dgenerate-ultralytics-headless 8.3.249__tar.gz → 8.4.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (315) hide show
  1. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/PKG-INFO +41 -49
  2. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/README.md +40 -48
  3. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/dgenerate_ultralytics_headless.egg-info/PKG-INFO +41 -49
  4. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/dgenerate_ultralytics_headless.egg-info/SOURCES.txt +12 -0
  5. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/tests/__init__.py +2 -2
  6. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/tests/conftest.py +1 -1
  7. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/tests/test_cuda.py +8 -2
  8. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/tests/test_engine.py +8 -8
  9. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/tests/test_exports.py +11 -4
  10. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/tests/test_integrations.py +9 -9
  11. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/tests/test_python.py +14 -14
  12. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/tests/test_solutions.py +3 -3
  13. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/__init__.py +1 -1
  14. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/__init__.py +31 -31
  15. dgenerate_ultralytics_headless-8.4.3/ultralytics/cfg/datasets/TT100K.yaml +346 -0
  16. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/default.yaml +3 -1
  17. dgenerate_ultralytics_headless-8.4.3/ultralytics/cfg/models/26/yolo26-cls.yaml +33 -0
  18. dgenerate_ultralytics_headless-8.4.3/ultralytics/cfg/models/26/yolo26-obb.yaml +52 -0
  19. dgenerate_ultralytics_headless-8.4.3/ultralytics/cfg/models/26/yolo26-p2.yaml +60 -0
  20. dgenerate_ultralytics_headless-8.4.3/ultralytics/cfg/models/26/yolo26-p6.yaml +62 -0
  21. dgenerate_ultralytics_headless-8.4.3/ultralytics/cfg/models/26/yolo26-pose.yaml +53 -0
  22. dgenerate_ultralytics_headless-8.4.3/ultralytics/cfg/models/26/yolo26-seg.yaml +52 -0
  23. dgenerate_ultralytics_headless-8.4.3/ultralytics/cfg/models/26/yolo26.yaml +52 -0
  24. dgenerate_ultralytics_headless-8.4.3/ultralytics/cfg/models/26/yoloe-26-seg.yaml +53 -0
  25. dgenerate_ultralytics_headless-8.4.3/ultralytics/cfg/models/26/yoloe-26.yaml +53 -0
  26. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/data/annotator.py +2 -2
  27. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/data/augment.py +7 -0
  28. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/data/converter.py +57 -38
  29. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/data/dataset.py +1 -1
  30. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/engine/exporter.py +33 -26
  31. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/engine/model.py +38 -37
  32. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/engine/predictor.py +17 -17
  33. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/engine/results.py +14 -12
  34. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/engine/trainer.py +81 -48
  35. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/engine/tuner.py +20 -11
  36. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/engine/validator.py +16 -16
  37. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/fastsam/predict.py +1 -1
  38. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/yolo/classify/predict.py +1 -1
  39. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/yolo/classify/train.py +1 -1
  40. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/yolo/classify/val.py +1 -1
  41. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/yolo/detect/predict.py +2 -2
  42. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/yolo/detect/train.py +4 -3
  43. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/yolo/detect/val.py +7 -1
  44. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/yolo/model.py +8 -8
  45. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/yolo/obb/predict.py +2 -2
  46. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/yolo/obb/train.py +3 -3
  47. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/yolo/obb/val.py +1 -1
  48. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/yolo/pose/predict.py +1 -1
  49. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/yolo/pose/train.py +3 -1
  50. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/yolo/pose/val.py +1 -1
  51. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/yolo/segment/predict.py +3 -3
  52. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/yolo/segment/train.py +4 -4
  53. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/yolo/segment/val.py +4 -2
  54. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/yolo/yoloe/train.py +6 -1
  55. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/yolo/yoloe/train_seg.py +6 -1
  56. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/nn/autobackend.py +13 -7
  57. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/nn/modules/__init__.py +8 -0
  58. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/nn/modules/block.py +128 -8
  59. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/nn/modules/head.py +788 -203
  60. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/nn/tasks.py +86 -41
  61. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/nn/text_model.py +5 -2
  62. dgenerate_ultralytics_headless-8.4.3/ultralytics/optim/__init__.py +5 -0
  63. dgenerate_ultralytics_headless-8.4.3/ultralytics/optim/muon.py +338 -0
  64. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/solutions/ai_gym.py +3 -3
  65. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/solutions/config.py +1 -1
  66. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/solutions/heatmap.py +1 -1
  67. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/solutions/instance_segmentation.py +2 -2
  68. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/solutions/parking_management.py +1 -1
  69. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/solutions/solutions.py +2 -2
  70. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/trackers/track.py +1 -1
  71. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/__init__.py +8 -8
  72. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/benchmarks.py +24 -24
  73. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/callbacks/platform.py +97 -68
  74. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/checks.py +17 -10
  75. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/downloads.py +5 -3
  76. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/export/engine.py +19 -10
  77. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/export/imx.py +20 -14
  78. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/export/tensorflow.py +21 -21
  79. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/files.py +2 -2
  80. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/loss.py +587 -203
  81. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/metrics.py +2 -1
  82. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/ops.py +11 -2
  83. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/plotting.py +3 -0
  84. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/tal.py +100 -20
  85. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/torch_utils.py +1 -1
  86. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/tqdm.py +4 -1
  87. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/tuner.py +2 -5
  88. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/LICENSE +0 -0
  89. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/dgenerate_ultralytics_headless.egg-info/dependency_links.txt +0 -0
  90. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/dgenerate_ultralytics_headless.egg-info/entry_points.txt +0 -0
  91. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/dgenerate_ultralytics_headless.egg-info/requires.txt +0 -0
  92. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/dgenerate_ultralytics_headless.egg-info/top_level.txt +0 -0
  93. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/pyproject.toml +0 -0
  94. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/setup.cfg +0 -0
  95. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/tests/test_cli.py +0 -0
  96. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/assets/bus.jpg +0 -0
  97. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/assets/zidane.jpg +0 -0
  98. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/datasets/Argoverse.yaml +0 -0
  99. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/datasets/DOTAv1.5.yaml +0 -0
  100. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/datasets/DOTAv1.yaml +0 -0
  101. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/datasets/GlobalWheat2020.yaml +0 -0
  102. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/datasets/HomeObjects-3K.yaml +0 -0
  103. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/datasets/ImageNet.yaml +0 -0
  104. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/datasets/Objects365.yaml +0 -0
  105. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/datasets/SKU-110K.yaml +0 -0
  106. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/datasets/VOC.yaml +0 -0
  107. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/datasets/VisDrone.yaml +0 -0
  108. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/datasets/african-wildlife.yaml +0 -0
  109. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/datasets/brain-tumor.yaml +0 -0
  110. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/datasets/carparts-seg.yaml +0 -0
  111. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/datasets/coco-pose.yaml +0 -0
  112. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/datasets/coco.yaml +0 -0
  113. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/datasets/coco128-seg.yaml +0 -0
  114. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/datasets/coco128.yaml +0 -0
  115. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/datasets/coco8-grayscale.yaml +0 -0
  116. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/datasets/coco8-multispectral.yaml +0 -0
  117. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/datasets/coco8-pose.yaml +0 -0
  118. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/datasets/coco8-seg.yaml +0 -0
  119. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/datasets/coco8.yaml +0 -0
  120. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/datasets/construction-ppe.yaml +0 -0
  121. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/datasets/crack-seg.yaml +0 -0
  122. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/datasets/dog-pose.yaml +0 -0
  123. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/datasets/dota8-multispectral.yaml +0 -0
  124. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/datasets/dota8.yaml +0 -0
  125. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/datasets/hand-keypoints.yaml +0 -0
  126. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/datasets/kitti.yaml +0 -0
  127. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/datasets/lvis.yaml +0 -0
  128. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/datasets/medical-pills.yaml +0 -0
  129. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/datasets/open-images-v7.yaml +0 -0
  130. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/datasets/package-seg.yaml +0 -0
  131. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/datasets/signature.yaml +0 -0
  132. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/datasets/tiger-pose.yaml +0 -0
  133. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/datasets/xView.yaml +0 -0
  134. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +0 -0
  135. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/11/yolo11-cls.yaml +0 -0
  136. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/11/yolo11-obb.yaml +0 -0
  137. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/11/yolo11-pose.yaml +0 -0
  138. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/11/yolo11-seg.yaml +0 -0
  139. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/11/yolo11.yaml +0 -0
  140. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/11/yoloe-11-seg.yaml +0 -0
  141. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/11/yoloe-11.yaml +0 -0
  142. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/12/yolo12-cls.yaml +0 -0
  143. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/12/yolo12-obb.yaml +0 -0
  144. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/12/yolo12-pose.yaml +0 -0
  145. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/12/yolo12-seg.yaml +0 -0
  146. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/12/yolo12.yaml +0 -0
  147. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +0 -0
  148. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +0 -0
  149. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +0 -0
  150. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +0 -0
  151. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v10/yolov10b.yaml +0 -0
  152. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v10/yolov10l.yaml +0 -0
  153. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v10/yolov10m.yaml +0 -0
  154. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v10/yolov10n.yaml +0 -0
  155. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v10/yolov10s.yaml +0 -0
  156. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v10/yolov10x.yaml +0 -0
  157. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v3/yolov3-spp.yaml +0 -0
  158. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v3/yolov3-tiny.yaml +0 -0
  159. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v3/yolov3.yaml +0 -0
  160. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v5/yolov5-p6.yaml +0 -0
  161. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v5/yolov5.yaml +0 -0
  162. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v6/yolov6.yaml +0 -0
  163. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +0 -0
  164. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v8/yoloe-v8.yaml +0 -0
  165. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +0 -0
  166. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +0 -0
  167. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-cls.yaml +0 -0
  168. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +0 -0
  169. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +0 -0
  170. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-ghost.yaml +0 -0
  171. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-obb.yaml +0 -0
  172. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-p2.yaml +0 -0
  173. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-p6.yaml +0 -0
  174. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +0 -0
  175. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-pose.yaml +0 -0
  176. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +0 -0
  177. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +0 -0
  178. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-seg.yaml +0 -0
  179. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-world.yaml +0 -0
  180. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-worldv2.yaml +0 -0
  181. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8.yaml +0 -0
  182. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v9/yolov9c-seg.yaml +0 -0
  183. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v9/yolov9c.yaml +0 -0
  184. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v9/yolov9e-seg.yaml +0 -0
  185. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v9/yolov9e.yaml +0 -0
  186. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v9/yolov9m.yaml +0 -0
  187. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v9/yolov9s.yaml +0 -0
  188. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/models/v9/yolov9t.yaml +0 -0
  189. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/trackers/botsort.yaml +0 -0
  190. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/cfg/trackers/bytetrack.yaml +0 -0
  191. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/data/__init__.py +0 -0
  192. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/data/base.py +0 -0
  193. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/data/build.py +0 -0
  194. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/data/loaders.py +0 -0
  195. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/data/scripts/download_weights.sh +0 -0
  196. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/data/scripts/get_coco.sh +0 -0
  197. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/data/scripts/get_coco128.sh +0 -0
  198. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/data/scripts/get_imagenet.sh +0 -0
  199. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/data/split.py +0 -0
  200. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/data/split_dota.py +0 -0
  201. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/data/utils.py +0 -0
  202. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/engine/__init__.py +0 -0
  203. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/hub/__init__.py +0 -0
  204. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/hub/auth.py +0 -0
  205. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/hub/google/__init__.py +0 -0
  206. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/hub/session.py +0 -0
  207. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/hub/utils.py +0 -0
  208. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/__init__.py +0 -0
  209. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/fastsam/__init__.py +0 -0
  210. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/fastsam/model.py +0 -0
  211. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/fastsam/utils.py +0 -0
  212. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/fastsam/val.py +0 -0
  213. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/nas/__init__.py +0 -0
  214. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/nas/model.py +0 -0
  215. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/nas/predict.py +0 -0
  216. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/nas/val.py +0 -0
  217. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/rtdetr/__init__.py +0 -0
  218. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/rtdetr/model.py +0 -0
  219. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/rtdetr/predict.py +0 -0
  220. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/rtdetr/train.py +0 -0
  221. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/rtdetr/val.py +0 -0
  222. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/sam/__init__.py +0 -0
  223. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/sam/amg.py +0 -0
  224. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/sam/build.py +0 -0
  225. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/sam/build_sam3.py +0 -0
  226. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/sam/model.py +0 -0
  227. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/sam/modules/__init__.py +0 -0
  228. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/sam/modules/blocks.py +0 -0
  229. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/sam/modules/decoders.py +0 -0
  230. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/sam/modules/encoders.py +0 -0
  231. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/sam/modules/memory_attention.py +0 -0
  232. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/sam/modules/sam.py +0 -0
  233. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/sam/modules/tiny_encoder.py +0 -0
  234. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/sam/modules/transformer.py +0 -0
  235. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/sam/modules/utils.py +0 -0
  236. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/sam/predict.py +0 -0
  237. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/sam/sam3/__init__.py +0 -0
  238. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/sam/sam3/decoder.py +0 -0
  239. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/sam/sam3/encoder.py +0 -0
  240. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/sam/sam3/geometry_encoders.py +0 -0
  241. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/sam/sam3/maskformer_segmentation.py +0 -0
  242. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/sam/sam3/model_misc.py +0 -0
  243. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/sam/sam3/necks.py +0 -0
  244. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/sam/sam3/sam3_image.py +0 -0
  245. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/sam/sam3/text_encoder_ve.py +0 -0
  246. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/sam/sam3/vitdet.py +0 -0
  247. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/sam/sam3/vl_combiner.py +0 -0
  248. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/utils/__init__.py +0 -0
  249. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/utils/loss.py +0 -0
  250. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/utils/ops.py +0 -0
  251. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/yolo/__init__.py +0 -0
  252. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/yolo/classify/__init__.py +0 -0
  253. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/yolo/detect/__init__.py +0 -0
  254. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/yolo/obb/__init__.py +0 -0
  255. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/yolo/pose/__init__.py +0 -0
  256. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/yolo/segment/__init__.py +0 -0
  257. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/yolo/world/__init__.py +0 -0
  258. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/yolo/world/train.py +0 -0
  259. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/yolo/world/train_world.py +0 -0
  260. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/yolo/yoloe/__init__.py +0 -0
  261. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/yolo/yoloe/predict.py +0 -0
  262. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/models/yolo/yoloe/val.py +0 -0
  263. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/nn/__init__.py +0 -0
  264. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/nn/modules/activation.py +0 -0
  265. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/nn/modules/conv.py +0 -0
  266. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/nn/modules/transformer.py +0 -0
  267. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/nn/modules/utils.py +0 -0
  268. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/py.typed +0 -0
  269. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/solutions/__init__.py +0 -0
  270. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/solutions/analytics.py +0 -0
  271. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/solutions/distance_calculation.py +0 -0
  272. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/solutions/object_blurrer.py +0 -0
  273. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/solutions/object_counter.py +0 -0
  274. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/solutions/object_cropper.py +0 -0
  275. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/solutions/queue_management.py +0 -0
  276. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/solutions/region_counter.py +0 -0
  277. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/solutions/security_alarm.py +0 -0
  278. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/solutions/similarity_search.py +0 -0
  279. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/solutions/speed_estimation.py +0 -0
  280. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/solutions/streamlit_inference.py +0 -0
  281. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/solutions/templates/similarity-search.html +0 -0
  282. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/solutions/trackzone.py +0 -0
  283. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/solutions/vision_eye.py +0 -0
  284. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/trackers/__init__.py +0 -0
  285. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/trackers/basetrack.py +0 -0
  286. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/trackers/bot_sort.py +0 -0
  287. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/trackers/byte_tracker.py +0 -0
  288. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/trackers/utils/__init__.py +0 -0
  289. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/trackers/utils/gmc.py +0 -0
  290. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/trackers/utils/kalman_filter.py +0 -0
  291. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/trackers/utils/matching.py +0 -0
  292. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/autobatch.py +0 -0
  293. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/autodevice.py +0 -0
  294. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/callbacks/__init__.py +0 -0
  295. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/callbacks/base.py +0 -0
  296. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/callbacks/clearml.py +0 -0
  297. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/callbacks/comet.py +0 -0
  298. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/callbacks/dvc.py +0 -0
  299. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/callbacks/hub.py +0 -0
  300. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/callbacks/mlflow.py +0 -0
  301. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/callbacks/neptune.py +0 -0
  302. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/callbacks/raytune.py +0 -0
  303. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/callbacks/tensorboard.py +0 -0
  304. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/callbacks/wb.py +0 -0
  305. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/cpu.py +0 -0
  306. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/dist.py +0 -0
  307. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/errors.py +0 -0
  308. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/events.py +0 -0
  309. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/export/__init__.py +0 -0
  310. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/git.py +0 -0
  311. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/instance.py +0 -0
  312. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/logger.py +0 -0
  313. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/nms.py +0 -0
  314. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/patches.py +0 -0
  315. {dgenerate_ultralytics_headless-8.3.249 → dgenerate_ultralytics_headless-8.4.3}/ultralytics/utils/triton.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: dgenerate-ultralytics-headless
3
- Version: 8.3.249
3
+ Version: 8.4.3
4
4
  Summary: Automatically built Ultralytics package with python-opencv-headless dependency instead of python-opencv
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -129,7 +129,6 @@ The workflow runs automatically every day at midnight UTC to check for new Ultra
129
129
  <div>
130
130
  <a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yml/badge.svg" alt="Ultralytics CI"></a>
131
131
  <a href="https://clickpy.clickhouse.com/dashboard/ultralytics"><img src="https://static.pepy.tech/badge/ultralytics" alt="Ultralytics Downloads"></a>
132
- <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="Ultralytics YOLO Citation"></a>
133
132
  <a href="https://discord.com/invite/ultralytics"><img alt="Ultralytics Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a>
134
133
  <a href="https://community.ultralytics.com/"><img alt="Ultralytics Forums" src="https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue"></a>
135
134
  <a href="https://www.reddit.com/r/ultralytics/"><img alt="Ultralytics Reddit" src="https://img.shields.io/reddit/subreddit-subscribers/ultralytics?style=flat&logo=reddit&logoColor=white&label=Reddit&color=blue"></a>
@@ -197,8 +196,8 @@ For alternative installation methods, including [Conda](https://anaconda.org/con
197
196
  You can use Ultralytics YOLO directly from the Command Line Interface (CLI) with the `yolo` command:
198
197
 
199
198
  ```bash
200
- # Predict using a pretrained YOLO model (e.g., YOLO11n) on an image
201
- yolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'
199
+ # Predict using a pretrained YOLO model (e.g., YOLO26n) on an image
200
+ yolo predict model=yolo26n.pt source='https://ultralytics.com/images/bus.jpg'
202
201
  ```
203
202
 
204
203
  The `yolo` command supports various tasks and modes, accepting additional arguments like `imgsz=640`. Explore the YOLO [CLI Docs](https://docs.ultralytics.com/usage/cli/) for more examples.
@@ -210,8 +209,8 @@ Ultralytics YOLO can also be integrated directly into your Python projects. It a
210
209
  ```python
211
210
  from ultralytics import YOLO
212
211
 
213
- # Load a pretrained YOLO11n model
214
- model = YOLO("yolo11n.pt")
212
+ # Load a pretrained YOLO26n model
213
+ model = YOLO("yolo26n.pt")
215
214
 
216
215
  # Train the model on the COCO8 dataset for 100 epochs
217
216
  train_results = model.train(
@@ -238,7 +237,7 @@ Discover more examples in the YOLO [Python Docs](https://docs.ultralytics.com/us
238
237
 
239
238
  ## ✨ Models
240
239
 
241
- Ultralytics supports a wide range of YOLO models, from early versions like [YOLOv3](https://docs.ultralytics.com/models/yolov3/) to the latest [YOLO11](https://docs.ultralytics.com/models/yolo11/). The tables below showcase YOLO11 models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset for [Detection](https://docs.ultralytics.com/tasks/detect/), [Segmentation](https://docs.ultralytics.com/tasks/segment/), and [Pose Estimation](https://docs.ultralytics.com/tasks/pose/). Additionally, [Classification](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset are available. [Tracking](https://docs.ultralytics.com/modes/track/) mode is compatible with all Detection, Segmentation, and Pose models. All [Models](https://docs.ultralytics.com/models/) are automatically downloaded from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) upon first use.
240
+ Ultralytics supports a wide range of YOLO models, from early versions like [YOLOv3](https://docs.ultralytics.com/models/yolov3/) to the latest [YOLO26](https://docs.ultralytics.com/models/yolo26/). The tables below showcase YOLO26 models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset for [Detection](https://docs.ultralytics.com/tasks/detect/), [Segmentation](https://docs.ultralytics.com/tasks/segment/), and [Pose Estimation](https://docs.ultralytics.com/tasks/pose/). Additionally, [Classification](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset are available. [Tracking](https://docs.ultralytics.com/modes/track/) mode is compatible with all Detection, Segmentation, and Pose models. All [Models](https://docs.ultralytics.com/models/) are automatically downloaded from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) upon first use.
242
241
 
243
242
  <a href="https://docs.ultralytics.com/tasks/" target="_blank">
244
243
  <img width="100%" src="https://github.com/ultralytics/docs/releases/download/0/ultralytics-yolov8-tasks-banner.avif" alt="Ultralytics YOLO supported tasks">
@@ -250,13 +249,13 @@ Ultralytics supports a wide range of YOLO models, from early versions like [YOLO
250
249
 
251
250
  Explore the [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples. These models are trained on the [COCO dataset](https://cocodataset.org/), featuring 80 object classes.
252
251
 
253
- | Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
254
- | ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
255
- | [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640 | 39.5 | 56.1 ± 0.8 | 1.5 ± 0.0 | 2.6 | 6.5 |
256
- | [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640 | 47.0 | 90.0 ± 1.2 | 2.5 ± 0.0 | 9.4 | 21.5 |
257
- | [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640 | 51.5 | 183.2 ± 2.0 | 4.7 ± 0.1 | 20.1 | 68.0 |
258
- | [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.6 ± 1.4 | 6.2 ± 0.1 | 25.3 | 86.9 |
259
- | [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.8 ± 6.7 | 11.3 ± 0.2 | 56.9 | 194.9 |
252
+ | Model | size<br><sup>(pixels)</sup> | mAP<sup>val<br>50-95</sup> | mAP<sup>val<br>50-95(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
253
+ | ------------------------------------------------------------------------------------ | --------------------------- | -------------------------- | ------------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
254
+ | [YOLO26n](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n.pt) | 640 | 40.9 | 40.1 | 38.9 ± 0.7 | 1.7 ± 0.0 | 2.4 | 5.4 |
255
+ | [YOLO26s](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s.pt) | 640 | 48.6 | 47.8 | 87.2 ± 0.9 | 2.5 ± 0.0 | 9.5 | 20.7 |
256
+ | [YOLO26m](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m.pt) | 640 | 53.1 | 52.5 | 220.0 ± 1.4 | 4.7 ± 0.1 | 20.4 | 68.2 |
257
+ | [YOLO26l](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l.pt) | 640 | 55.0 | 54.4 | 286.2 ± 2.0 | 6.2 ± 0.2 | 24.8 | 86.4 |
258
+ | [YOLO26x](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x.pt) | 640 | 57.5 | 56.9 | 525.8 ± 4.0 | 11.8 ± 0.2 | 55.7 | 193.9 |
260
259
 
261
260
  - **mAP<sup>val</sup>** values refer to single-model single-scale performance on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val detect data=coco.yaml device=0`
262
261
  - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val detect data=coco.yaml batch=1 device=0|cpu`
@@ -267,13 +266,13 @@ Explore the [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usa
267
266
 
268
267
  Refer to the [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage examples. These models are trained on [COCO-Seg](https://docs.ultralytics.com/datasets/segment/coco/), including 80 classes.
269
268
 
270
- | Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
271
- | -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
272
- | [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.9 ± 1.1 | 1.8 ± 0.0 | 2.9 | 9.7 |
273
- | [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.6 ± 4.9 | 2.9 ± 0.0 | 10.1 | 33.0 |
274
- | [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.6 ± 1.2 | 6.3 ± 0.1 | 22.4 | 113.2 |
275
- | [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.2 ± 3.2 | 7.8 ± 0.2 | 27.6 | 132.2 |
276
- | [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.5 ± 3.2 | 15.8 ± 0.7 | 62.1 | 296.4 |
269
+ | Model | size<br><sup>(pixels)</sup> | mAP<sup>box<br>50-95(e2e)</sup> | mAP<sup>mask<br>50-95(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
270
+ | -------------------------------------------------------------------------------------------- | --------------------------- | ------------------------------- | -------------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
271
+ | [YOLO26n-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-seg.pt) | 640 | 39.6 | 33.9 | 53.3 ± 0.5 | 2.1 ± 0.0 | 2.7 | 9.1 |
272
+ | [YOLO26s-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-seg.pt) | 640 | 47.3 | 40.0 | 118.4 ± 0.9 | 3.3 ± 0.0 | 10.4 | 34.2 |
273
+ | [YOLO26m-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-seg.pt) | 640 | 52.5 | 44.1 | 328.2 ± 2.4 | 6.7 ± 0.1 | 23.6 | 121.5 |
274
+ | [YOLO26l-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-seg.pt) | 640 | 54.4 | 45.5 | 387.0 ± 3.7 | 8.0 ± 0.1 | 28.0 | 139.8 |
275
+ | [YOLO26x-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-seg.pt) | 640 | 56.5 | 47.0 | 787.0 ± 6.8 | 16.4 ± 0.1 | 62.8 | 313.5 |
277
276
 
278
277
  - **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val segment data=coco.yaml device=0`
279
278
  - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val segment data=coco.yaml batch=1 device=0|cpu`
@@ -284,13 +283,13 @@ Refer to the [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) fo
284
283
 
285
284
  Consult the [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples. These models are trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), covering 1000 classes.
286
285
 
287
- | Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 224 |
288
- | -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
289
- | [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.0 ± 0.3 | 1.1 ± 0.0 | 2.8 | 0.5 |
290
- | [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.9 ± 0.2 | 1.3 ± 0.0 | 6.7 | 1.6 |
291
- | [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.2 ± 0.4 | 2.0 ± 0.0 | 11.6 | 4.9 |
292
- | [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.2 ± 0.3 | 2.8 ± 0.0 | 14.1 | 6.2 |
293
- | [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.4 ± 0.9 | 3.8 ± 0.0 | 29.6 | 13.6 |
286
+ | Model | size<br><sup>(pixels)</sup> | acc<br><sup>top1</sup> | acc<br><sup>top5</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B) at 224</sup> |
287
+ | -------------------------------------------------------------------------------------------- | --------------------------- | ---------------------- | ---------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ------------------------------ |
288
+ | [YOLO26n-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-cls.pt) | 224 | 71.4 | 90.1 | 5.0 ± 0.3 | 1.1 ± 0.0 | 2.8 | 0.5 |
289
+ | [YOLO26s-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-cls.pt) | 224 | 76.0 | 92.9 | 7.9 ± 0.2 | 1.3 ± 0.0 | 6.7 | 1.6 |
290
+ | [YOLO26m-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-cls.pt) | 224 | 78.1 | 94.2 | 17.2 ± 0.4 | 2.0 ± 0.0 | 11.6 | 4.9 |
291
+ | [YOLO26l-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-cls.pt) | 224 | 79.0 | 94.6 | 23.2 ± 0.3 | 2.8 ± 0.0 | 14.1 | 6.2 |
292
+ | [YOLO26x-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-cls.pt) | 224 | 79.9 | 95.0 | 41.4 ± 0.9 | 3.8 ± 0.0 | 29.6 | 13.6 |
294
293
 
295
294
  - **acc** values represent model accuracy on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce with `yolo val classify data=path/to/ImageNet device=0`
296
295
  - **Speed** metrics are averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
@@ -301,13 +300,13 @@ Consult the [Classification Docs](https://docs.ultralytics.com/tasks/classify/)
301
300
 
302
301
  See the [Pose Estimation Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples. These models are trained on [COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/), focusing on the 'person' class.
303
302
 
304
- | Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
305
- | ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
306
- | [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640 | 50.0 | 81.0 | 52.4 ± 0.5 | 1.7 ± 0.0 | 2.9 | 7.4 |
307
- | [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640 | 58.9 | 86.3 | 90.5 ± 0.6 | 2.6 ± 0.0 | 9.9 | 23.1 |
308
- | [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640 | 64.9 | 89.4 | 187.3 ± 0.8 | 4.9 ± 0.1 | 20.9 | 71.4 |
309
- | [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640 | 66.1 | 89.9 | 247.7 ± 1.1 | 6.4 ± 0.1 | 26.1 | 90.3 |
310
- | [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640 | 69.5 | 91.1 | 488.0 ± 13.9 | 12.1 ± 0.2 | 58.8 | 202.8 |
303
+ | Model | size<br><sup>(pixels)</sup> | mAP<sup>pose<br>50-95(e2e)</sup> | mAP<sup>pose<br>50(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
304
+ | ---------------------------------------------------------------------------------------------- | --------------------------- | -------------------------------- | ----------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
305
+ | [YOLO26n-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-pose.pt) | 640 | 57.2 | 83.3 | 40.3 ± 0.5 | 1.8 ± 0.0 | 2.9 | 7.5 |
306
+ | [YOLO26s-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-pose.pt) | 640 | 63.0 | 86.6 | 85.3 ± 0.9 | 2.7 ± 0.0 | 10.4 | 23.9 |
307
+ | [YOLO26m-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-pose.pt) | 640 | 68.8 | 89.6 | 218.0 ± 1.5 | 5.0 ± 0.1 | 21.5 | 73.1 |
308
+ | [YOLO26l-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-pose.pt) | 640 | 70.4 | 90.5 | 275.4 ± 2.4 | 6.5 ± 0.1 | 25.9 | 91.3 |
309
+ | [YOLO26x-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-pose.pt) | 640 | 71.6 | 91.6 | 565.4 ± 3.0 | 12.2 ± 0.2 | 57.6 | 201.7 |
311
310
 
312
311
  - **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO Keypoints val2017](https://docs.ultralytics.com/datasets/pose/coco/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val pose data=coco-pose.yaml device=0`
313
312
  - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
@@ -318,13 +317,13 @@ See the [Pose Estimation Docs](https://docs.ultralytics.com/tasks/pose/) for usa
318
317
 
319
318
  Check the [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples. These models are trained on [DOTAv1](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10/), including 15 classes.
320
319
 
321
- | Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
322
- | -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
323
- | [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.6 ± 0.8 | 4.4 ± 0.0 | 2.7 | 16.8 |
324
- | [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.4 ± 4.0 | 5.1 ± 0.0 | 9.7 | 57.1 |
325
- | [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.8 ± 2.9 | 10.1 ± 0.4 | 20.9 | 182.8 |
326
- | [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.5 ± 5.0 | 13.5 ± 0.6 | 26.1 | 231.2 |
327
- | [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.6 ± 7.7 | 28.6 ± 1.0 | 58.8 | 519.1 |
320
+ | Model | size<br><sup>(pixels)</sup> | mAP<sup>test<br>50-95(e2e)</sup> | mAP<sup>test<br>50(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
321
+ | -------------------------------------------------------------------------------------------- | --------------------------- | -------------------------------- | ----------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
322
+ | [YOLO26n-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-obb.pt) | 1024 | 52.4 | 78.9 | 97.7 ± 0.9 | 2.8 ± 0.0 | 2.5 | 14.0 |
323
+ | [YOLO26s-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-obb.pt) | 1024 | 54.8 | 80.9 | 218.0 ± 1.4 | 4.9 ± 0.1 | 9.8 | 55.1 |
324
+ | [YOLO26m-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-obb.pt) | 1024 | 55.3 | 81.0 | 579.2 ± 3.8 | 10.2 ± 0.3 | 21.2 | 183.3 |
325
+ | [YOLO26l-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-obb.pt) | 1024 | 56.2 | 81.6 | 735.6 ± 3.1 | 13.0 ± 0.2 | 25.6 | 230.0 |
326
+ | [YOLO26x-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-obb.pt) | 1024 | 56.7 | 81.7 | 1485.7 ± 11.5 | 30.5 ± 0.9 | 57.6 | 516.5 |
328
327
 
329
328
  - **mAP<sup>test</sup>** values are for single-model multiscale performance on the [DOTAv1 test set](https://captain-whu.github.io/DOTA/dataset.html). <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to the [DOTA evaluation server](https://captain-whu.github.io/DOTA/evaluation.html).
330
329
  - **Speed** metrics are averaged over [DOTAv1 val images](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10) using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
@@ -359,13 +358,6 @@ Our key integrations with leading AI platforms extend the functionality of Ultra
359
358
  | :-----------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------: |
360
359
  | Streamline YOLO workflows: Label, train, and deploy effortlessly with [Ultralytics HUB](https://hub.ultralytics.com/). Try now! | Track experiments, hyperparameters, and results with [Weights & Biases](https://docs.ultralytics.com/integrations/weights-biases/). | Free forever, [Comet ML](https://docs.ultralytics.com/integrations/comet/) lets you save YOLO models, resume training, and interactively visualize predictions. | Run YOLO inference up to 6x faster with [Neural Magic DeepSparse](https://docs.ultralytics.com/integrations/neural-magic/). |
361
360
 
362
- ## 🌟 Ultralytics HUB
363
-
364
- Experience seamless AI with [Ultralytics HUB](https://hub.ultralytics.com/), the all-in-one platform for data visualization, training YOLO models, and deployment—no coding required. Transform images into actionable insights and bring your AI visions to life effortlessly using our cutting-edge platform and user-friendly [Ultralytics App](https://www.ultralytics.com/app-install). Start your journey for **Free** today!
365
-
366
- <a href="https://www.ultralytics.com/hub" target="_blank">
367
- <img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png" alt="Ultralytics HUB preview image"></a>
368
-
369
361
  ## 🤝 Contribute
370
362
 
371
363
  We thrive on community collaboration! Ultralytics YOLO wouldn't be the SOTA framework it is without contributions from developers like you. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing/) to get started. We also welcome your feedback—share your experience by completing our [Survey](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey). A huge **Thank You** 🙏 to everyone who contributes!
@@ -40,7 +40,6 @@ The workflow runs automatically every day at midnight UTC to check for new Ultra
40
40
  <div>
41
41
  <a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yml/badge.svg" alt="Ultralytics CI"></a>
42
42
  <a href="https://clickpy.clickhouse.com/dashboard/ultralytics"><img src="https://static.pepy.tech/badge/ultralytics" alt="Ultralytics Downloads"></a>
43
- <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="Ultralytics YOLO Citation"></a>
44
43
  <a href="https://discord.com/invite/ultralytics"><img alt="Ultralytics Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a>
45
44
  <a href="https://community.ultralytics.com/"><img alt="Ultralytics Forums" src="https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue"></a>
46
45
  <a href="https://www.reddit.com/r/ultralytics/"><img alt="Ultralytics Reddit" src="https://img.shields.io/reddit/subreddit-subscribers/ultralytics?style=flat&logo=reddit&logoColor=white&label=Reddit&color=blue"></a>
@@ -108,8 +107,8 @@ For alternative installation methods, including [Conda](https://anaconda.org/con
108
107
  You can use Ultralytics YOLO directly from the Command Line Interface (CLI) with the `yolo` command:
109
108
 
110
109
  ```bash
111
- # Predict using a pretrained YOLO model (e.g., YOLO11n) on an image
112
- yolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'
110
+ # Predict using a pretrained YOLO model (e.g., YOLO26n) on an image
111
+ yolo predict model=yolo26n.pt source='https://ultralytics.com/images/bus.jpg'
113
112
  ```
114
113
 
115
114
  The `yolo` command supports various tasks and modes, accepting additional arguments like `imgsz=640`. Explore the YOLO [CLI Docs](https://docs.ultralytics.com/usage/cli/) for more examples.
@@ -121,8 +120,8 @@ Ultralytics YOLO can also be integrated directly into your Python projects. It a
121
120
  ```python
122
121
  from ultralytics import YOLO
123
122
 
124
- # Load a pretrained YOLO11n model
125
- model = YOLO("yolo11n.pt")
123
+ # Load a pretrained YOLO26n model
124
+ model = YOLO("yolo26n.pt")
126
125
 
127
126
  # Train the model on the COCO8 dataset for 100 epochs
128
127
  train_results = model.train(
@@ -149,7 +148,7 @@ Discover more examples in the YOLO [Python Docs](https://docs.ultralytics.com/us
149
148
 
150
149
  ## ✨ Models
151
150
 
152
- Ultralytics supports a wide range of YOLO models, from early versions like [YOLOv3](https://docs.ultralytics.com/models/yolov3/) to the latest [YOLO11](https://docs.ultralytics.com/models/yolo11/). The tables below showcase YOLO11 models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset for [Detection](https://docs.ultralytics.com/tasks/detect/), [Segmentation](https://docs.ultralytics.com/tasks/segment/), and [Pose Estimation](https://docs.ultralytics.com/tasks/pose/). Additionally, [Classification](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset are available. [Tracking](https://docs.ultralytics.com/modes/track/) mode is compatible with all Detection, Segmentation, and Pose models. All [Models](https://docs.ultralytics.com/models/) are automatically downloaded from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) upon first use.
151
+ Ultralytics supports a wide range of YOLO models, from early versions like [YOLOv3](https://docs.ultralytics.com/models/yolov3/) to the latest [YOLO26](https://docs.ultralytics.com/models/yolo26/). The tables below showcase YOLO26 models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset for [Detection](https://docs.ultralytics.com/tasks/detect/), [Segmentation](https://docs.ultralytics.com/tasks/segment/), and [Pose Estimation](https://docs.ultralytics.com/tasks/pose/). Additionally, [Classification](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset are available. [Tracking](https://docs.ultralytics.com/modes/track/) mode is compatible with all Detection, Segmentation, and Pose models. All [Models](https://docs.ultralytics.com/models/) are automatically downloaded from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) upon first use.
153
152
 
154
153
  <a href="https://docs.ultralytics.com/tasks/" target="_blank">
155
154
  <img width="100%" src="https://github.com/ultralytics/docs/releases/download/0/ultralytics-yolov8-tasks-banner.avif" alt="Ultralytics YOLO supported tasks">
@@ -161,13 +160,13 @@ Ultralytics supports a wide range of YOLO models, from early versions like [YOLO
161
160
 
162
161
  Explore the [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples. These models are trained on the [COCO dataset](https://cocodataset.org/), featuring 80 object classes.
163
162
 
164
- | Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
165
- | ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
166
- | [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640 | 39.5 | 56.1 ± 0.8 | 1.5 ± 0.0 | 2.6 | 6.5 |
167
- | [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640 | 47.0 | 90.0 ± 1.2 | 2.5 ± 0.0 | 9.4 | 21.5 |
168
- | [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640 | 51.5 | 183.2 ± 2.0 | 4.7 ± 0.1 | 20.1 | 68.0 |
169
- | [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.6 ± 1.4 | 6.2 ± 0.1 | 25.3 | 86.9 |
170
- | [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.8 ± 6.7 | 11.3 ± 0.2 | 56.9 | 194.9 |
163
+ | Model | size<br><sup>(pixels)</sup> | mAP<sup>val<br>50-95</sup> | mAP<sup>val<br>50-95(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
164
+ | ------------------------------------------------------------------------------------ | --------------------------- | -------------------------- | ------------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
165
+ | [YOLO26n](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n.pt) | 640 | 40.9 | 40.1 | 38.9 ± 0.7 | 1.7 ± 0.0 | 2.4 | 5.4 |
166
+ | [YOLO26s](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s.pt) | 640 | 48.6 | 47.8 | 87.2 ± 0.9 | 2.5 ± 0.0 | 9.5 | 20.7 |
167
+ | [YOLO26m](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m.pt) | 640 | 53.1 | 52.5 | 220.0 ± 1.4 | 4.7 ± 0.1 | 20.4 | 68.2 |
168
+ | [YOLO26l](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l.pt) | 640 | 55.0 | 54.4 | 286.2 ± 2.0 | 6.2 ± 0.2 | 24.8 | 86.4 |
169
+ | [YOLO26x](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x.pt) | 640 | 57.5 | 56.9 | 525.8 ± 4.0 | 11.8 ± 0.2 | 55.7 | 193.9 |
171
170
 
172
171
  - **mAP<sup>val</sup>** values refer to single-model single-scale performance on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val detect data=coco.yaml device=0`
173
172
  - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val detect data=coco.yaml batch=1 device=0|cpu`
@@ -178,13 +177,13 @@ Explore the [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usa
178
177
 
179
178
  Refer to the [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage examples. These models are trained on [COCO-Seg](https://docs.ultralytics.com/datasets/segment/coco/), including 80 classes.
180
179
 
181
- | Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
182
- | -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
183
- | [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.9 ± 1.1 | 1.8 ± 0.0 | 2.9 | 9.7 |
184
- | [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.6 ± 4.9 | 2.9 ± 0.0 | 10.1 | 33.0 |
185
- | [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.6 ± 1.2 | 6.3 ± 0.1 | 22.4 | 113.2 |
186
- | [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.2 ± 3.2 | 7.8 ± 0.2 | 27.6 | 132.2 |
187
- | [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.5 ± 3.2 | 15.8 ± 0.7 | 62.1 | 296.4 |
180
+ | Model | size<br><sup>(pixels)</sup> | mAP<sup>box<br>50-95(e2e)</sup> | mAP<sup>mask<br>50-95(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
181
+ | -------------------------------------------------------------------------------------------- | --------------------------- | ------------------------------- | -------------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
182
+ | [YOLO26n-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-seg.pt) | 640 | 39.6 | 33.9 | 53.3 ± 0.5 | 2.1 ± 0.0 | 2.7 | 9.1 |
183
+ | [YOLO26s-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-seg.pt) | 640 | 47.3 | 40.0 | 118.4 ± 0.9 | 3.3 ± 0.0 | 10.4 | 34.2 |
184
+ | [YOLO26m-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-seg.pt) | 640 | 52.5 | 44.1 | 328.2 ± 2.4 | 6.7 ± 0.1 | 23.6 | 121.5 |
185
+ | [YOLO26l-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-seg.pt) | 640 | 54.4 | 45.5 | 387.0 ± 3.7 | 8.0 ± 0.1 | 28.0 | 139.8 |
186
+ | [YOLO26x-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-seg.pt) | 640 | 56.5 | 47.0 | 787.0 ± 6.8 | 16.4 ± 0.1 | 62.8 | 313.5 |
188
187
 
189
188
  - **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val segment data=coco.yaml device=0`
190
189
  - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val segment data=coco.yaml batch=1 device=0|cpu`
@@ -195,13 +194,13 @@ Refer to the [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) fo
195
194
 
196
195
  Consult the [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples. These models are trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), covering 1000 classes.
197
196
 
198
- | Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 224 |
199
- | -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
200
- | [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.0 ± 0.3 | 1.1 ± 0.0 | 2.8 | 0.5 |
201
- | [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.9 ± 0.2 | 1.3 ± 0.0 | 6.7 | 1.6 |
202
- | [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.2 ± 0.4 | 2.0 ± 0.0 | 11.6 | 4.9 |
203
- | [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.2 ± 0.3 | 2.8 ± 0.0 | 14.1 | 6.2 |
204
- | [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.4 ± 0.9 | 3.8 ± 0.0 | 29.6 | 13.6 |
197
+ | Model | size<br><sup>(pixels)</sup> | acc<br><sup>top1</sup> | acc<br><sup>top5</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B) at 224</sup> |
198
+ | -------------------------------------------------------------------------------------------- | --------------------------- | ---------------------- | ---------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ------------------------------ |
199
+ | [YOLO26n-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-cls.pt) | 224 | 71.4 | 90.1 | 5.0 ± 0.3 | 1.1 ± 0.0 | 2.8 | 0.5 |
200
+ | [YOLO26s-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-cls.pt) | 224 | 76.0 | 92.9 | 7.9 ± 0.2 | 1.3 ± 0.0 | 6.7 | 1.6 |
201
+ | [YOLO26m-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-cls.pt) | 224 | 78.1 | 94.2 | 17.2 ± 0.4 | 2.0 ± 0.0 | 11.6 | 4.9 |
202
+ | [YOLO26l-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-cls.pt) | 224 | 79.0 | 94.6 | 23.2 ± 0.3 | 2.8 ± 0.0 | 14.1 | 6.2 |
203
+ | [YOLO26x-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-cls.pt) | 224 | 79.9 | 95.0 | 41.4 ± 0.9 | 3.8 ± 0.0 | 29.6 | 13.6 |
205
204
 
206
205
  - **acc** values represent model accuracy on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce with `yolo val classify data=path/to/ImageNet device=0`
207
206
  - **Speed** metrics are averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
@@ -212,13 +211,13 @@ Consult the [Classification Docs](https://docs.ultralytics.com/tasks/classify/)
212
211
 
213
212
  See the [Pose Estimation Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples. These models are trained on [COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/), focusing on the 'person' class.
214
213
 
215
- | Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
216
- | ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
217
- | [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640 | 50.0 | 81.0 | 52.4 ± 0.5 | 1.7 ± 0.0 | 2.9 | 7.4 |
218
- | [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640 | 58.9 | 86.3 | 90.5 ± 0.6 | 2.6 ± 0.0 | 9.9 | 23.1 |
219
- | [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640 | 64.9 | 89.4 | 187.3 ± 0.8 | 4.9 ± 0.1 | 20.9 | 71.4 |
220
- | [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640 | 66.1 | 89.9 | 247.7 ± 1.1 | 6.4 ± 0.1 | 26.1 | 90.3 |
221
- | [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640 | 69.5 | 91.1 | 488.0 ± 13.9 | 12.1 ± 0.2 | 58.8 | 202.8 |
214
+ | Model | size<br><sup>(pixels)</sup> | mAP<sup>pose<br>50-95(e2e)</sup> | mAP<sup>pose<br>50(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
215
+ | ---------------------------------------------------------------------------------------------- | --------------------------- | -------------------------------- | ----------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
216
+ | [YOLO26n-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-pose.pt) | 640 | 57.2 | 83.3 | 40.3 ± 0.5 | 1.8 ± 0.0 | 2.9 | 7.5 |
217
+ | [YOLO26s-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-pose.pt) | 640 | 63.0 | 86.6 | 85.3 ± 0.9 | 2.7 ± 0.0 | 10.4 | 23.9 |
218
+ | [YOLO26m-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-pose.pt) | 640 | 68.8 | 89.6 | 218.0 ± 1.5 | 5.0 ± 0.1 | 21.5 | 73.1 |
219
+ | [YOLO26l-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-pose.pt) | 640 | 70.4 | 90.5 | 275.4 ± 2.4 | 6.5 ± 0.1 | 25.9 | 91.3 |
220
+ | [YOLO26x-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-pose.pt) | 640 | 71.6 | 91.6 | 565.4 ± 3.0 | 12.2 ± 0.2 | 57.6 | 201.7 |
222
221
 
223
222
  - **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO Keypoints val2017](https://docs.ultralytics.com/datasets/pose/coco/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val pose data=coco-pose.yaml device=0`
224
223
  - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
@@ -229,13 +228,13 @@ See the [Pose Estimation Docs](https://docs.ultralytics.com/tasks/pose/) for usa
229
228
 
230
229
  Check the [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples. These models are trained on [DOTAv1](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10/), including 15 classes.
231
230
 
232
- | Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
233
- | -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
234
- | [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.6 ± 0.8 | 4.4 ± 0.0 | 2.7 | 16.8 |
235
- | [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.4 ± 4.0 | 5.1 ± 0.0 | 9.7 | 57.1 |
236
- | [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.8 ± 2.9 | 10.1 ± 0.4 | 20.9 | 182.8 |
237
- | [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.5 ± 5.0 | 13.5 ± 0.6 | 26.1 | 231.2 |
238
- | [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.6 ± 7.7 | 28.6 ± 1.0 | 58.8 | 519.1 |
231
+ | Model | size<br><sup>(pixels)</sup> | mAP<sup>test<br>50-95(e2e)</sup> | mAP<sup>test<br>50(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
232
+ | -------------------------------------------------------------------------------------------- | --------------------------- | -------------------------------- | ----------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
233
+ | [YOLO26n-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-obb.pt) | 1024 | 52.4 | 78.9 | 97.7 ± 0.9 | 2.8 ± 0.0 | 2.5 | 14.0 |
234
+ | [YOLO26s-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-obb.pt) | 1024 | 54.8 | 80.9 | 218.0 ± 1.4 | 4.9 ± 0.1 | 9.8 | 55.1 |
235
+ | [YOLO26m-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-obb.pt) | 1024 | 55.3 | 81.0 | 579.2 ± 3.8 | 10.2 ± 0.3 | 21.2 | 183.3 |
236
+ | [YOLO26l-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-obb.pt) | 1024 | 56.2 | 81.6 | 735.6 ± 3.1 | 13.0 ± 0.2 | 25.6 | 230.0 |
237
+ | [YOLO26x-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-obb.pt) | 1024 | 56.7 | 81.7 | 1485.7 ± 11.5 | 30.5 ± 0.9 | 57.6 | 516.5 |
239
238
 
240
239
  - **mAP<sup>test</sup>** values are for single-model multiscale performance on the [DOTAv1 test set](https://captain-whu.github.io/DOTA/dataset.html). <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to the [DOTA evaluation server](https://captain-whu.github.io/DOTA/evaluation.html).
241
240
  - **Speed** metrics are averaged over [DOTAv1 val images](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10) using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
@@ -270,13 +269,6 @@ Our key integrations with leading AI platforms extend the functionality of Ultra
270
269
  | :-----------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------: |
271
270
  | Streamline YOLO workflows: Label, train, and deploy effortlessly with [Ultralytics HUB](https://hub.ultralytics.com/). Try now! | Track experiments, hyperparameters, and results with [Weights & Biases](https://docs.ultralytics.com/integrations/weights-biases/). | Free forever, [Comet ML](https://docs.ultralytics.com/integrations/comet/) lets you save YOLO models, resume training, and interactively visualize predictions. | Run YOLO inference up to 6x faster with [Neural Magic DeepSparse](https://docs.ultralytics.com/integrations/neural-magic/). |
272
271
 
273
- ## 🌟 Ultralytics HUB
274
-
275
- Experience seamless AI with [Ultralytics HUB](https://hub.ultralytics.com/), the all-in-one platform for data visualization, training YOLO models, and deployment—no coding required. Transform images into actionable insights and bring your AI visions to life effortlessly using our cutting-edge platform and user-friendly [Ultralytics App](https://www.ultralytics.com/app-install). Start your journey for **Free** today!
276
-
277
- <a href="https://www.ultralytics.com/hub" target="_blank">
278
- <img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png" alt="Ultralytics HUB preview image"></a>
279
-
280
272
  ## 🤝 Contribute
281
273
 
282
274
  We thrive on community collaboration! Ultralytics YOLO wouldn't be the SOTA framework it is without contributions from developers like you. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing/) to get started. We also welcome your feedback—share your experience by completing our [Survey](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey). A huge **Thank You** 🙏 to everyone who contributes!