a href="https://docs.ultralytics.com/tasks/" target="_blank">
|
|
155
154
|
<img width="100%" src="https://github.com/ultralytics/docs/releases/download/0/ultralytics-yolov8-tasks-banner.avif" alt="Ultralytics YOLO supported tasks">
|
|
@@ -163,11 +162,11 @@ Explore the [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usa
|
|
|
163
162
|
|
|
164
163
|
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
165
164
|
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
166
|
-
| [
|
|
167
|
-
| [
|
|
168
|
-
| [
|
|
169
|
-
| [
|
|
170
|
-
| [
|
|
165
|
+
| [YOLO26n](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n.pt) | 640 | 40.9 | 38.9 ± 0.7 | 1.7 ± 0.0 | 2.4 | 5.4 |
|
|
166
|
+
| [YOLO26s](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s.pt) | 640 | 48.6 | 87.2 ± 0.9 | 2.5 ± 0.0 | 9.5 | 20.7 |
|
|
167
|
+
| [YOLO26m](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m.pt) | 640 | 53.1 | 220.0 ± 1.4 | 4.7 ± 0.1 | 20.4 | 68.2 |
|
|
168
|
+
| [YOLO26l](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l.pt) | 640 | 55.0 | 286.2 ± 2.0 | 6.2 ± 0.2 | 24.8 | 86.4 |
|
|
169
|
+
| [YOLO26x](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x.pt) | 640 | 57.5 | 525.8 ± 4.0 | 11.8 ± 0.2 | 55.7 | 193.9 |
|
|
171
170
|
|
|
172
171
|
- **mAP<sup>val</sup>** values refer to single-model single-scale performance on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val detect data=coco.yaml device=0`
|
|
173
172
|
- **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val detect data=coco.yaml batch=1 device=0|cpu`
|
|
@@ -180,11 +179,11 @@ Refer to the [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) fo
|
|
|
180
179
|
|
|
181
180
|
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
182
181
|
| -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
183
|
-
| [
|
|
184
|
-
| [
|
|
185
|
-
| [
|
|
186
|
-
| [
|
|
187
|
-
| [
|
|
182
|
+
| [YOLO26n-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-seg.pt) | 640 | 39.6 | 33.9 | 53.3 ± 0.5 | 2.1 ± 0.0 | 2.7 | 9.1 |
|
|
183
|
+
| [YOLO26s-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-seg.pt) | 640 | 47.3 | 40.0 | 118.4 ± 0.9 | 3.3 ± 0.0 | 10.4 | 34.2 |
|
|
184
|
+
| [YOLO26m-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-seg.pt) | 640 | 52.5 | 44.1 | 328.2 ± 2.4 | 6.7 ± 0.1 | 23.6 | 121.5 |
|
|
185
|
+
| [YOLO26l-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-seg.pt) | 640 | 54.4 | 45.5 | 387.0 ± 3.7 | 8.0 ± 0.1 | 28.0 | 139.8 |
|
|
186
|
+
| [YOLO26x-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-seg.pt) | 640 | 56.5 | 47.0 | 787.0 ± 6.8 | 16.4 ± 0.1 | 62.8 | 313.5 |
|
|
188
187
|
|
|
189
188
|
- **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val segment data=coco.yaml device=0`
|
|
190
189
|
- **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val segment data=coco.yaml batch=1 device=0|cpu`
|
|
@@ -197,11 +196,11 @@ Consult the [Classification Docs](https://docs.ultralytics.com/tasks/classify/)
|
|
|
197
196
|
|
|
198
197
|
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 224 |
|
|
199
198
|
| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
|
|
200
|
-
| [
|
|
201
|
-
| [
|
|
202
|
-
| [
|
|
203
|
-
| [
|
|
204
|
-
| [
|
|
199
|
+
| [YOLO26n-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-cls.pt) | 224 | 71.4 | 90.1 | 5.0 ± 0.3 | 1.1 ± 0.0 | 2.8 | 0.5 |
|
|
200
|
+
| [YOLO26s-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-cls.pt) | 224 | 76.0 | 92.9 | 7.9 ± 0.2 | 1.3 ± 0.0 | 6.7 | 1.6 |
|
|
201
|
+
| [YOLO26m-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-cls.pt) | 224 | 78.1 | 94.2 | 17.2 ± 0.4 | 2.0 ± 0.0 | 11.6 | 4.9 |
|
|
202
|
+
| [YOLO26l-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-cls.pt) | 224 | 79.0 | 94.6 | 23.2 ± 0.3 | 2.8 ± 0.0 | 14.1 | 6.2 |
|
|
203
|
+
| [YOLO26x-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-cls.pt) | 224 | 79.9 | 95.0 | 41.4 ± 0.9 | 3.8 ± 0.0 | 29.6 | 13.6 |
|
|
205
204
|
|
|
206
205
|
- **acc** values represent model accuracy on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce with `yolo val classify data=path/to/ImageNet device=0`
|
|
207
206
|
- **Speed** metrics are averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
|
|
@@ -214,11 +213,11 @@ See the [Pose Estimation Docs](https://docs.ultralytics.com/tasks/pose/) for usa
|
|
|
214
213
|
|
|
215
214
|
| Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
216
215
|
| ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
217
|
-
| [
|
|
218
|
-
| [
|
|
219
|
-
| [
|
|
220
|
-
| [
|
|
221
|
-
| [
|
|
216
|
+
| [YOLO26n-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-pose.pt) | 640 | 57.2 | 83.3 | 40.3 ± 0.5 | 1.8 ± 0.0 | 2.9 | 7.5 |
|
|
217
|
+
| [YOLO26s-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-pose.pt) | 640 | 63.0 | 86.6 | 85.3 ± 0.9 | 2.7 ± 0.0 | 10.4 | 23.9 |
|
|
218
|
+
| [YOLO26m-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-pose.pt) | 640 | 68.8 | 89.6 | 218.0 ± 1.5 | 5.0 ± 0.1 | 21.5 | 73.1 |
|
|
219
|
+
| [YOLO26l-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-pose.pt) | 640 | 70.4 | 90.5 | 275.4 ± 2.4 | 6.5 ± 0.1 | 25.9 | 91.3 |
|
|
220
|
+
| [YOLO26x-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-pose.pt) | 640 | 71.6 | 91.6 | 565.4 ± 3.0 | 12.2 ± 0.2 | 57.6 | 201.7 |
|
|
222
221
|
|
|
223
222
|
- **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO Keypoints val2017](https://docs.ultralytics.com/datasets/pose/coco/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val pose data=coco-pose.yaml device=0`
|
|
224
223
|
- **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
|
|
@@ -231,11 +230,11 @@ Check the [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples
|
|
|
231
230
|
|
|
232
231
|
| Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
233
232
|
| -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
234
|
-
| [
|
|
235
|
-
| [
|
|
236
|
-
| [
|
|
237
|
-
| [
|
|
238
|
-
| [
|
|
233
|
+
| [YOLO26n-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-obb.pt) | 1024 | 78.9 | 97.7 ± 0.9 | 2.8 ± 0.0 | 2.5 | 14.0 |
|
|
234
|
+
| [YOLO26s-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-obb.pt) | 1024 | 80.9 | 218.0 ± 1.4 | 4.9 ± 0.1 | 9.8 | 55.1 |
|
|
235
|
+
| [YOLO26m-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-obb.pt) | 1024 | 81.0 | 579.2 ± 3.8 | 10.2 ± 0.3 | 21.2 | 183.3 |
|
|
236
|
+
| [YOLO26l-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-obb.pt) | 1024 | 81.6 | 735.6 ± 3.1 | 13.0 ± 0.2 | 25.6 | 230.0 |
|
|
237
|
+
| [YOLO26x-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-obb.pt) | 1024 | 81.7 | 1485.7 ± 11.5 | 30.5 ± 0.9 | 57.6 | 516.5 |
|
|
239
238
|
|
|
240
239
|
- **mAP<sup>test</sup>** values are for single-model multiscale performance on the [DOTAv1 test set](https://captain-whu.github.io/DOTA/dataset.html). <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to the [DOTA evaluation server](https://captain-whu.github.io/DOTA/evaluation.html).
|
|
241
240
|
- **Speed** metrics are averaged over [DOTAv1 val images](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10) using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
|
|
@@ -270,13 +269,6 @@ Our key integrations with leading AI platforms extend the functionality of Ultra
|
|
|
270
269
|
| :-----------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------: |
|
|
271
270
|
| Streamline YOLO workflows: Label, train, and deploy effortlessly with [Ultralytics HUB](https://hub.ultralytics.com/). Try now! | Track experiments, hyperparameters, and results with [Weights & Biases](https://docs.ultralytics.com/integrations/weights-biases/). | Free forever, [Comet ML](https://docs.ultralytics.com/integrations/comet/) lets you save YOLO models, resume training, and interactively visualize predictions. | Run YOLO inference up to 6x faster with [Neural Magic DeepSparse](https://docs.ultralytics.com/integrations/neural-magic/). |
|
|
272
271
|
|
|
273
|
-
## 🌟 Ultralytics HUB
|
|
274
|
-
|
|
275
|
-
Experience seamless AI with [Ultralytics HUB](https://hub.ultralytics.com/), the all-in-one platform for data visualization, training YOLO models, and deployment—no coding required. Transform images into actionable insights and bring your AI visions to life effortlessly using our cutting-edge platform and user-friendly [Ultralytics App](https://www.ultralytics.com/app-install). Start your journey for **Free** today!
|
|
276
|
-
|
|
277
|
-
<a href="https://www.ultralytics.com/hub" target="_blank">
|
|
278
|
-
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png" alt="Ultralytics HUB preview image"></a>
|
|
279
|
-
|
|
280
272
|
## 🤝 Contribute
|
|
281
273
|
|
|
282
274
|
We thrive on community collaboration! Ultralytics YOLO wouldn't be the SOTA framework it is without contributions from developers like you. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing/) to get started. We also welcome your feedback—share your experience by completing our [Survey](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey). A huge **Thank You** 🙏 to everyone who contributes!
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: dgenerate-ultralytics-headless
|
|
3
|
-
Version: 8.
|
|
3
|
+
Version: 8.4.1
|
|
4
4
|
Summary: Automatically built Ultralytics package with python-opencv-headless dependency instead of python-opencv
|
|
5
5
|
Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
|
|
6
6
|
Maintainer-email: Ultralytics <hello@ultralytics.com>
|
|
@@ -129,7 +129,6 @@ The workflow runs automatically every day at midnight UTC to check for new Ultra
|
|
|
129
129
|
<div>
|
|
130
130
|
<a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yml/badge.svg" alt="Ultralytics CI"></a>
|
|
131
131
|
<a href="https://clickpy.clickhouse.com/dashboard/ultralytics"><img src="https://static.pepy.tech/badge/ultralytics" alt="Ultralytics Downloads"></a>
|
|
132
|
-
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="Ultralytics YOLO Citation"></a>
|
|
133
132
|
<a href="https://discord.com/invite/ultralytics"><img alt="Ultralytics Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a>
|
|
134
133
|
<a href="https://community.ultralytics.com/"><img alt="Ultralytics Forums" src="https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue"></a>
|
|
135
134
|
<a href="https://www.reddit.com/r/ultralytics/"><img alt="Ultralytics Reddit" src="https://img.shields.io/reddit/subreddit-subscribers/ultralytics?style=flat&logo=reddit&logoColor=white&label=Reddit&color=blue"></a>
|
|
@@ -197,8 +196,8 @@ For alternative installation methods, including [Conda](https://anaconda.org/con
|
|
|
197
196
|
You can use Ultralytics YOLO directly from the Command Line Interface (CLI) with the `yolo` command:
|
|
198
197
|
|
|
199
198
|
```bash
|
|
200
|
-
# Predict using a pretrained YOLO model (e.g.,
|
|
201
|
-
yolo predict model=
|
|
199
|
+
# Predict using a pretrained YOLO model (e.g., YOLO26n) on an image
|
|
200
|
+
yolo predict model=yolo26n.pt source='https://ultralytics.com/images/bus.jpg'
|
|
202
201
|
```
|
|
203
202
|
|
|
204
203
|
The `yolo` command supports various tasks and modes, accepting additional arguments like `imgsz=640`. Explore the YOLO [CLI Docs](https://docs.ultralytics.com/usage/cli/) for more examples.
|
|
@@ -210,8 +209,8 @@ Ultralytics YOLO can also be integrated directly into your Python projects. It a
|
|
|
210
209
|
```python
|
|
211
210
|
from ultralytics import YOLO
|
|
212
211
|
|
|
213
|
-
# Load a pretrained
|
|
214
|
-
model = YOLO("
|
|
212
|
+
# Load a pretrained YOLO26n model
|
|
213
|
+
model = YOLO("yolo26n.pt")
|
|
215
214
|
|
|
216
215
|
# Train the model on the COCO8 dataset for 100 epochs
|
|
217
216
|
train_results = model.train(
|
|
@@ -238,7 +237,7 @@ Discover more examples in the YOLO [Python Docs](https://docs.ultralytics.com/us
|
|
|
238
237
|
|
|
239
238
|
## ✨ Models
|
|
240
239
|
|
|
241
|
-
Ultralytics supports a wide range of YOLO models, from early versions like [YOLOv3](https://docs.ultralytics.com/models/yolov3/) to the latest [
|
|
240
|
+
Ultralytics supports a wide range of YOLO models, from early versions like [YOLOv3](https://docs.ultralytics.com/models/yolov3/) to the latest [YOLO26](https://docs.ultralytics.com/models/yolo26/). The tables below showcase YOLO26 models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset for [Detection](https://docs.ultralytics.com/tasks/detect/), [Segmentation](https://docs.ultralytics.com/tasks/segment/), and [Pose Estimation](https://docs.ultralytics.com/tasks/pose/). Additionally, [Classification](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset are available. [Tracking](https://docs.ultralytics.com/modes/track/) mode is compatible with all Detection, Segmentation, and Pose models. All [Models](https://docs.ultralytics.com/models/) are automatically downloaded from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) upon first use.
|
|
242
241
|
|
|
243
242
|
<a href="https://docs.ultralytics.com/tasks/" target="_blank">
|
|
244
243
|
<img width="100%" src="https://github.com/ultralytics/docs/releases/download/0/ultralytics-yolov8-tasks-banner.avif" alt="Ultralytics YOLO supported tasks">
|
|
@@ -252,11 +251,11 @@ Explore the [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usa
|
|
|
252
251
|
|
|
253
252
|
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
254
253
|
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
255
|
-
| [
|
|
256
|
-
| [
|
|
257
|
-
| [
|
|
258
|
-
| [
|
|
259
|
-
| [
|
|
254
|
+
| [YOLO26n](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n.pt) | 640 | 40.9 | 38.9 ± 0.7 | 1.7 ± 0.0 | 2.4 | 5.4 |
|
|
255
|
+
| [YOLO26s](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s.pt) | 640 | 48.6 | 87.2 ± 0.9 | 2.5 ± 0.0 | 9.5 | 20.7 |
|
|
256
|
+
| [YOLO26m](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m.pt) | 640 | 53.1 | 220.0 ± 1.4 | 4.7 ± 0.1 | 20.4 | 68.2 |
|
|
257
|
+
| [YOLO26l](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l.pt) | 640 | 55.0 | 286.2 ± 2.0 | 6.2 ± 0.2 | 24.8 | 86.4 |
|
|
258
|
+
| [YOLO26x](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x.pt) | 640 | 57.5 | 525.8 ± 4.0 | 11.8 ± 0.2 | 55.7 | 193.9 |
|
|
260
259
|
|
|
261
260
|
- **mAP<sup>val</sup>** values refer to single-model single-scale performance on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val detect data=coco.yaml device=0`
|
|
262
261
|
- **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val detect data=coco.yaml batch=1 device=0|cpu`
|
|
@@ -269,11 +268,11 @@ Refer to the [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) fo
|
|
|
269
268
|
|
|
270
269
|
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
271
270
|
| -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
272
|
-
| [
|
|
273
|
-
| [
|
|
274
|
-
| [
|
|
275
|
-
| [
|
|
276
|
-
| [
|
|
271
|
+
| [YOLO26n-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-seg.pt) | 640 | 39.6 | 33.9 | 53.3 ± 0.5 | 2.1 ± 0.0 | 2.7 | 9.1 |
|
|
272
|
+
| [YOLO26s-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-seg.pt) | 640 | 47.3 | 40.0 | 118.4 ± 0.9 | 3.3 ± 0.0 | 10.4 | 34.2 |
|
|
273
|
+
| [YOLO26m-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-seg.pt) | 640 | 52.5 | 44.1 | 328.2 ± 2.4 | 6.7 ± 0.1 | 23.6 | 121.5 |
|
|
274
|
+
| [YOLO26l-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-seg.pt) | 640 | 54.4 | 45.5 | 387.0 ± 3.7 | 8.0 ± 0.1 | 28.0 | 139.8 |
|
|
275
|
+
| [YOLO26x-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-seg.pt) | 640 | 56.5 | 47.0 | 787.0 ± 6.8 | 16.4 ± 0.1 | 62.8 | 313.5 |
|
|
277
276
|
|
|
278
277
|
- **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val segment data=coco.yaml device=0`
|
|
279
278
|
- **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val segment data=coco.yaml batch=1 device=0|cpu`
|
|
@@ -286,11 +285,11 @@ Consult the [Classification Docs](https://docs.ultralytics.com/tasks/classify/)
|
|
|
286
285
|
|
|
287
286
|
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 224 |
|
|
288
287
|
| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
|
|
289
|
-
| [
|
|
290
|
-
| [
|
|
291
|
-
| [
|
|
292
|
-
| [
|
|
293
|
-
| [
|
|
288
|
+
| [YOLO26n-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-cls.pt) | 224 | 71.4 | 90.1 | 5.0 ± 0.3 | 1.1 ± 0.0 | 2.8 | 0.5 |
|
|
289
|
+
| [YOLO26s-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-cls.pt) | 224 | 76.0 | 92.9 | 7.9 ± 0.2 | 1.3 ± 0.0 | 6.7 | 1.6 |
|
|
290
|
+
| [YOLO26m-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-cls.pt) | 224 | 78.1 | 94.2 | 17.2 ± 0.4 | 2.0 ± 0.0 | 11.6 | 4.9 |
|
|
291
|
+
| [YOLO26l-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-cls.pt) | 224 | 79.0 | 94.6 | 23.2 ± 0.3 | 2.8 ± 0.0 | 14.1 | 6.2 |
|
|
292
|
+
| [YOLO26x-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-cls.pt) | 224 | 79.9 | 95.0 | 41.4 ± 0.9 | 3.8 ± 0.0 | 29.6 | 13.6 |
|
|
294
293
|
|
|
295
294
|
- **acc** values represent model accuracy on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce with `yolo val classify data=path/to/ImageNet device=0`
|
|
296
295
|
- **Speed** metrics are averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
|
|
@@ -303,11 +302,11 @@ See the [Pose Estimation Docs](https://docs.ultralytics.com/tasks/pose/) for usa
|
|
|
303
302
|
|
|
304
303
|
| Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
305
304
|
| ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
306
|
-
| [
|
|
307
|
-
| [
|
|
308
|
-
| [
|
|
309
|
-
| [
|
|
310
|
-
| [
|
|
305
|
+
| [YOLO26n-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-pose.pt) | 640 | 57.2 | 83.3 | 40.3 ± 0.5 | 1.8 ± 0.0 | 2.9 | 7.5 |
|
|
306
|
+
| [YOLO26s-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-pose.pt) | 640 | 63.0 | 86.6 | 85.3 ± 0.9 | 2.7 ± 0.0 | 10.4 | 23.9 |
|
|
307
|
+
| [YOLO26m-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-pose.pt) | 640 | 68.8 | 89.6 | 218.0 ± 1.5 | 5.0 ± 0.1 | 21.5 | 73.1 |
|
|
308
|
+
| [YOLO26l-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-pose.pt) | 640 | 70.4 | 90.5 | 275.4 ± 2.4 | 6.5 ± 0.1 | 25.9 | 91.3 |
|
|
309
|
+
| [YOLO26x-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-pose.pt) | 640 | 71.6 | 91.6 | 565.4 ± 3.0 | 12.2 ± 0.2 | 57.6 | 201.7 |
|
|
311
310
|
|
|
312
311
|
- **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO Keypoints val2017](https://docs.ultralytics.com/datasets/pose/coco/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val pose data=coco-pose.yaml device=0`
|
|
313
312
|
- **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
|
|
@@ -320,11 +319,11 @@ Check the [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples
|
|
|
320
319
|
|
|
321
320
|
| Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
322
321
|
| -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
323
|
-
| [
|
|
324
|
-
| [
|
|
325
|
-
| [
|
|
326
|
-
| [
|
|
327
|
-
| [
|
|
322
|
+
| [YOLO26n-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-obb.pt) | 1024 | 78.9 | 97.7 ± 0.9 | 2.8 ± 0.0 | 2.5 | 14.0 |
|
|
323
|
+
| [YOLO26s-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-obb.pt) | 1024 | 80.9 | 218.0 ± 1.4 | 4.9 ± 0.1 | 9.8 | 55.1 |
|
|
324
|
+
| [YOLO26m-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-obb.pt) | 1024 | 81.0 | 579.2 ± 3.8 | 10.2 ± 0.3 | 21.2 | 183.3 |
|
|
325
|
+
| [YOLO26l-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-obb.pt) | 1024 | 81.6 | 735.6 ± 3.1 | 13.0 ± 0.2 | 25.6 | 230.0 |
|
|
326
|
+
| [YOLO26x-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-obb.pt) | 1024 | 81.7 | 1485.7 ± 11.5 | 30.5 ± 0.9 | 57.6 | 516.5 |
|
|
328
327
|
|
|
329
328
|
- **mAP<sup>test</sup>** values are for single-model multiscale performance on the [DOTAv1 test set](https://captain-whu.github.io/DOTA/dataset.html). <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to the [DOTA evaluation server](https://captain-whu.github.io/DOTA/evaluation.html).
|
|
330
329
|
- **Speed** metrics are averaged over [DOTAv1 val images](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10) using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
|
|
@@ -359,13 +358,6 @@ Our key integrations with leading AI platforms extend the functionality of Ultra
|
|
|
359
358
|
| :-----------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------: |
|
|
360
359
|
| Streamline YOLO workflows: Label, train, and deploy effortlessly with [Ultralytics HUB](https://hub.ultralytics.com/). Try now! | Track experiments, hyperparameters, and results with [Weights & Biases](https://docs.ultralytics.com/integrations/weights-biases/). | Free forever, [Comet ML](https://docs.ultralytics.com/integrations/comet/) lets you save YOLO models, resume training, and interactively visualize predictions. | Run YOLO inference up to 6x faster with [Neural Magic DeepSparse](https://docs.ultralytics.com/integrations/neural-magic/). |
|
|
361
360
|
|
|
362
|
-
## 🌟 Ultralytics HUB
|
|
363
|
-
|
|
364
|
-
Experience seamless AI with [Ultralytics HUB](https://hub.ultralytics.com/), the all-in-one platform for data visualization, training YOLO models, and deployment—no coding required. Transform images into actionable insights and bring your AI visions to life effortlessly using our cutting-edge platform and user-friendly [Ultralytics App](https://www.ultralytics.com/app-install). Start your journey for **Free** today!
|
|
365
|
-
|
|
366
|
-
<a href="https://www.ultralytics.com/hub" target="_blank">
|
|
367
|
-
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png" alt="Ultralytics HUB preview image"></a>
|
|
368
|
-
|
|
369
361
|
## 🤝 Contribute
|
|
370
362
|
|
|
371
363
|
We thrive on community collaboration! Ultralytics YOLO wouldn't be the SOTA framework it is without contributions from developers like you. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing/) to get started. We also welcome your feedback—share your experience by completing our [Survey](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey). A huge **Thank You** 🙏 to everyone who contributes!
|