dgenerate-ultralytics-headless 8.3.237__tar.gz → 8.3.240__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (304) hide show
  1. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/PKG-INFO +2 -1
  2. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/dgenerate_ultralytics_headless.egg-info/PKG-INFO +2 -1
  3. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/dgenerate_ultralytics_headless.egg-info/SOURCES.txt +0 -1
  4. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/dgenerate_ultralytics_headless.egg-info/requires.txt +1 -0
  5. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/pyproject.toml +2 -1
  6. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/tests/test_exports.py +3 -1
  7. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/tests/test_python.py +2 -2
  8. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/tests/test_solutions.py +6 -6
  9. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/__init__.py +1 -1
  10. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/__init__.py +4 -4
  11. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/datasets/Argoverse.yaml +7 -6
  12. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/datasets/DOTAv1.5.yaml +1 -1
  13. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/datasets/DOTAv1.yaml +1 -1
  14. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/datasets/VOC.yaml +15 -16
  15. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/datasets/african-wildlife.yaml +1 -1
  16. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/datasets/coco128-seg.yaml +1 -1
  17. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/datasets/dota8-multispectral.yaml +1 -1
  18. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/datasets/dota8.yaml +2 -2
  19. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/datasets/kitti.yaml +1 -1
  20. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/datasets/xView.yaml +16 -16
  21. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/11/yolo11-pose.yaml +1 -1
  22. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/11/yoloe-11-seg.yaml +2 -2
  23. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/11/yoloe-11.yaml +2 -2
  24. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +9 -6
  25. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v8/yoloe-v8.yaml +9 -6
  26. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +1 -1
  27. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +1 -1
  28. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +2 -2
  29. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +2 -2
  30. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v8/yolov8-ghost.yaml +2 -2
  31. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v8/yolov8-obb.yaml +1 -1
  32. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v8/yolov8-p2.yaml +1 -1
  33. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +1 -1
  34. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +1 -1
  35. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v8/yolov8-world.yaml +1 -1
  36. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v8/yolov8-worldv2.yaml +6 -6
  37. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/data/augment.py +1 -1
  38. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/data/base.py +4 -2
  39. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/data/build.py +4 -4
  40. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/data/loaders.py +17 -12
  41. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/data/utils.py +4 -4
  42. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/engine/exporter.py +24 -16
  43. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/engine/predictor.py +5 -4
  44. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/engine/results.py +12 -13
  45. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/engine/trainer.py +2 -2
  46. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/engine/tuner.py +2 -3
  47. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/engine/validator.py +2 -2
  48. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/fastsam/model.py +2 -2
  49. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/fastsam/predict.py +2 -3
  50. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/fastsam/val.py +4 -4
  51. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/rtdetr/predict.py +2 -3
  52. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/rtdetr/val.py +5 -4
  53. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/sam/build.py +5 -5
  54. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/sam/build_sam3.py +9 -6
  55. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/sam/model.py +1 -1
  56. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/sam/modules/sam.py +10 -5
  57. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/sam/modules/utils.py +8 -3
  58. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/sam/predict.py +53 -62
  59. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/sam/sam3/encoder.py +4 -4
  60. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/sam/sam3/geometry_encoders.py +3 -3
  61. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/sam/sam3/necks.py +17 -17
  62. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/sam/sam3/sam3_image.py +3 -21
  63. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/sam/sam3/vl_combiner.py +1 -6
  64. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/yolo/classify/val.py +1 -1
  65. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/yolo/detect/train.py +1 -1
  66. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/yolo/detect/val.py +7 -7
  67. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/yolo/obb/val.py +1 -1
  68. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/yolo/pose/val.py +1 -1
  69. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/yolo/segment/val.py +1 -1
  70. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/nn/autobackend.py +9 -9
  71. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/nn/modules/block.py +1 -1
  72. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/nn/tasks.py +3 -3
  73. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/nn/text_model.py +2 -7
  74. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/solutions/ai_gym.py +1 -1
  75. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/solutions/analytics.py +6 -6
  76. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/solutions/config.py +1 -1
  77. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/solutions/distance_calculation.py +1 -1
  78. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/solutions/object_counter.py +1 -1
  79. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/solutions/object_cropper.py +3 -6
  80. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/solutions/parking_management.py +21 -17
  81. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/solutions/queue_management.py +5 -5
  82. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/solutions/region_counter.py +2 -2
  83. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/solutions/security_alarm.py +1 -1
  84. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/solutions/solutions.py +45 -22
  85. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/solutions/speed_estimation.py +1 -1
  86. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/trackers/basetrack.py +1 -1
  87. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/trackers/bot_sort.py +4 -3
  88. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/trackers/byte_tracker.py +4 -4
  89. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/trackers/utils/gmc.py +6 -7
  90. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/trackers/utils/kalman_filter.py +2 -1
  91. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/trackers/utils/matching.py +4 -3
  92. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/__init__.py +12 -3
  93. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/benchmarks.py +2 -2
  94. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/callbacks/tensorboard.py +19 -25
  95. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/checks.py +2 -1
  96. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/downloads.py +1 -1
  97. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/export/tensorflow.py +16 -2
  98. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/files.py +13 -12
  99. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/logger.py +62 -27
  100. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/metrics.py +1 -1
  101. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/ops.py +6 -6
  102. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/patches.py +3 -3
  103. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/plotting.py +18 -23
  104. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/tuner.py +1 -1
  105. dgenerate_ultralytics_headless-8.3.237/ultralytics/models/sam/sam3/tokenizer_ve.py +0 -242
  106. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/LICENSE +0 -0
  107. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/README.md +0 -0
  108. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/dgenerate_ultralytics_headless.egg-info/dependency_links.txt +0 -0
  109. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/dgenerate_ultralytics_headless.egg-info/entry_points.txt +0 -0
  110. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/dgenerate_ultralytics_headless.egg-info/top_level.txt +0 -0
  111. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/setup.cfg +0 -0
  112. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/tests/__init__.py +0 -0
  113. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/tests/conftest.py +0 -0
  114. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/tests/test_cli.py +0 -0
  115. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/tests/test_cuda.py +0 -0
  116. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/tests/test_engine.py +0 -0
  117. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/tests/test_integrations.py +0 -0
  118. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/assets/bus.jpg +0 -0
  119. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/assets/zidane.jpg +0 -0
  120. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/datasets/GlobalWheat2020.yaml +0 -0
  121. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/datasets/HomeObjects-3K.yaml +0 -0
  122. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/datasets/ImageNet.yaml +0 -0
  123. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/datasets/Objects365.yaml +0 -0
  124. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/datasets/SKU-110K.yaml +0 -0
  125. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/datasets/VisDrone.yaml +0 -0
  126. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/datasets/brain-tumor.yaml +0 -0
  127. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/datasets/carparts-seg.yaml +0 -0
  128. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/datasets/coco-pose.yaml +0 -0
  129. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/datasets/coco.yaml +0 -0
  130. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/datasets/coco128.yaml +0 -0
  131. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/datasets/coco8-grayscale.yaml +0 -0
  132. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/datasets/coco8-multispectral.yaml +0 -0
  133. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/datasets/coco8-pose.yaml +0 -0
  134. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/datasets/coco8-seg.yaml +0 -0
  135. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/datasets/coco8.yaml +0 -0
  136. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/datasets/construction-ppe.yaml +0 -0
  137. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/datasets/crack-seg.yaml +0 -0
  138. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/datasets/dog-pose.yaml +0 -0
  139. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/datasets/hand-keypoints.yaml +0 -0
  140. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/datasets/lvis.yaml +0 -0
  141. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/datasets/medical-pills.yaml +0 -0
  142. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/datasets/open-images-v7.yaml +0 -0
  143. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/datasets/package-seg.yaml +0 -0
  144. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/datasets/signature.yaml +0 -0
  145. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/datasets/tiger-pose.yaml +0 -0
  146. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/default.yaml +0 -0
  147. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +0 -0
  148. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/11/yolo11-cls.yaml +0 -0
  149. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/11/yolo11-obb.yaml +0 -0
  150. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/11/yolo11-seg.yaml +0 -0
  151. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/11/yolo11.yaml +0 -0
  152. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/12/yolo12-cls.yaml +0 -0
  153. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/12/yolo12-obb.yaml +0 -0
  154. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/12/yolo12-pose.yaml +0 -0
  155. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/12/yolo12-seg.yaml +0 -0
  156. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/12/yolo12.yaml +0 -0
  157. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +0 -0
  158. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +0 -0
  159. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +0 -0
  160. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +0 -0
  161. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v10/yolov10b.yaml +0 -0
  162. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v10/yolov10l.yaml +0 -0
  163. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v10/yolov10m.yaml +0 -0
  164. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v10/yolov10n.yaml +0 -0
  165. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v10/yolov10s.yaml +0 -0
  166. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v10/yolov10x.yaml +0 -0
  167. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v3/yolov3-spp.yaml +0 -0
  168. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v3/yolov3-tiny.yaml +0 -0
  169. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v3/yolov3.yaml +0 -0
  170. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v5/yolov5-p6.yaml +0 -0
  171. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v5/yolov5.yaml +0 -0
  172. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v6/yolov6.yaml +0 -0
  173. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v8/yolov8-cls.yaml +0 -0
  174. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v8/yolov8-p6.yaml +0 -0
  175. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v8/yolov8-pose.yaml +0 -0
  176. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +0 -0
  177. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v8/yolov8-seg.yaml +0 -0
  178. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v8/yolov8.yaml +0 -0
  179. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v9/yolov9c-seg.yaml +0 -0
  180. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v9/yolov9c.yaml +0 -0
  181. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v9/yolov9e-seg.yaml +0 -0
  182. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v9/yolov9e.yaml +0 -0
  183. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v9/yolov9m.yaml +0 -0
  184. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v9/yolov9s.yaml +0 -0
  185. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/models/v9/yolov9t.yaml +0 -0
  186. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/trackers/botsort.yaml +0 -0
  187. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/cfg/trackers/bytetrack.yaml +0 -0
  188. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/data/__init__.py +0 -0
  189. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/data/annotator.py +0 -0
  190. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/data/converter.py +0 -0
  191. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/data/dataset.py +0 -0
  192. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/data/scripts/download_weights.sh +0 -0
  193. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/data/scripts/get_coco.sh +0 -0
  194. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/data/scripts/get_coco128.sh +0 -0
  195. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/data/scripts/get_imagenet.sh +0 -0
  196. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/data/split.py +0 -0
  197. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/data/split_dota.py +0 -0
  198. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/engine/__init__.py +0 -0
  199. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/engine/model.py +0 -0
  200. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/hub/__init__.py +0 -0
  201. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/hub/auth.py +0 -0
  202. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/hub/google/__init__.py +0 -0
  203. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/hub/session.py +0 -0
  204. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/hub/utils.py +0 -0
  205. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/__init__.py +0 -0
  206. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/fastsam/__init__.py +0 -0
  207. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/fastsam/utils.py +0 -0
  208. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/nas/__init__.py +0 -0
  209. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/nas/model.py +0 -0
  210. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/nas/predict.py +0 -0
  211. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/nas/val.py +0 -0
  212. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/rtdetr/__init__.py +0 -0
  213. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/rtdetr/model.py +0 -0
  214. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/rtdetr/train.py +0 -0
  215. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/sam/__init__.py +0 -0
  216. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/sam/amg.py +0 -0
  217. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/sam/modules/__init__.py +0 -0
  218. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/sam/modules/blocks.py +0 -0
  219. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/sam/modules/decoders.py +0 -0
  220. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/sam/modules/encoders.py +0 -0
  221. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/sam/modules/memory_attention.py +0 -0
  222. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/sam/modules/tiny_encoder.py +0 -0
  223. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/sam/modules/transformer.py +0 -0
  224. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/sam/sam3/__init__.py +0 -0
  225. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/sam/sam3/decoder.py +0 -0
  226. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/sam/sam3/maskformer_segmentation.py +0 -0
  227. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/sam/sam3/model_misc.py +0 -0
  228. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/sam/sam3/text_encoder_ve.py +0 -0
  229. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/sam/sam3/vitdet.py +0 -0
  230. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/utils/__init__.py +0 -0
  231. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/utils/loss.py +0 -0
  232. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/utils/ops.py +0 -0
  233. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/yolo/__init__.py +0 -0
  234. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/yolo/classify/__init__.py +0 -0
  235. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/yolo/classify/predict.py +0 -0
  236. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/yolo/classify/train.py +0 -0
  237. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/yolo/detect/__init__.py +0 -0
  238. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/yolo/detect/predict.py +0 -0
  239. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/yolo/model.py +0 -0
  240. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/yolo/obb/__init__.py +0 -0
  241. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/yolo/obb/predict.py +0 -0
  242. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/yolo/obb/train.py +0 -0
  243. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/yolo/pose/__init__.py +0 -0
  244. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/yolo/pose/predict.py +0 -0
  245. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/yolo/pose/train.py +0 -0
  246. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/yolo/segment/__init__.py +0 -0
  247. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/yolo/segment/predict.py +0 -0
  248. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/yolo/segment/train.py +0 -0
  249. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/yolo/world/__init__.py +0 -0
  250. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/yolo/world/train.py +0 -0
  251. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/yolo/world/train_world.py +0 -0
  252. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/yolo/yoloe/__init__.py +0 -0
  253. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/yolo/yoloe/predict.py +0 -0
  254. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/yolo/yoloe/train.py +0 -0
  255. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/yolo/yoloe/train_seg.py +0 -0
  256. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/models/yolo/yoloe/val.py +0 -0
  257. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/nn/__init__.py +0 -0
  258. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/nn/modules/__init__.py +0 -0
  259. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/nn/modules/activation.py +0 -0
  260. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/nn/modules/conv.py +0 -0
  261. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/nn/modules/head.py +0 -0
  262. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/nn/modules/transformer.py +0 -0
  263. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/nn/modules/utils.py +0 -0
  264. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/py.typed +0 -0
  265. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/solutions/__init__.py +0 -0
  266. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/solutions/heatmap.py +0 -0
  267. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/solutions/instance_segmentation.py +0 -0
  268. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/solutions/object_blurrer.py +0 -0
  269. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/solutions/similarity_search.py +0 -0
  270. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/solutions/streamlit_inference.py +0 -0
  271. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/solutions/templates/similarity-search.html +0 -0
  272. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/solutions/trackzone.py +0 -0
  273. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/solutions/vision_eye.py +0 -0
  274. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/trackers/__init__.py +0 -0
  275. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/trackers/track.py +0 -0
  276. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/trackers/utils/__init__.py +0 -0
  277. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/autobatch.py +0 -0
  278. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/autodevice.py +0 -0
  279. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/callbacks/__init__.py +0 -0
  280. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/callbacks/base.py +0 -0
  281. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/callbacks/clearml.py +0 -0
  282. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/callbacks/comet.py +0 -0
  283. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/callbacks/dvc.py +0 -0
  284. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/callbacks/hub.py +0 -0
  285. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/callbacks/mlflow.py +0 -0
  286. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/callbacks/neptune.py +0 -0
  287. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/callbacks/platform.py +0 -0
  288. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/callbacks/raytune.py +0 -0
  289. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/callbacks/wb.py +0 -0
  290. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/cpu.py +0 -0
  291. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/dist.py +0 -0
  292. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/errors.py +0 -0
  293. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/events.py +0 -0
  294. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/export/__init__.py +0 -0
  295. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/export/engine.py +0 -0
  296. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/export/imx.py +0 -0
  297. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/git.py +0 -0
  298. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/instance.py +0 -0
  299. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/loss.py +0 -0
  300. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/nms.py +0 -0
  301. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/tal.py +0 -0
  302. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/torch_utils.py +0 -0
  303. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/tqdm.py +0 -0
  304. {dgenerate_ultralytics_headless-8.3.237 → dgenerate_ultralytics_headless-8.3.240}/ultralytics/utils/triton.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: dgenerate-ultralytics-headless
3
- Version: 8.3.237
3
+ Version: 8.3.240
4
4
  Summary: Automatically built Ultralytics package with python-opencv-headless dependency instead of python-opencv
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -57,6 +57,7 @@ Provides-Extra: export
57
57
  Requires-Dist: numpy<2.0.0; extra == "export"
58
58
  Requires-Dist: onnx>=1.12.0; platform_system != "Darwin" and extra == "export"
59
59
  Requires-Dist: onnx<1.18.0,>=1.12.0; platform_system == "Darwin" and extra == "export"
60
+ Requires-Dist: onnxslim>=0.1.80; extra == "export"
60
61
  Requires-Dist: coremltools>=9.0; (platform_system != "Windows" and python_version <= "3.13") and extra == "export"
61
62
  Requires-Dist: scikit-learn>=1.3.2; (platform_system != "Windows" and python_version <= "3.13") and extra == "export"
62
63
  Requires-Dist: openvino>=2024.0.0; extra == "export"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: dgenerate-ultralytics-headless
3
- Version: 8.3.237
3
+ Version: 8.3.240
4
4
  Summary: Automatically built Ultralytics package with python-opencv-headless dependency instead of python-opencv
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -57,6 +57,7 @@ Provides-Extra: export
57
57
  Requires-Dist: numpy<2.0.0; extra == "export"
58
58
  Requires-Dist: onnx>=1.12.0; platform_system != "Darwin" and extra == "export"
59
59
  Requires-Dist: onnx<1.18.0,>=1.12.0; platform_system == "Darwin" and extra == "export"
60
+ Requires-Dist: onnxslim>=0.1.80; extra == "export"
60
61
  Requires-Dist: coremltools>=9.0; (platform_system != "Windows" and python_version <= "3.13") and extra == "export"
61
62
  Requires-Dist: scikit-learn>=1.3.2; (platform_system != "Windows" and python_version <= "3.13") and extra == "export"
62
63
  Requires-Dist: openvino>=2024.0.0; extra == "export"
@@ -189,7 +189,6 @@ ultralytics/models/sam/sam3/model_misc.py
189
189
  ultralytics/models/sam/sam3/necks.py
190
190
  ultralytics/models/sam/sam3/sam3_image.py
191
191
  ultralytics/models/sam/sam3/text_encoder_ve.py
192
- ultralytics/models/sam/sam3/tokenizer_ve.py
193
192
  ultralytics/models/sam/sam3/vitdet.py
194
193
  ultralytics/models/sam/sam3/vl_combiner.py
195
194
  ultralytics/models/utils/__init__.py
@@ -27,6 +27,7 @@ zensical>=0.0.9
27
27
 
28
28
  [export]
29
29
  numpy<2.0.0
30
+ onnxslim>=0.1.80
30
31
  openvino>=2024.0.0
31
32
  tensorflow<=2.19.0,>=2.0.0
32
33
  tensorflowjs>=2.0.0
@@ -90,7 +90,8 @@ dev = [
90
90
  export = [
91
91
  "numpy<2.0.0", # TF 2.20 compatibility
92
92
  "onnx>=1.12.0; platform_system != 'Darwin'", # ONNX export
93
- "onnx>=1.12.0,<1.18.0; platform_system == 'Darwin'", # TF inference hanging on MacOS
93
+ "onnx>=1.12.0,<1.18.0; platform_system == 'Darwin'", # TF inference hanging on MacOS (tested up to onnx==1.20.0)
94
+ "onnxslim>=0.1.80",
94
95
  "coremltools>=9.0; platform_system != 'Windows' and python_version <= '3.13'", # CoreML supported on macOS and Linux
95
96
  "scikit-learn>=1.3.2; platform_system != 'Windows' and python_version <= '3.13'", # CoreML k-means quantization
96
97
  "openvino>=2024.0.0", # OpenVINO export
@@ -13,7 +13,7 @@ from tests import MODEL, SOURCE
13
13
  from ultralytics import YOLO
14
14
  from ultralytics.cfg import TASK2DATA, TASK2MODEL, TASKS
15
15
  from ultralytics.utils import ARM64, IS_RASPBERRYPI, LINUX, MACOS, WINDOWS, checks
16
- from ultralytics.utils.torch_utils import TORCH_1_11, TORCH_1_13, TORCH_2_1, TORCH_2_8, TORCH_2_9
16
+ from ultralytics.utils.torch_utils import TORCH_1_10, TORCH_1_11, TORCH_1_13, TORCH_2_1, TORCH_2_8, TORCH_2_9
17
17
 
18
18
 
19
19
  def test_export_torchscript():
@@ -210,6 +210,7 @@ def test_export_paddle():
210
210
 
211
211
 
212
212
  @pytest.mark.slow
213
+ @pytest.mark.skipif(not TORCH_1_10, reason="MNN export requires torch>=1.10")
213
214
  def test_export_mnn():
214
215
  """Test YOLO export to MNN format (WARNING: MNN test must precede NCNN test or CI error on Windows)."""
215
216
  file = YOLO(MODEL).export(format="mnn", imgsz=32)
@@ -217,6 +218,7 @@ def test_export_mnn():
217
218
 
218
219
 
219
220
  @pytest.mark.slow
221
+ @pytest.mark.skipif(not TORCH_1_10, reason="MNN export requires torch>=1.10")
220
222
  @pytest.mark.parametrize(
221
223
  "task, int8, half, batch",
222
224
  [ # generate all combinations except for exclusion cases
@@ -112,7 +112,7 @@ def test_predict_img(model_name):
112
112
  """Test YOLO model predictions on various image input types and sources, including online images."""
113
113
  channels = 1 if model_name == "yolo11n-grayscale.pt" else 3
114
114
  model = YOLO(WEIGHTS_DIR / model_name)
115
- im = cv2.imread(str(SOURCE), flags=cv2.IMREAD_GRAYSCALE if channels == 1 else cv2.IMREAD_COLOR) # uint8 numpy array
115
+ im = cv2.imread(str(SOURCE), flags=cv2.IMREAD_GRAYSCALE if channels == 1 else cv2.IMREAD_COLOR) # uint8 NumPy array
116
116
  assert len(model(source=Image.open(SOURCE), save=True, verbose=True, imgsz=32)) == 1 # PIL
117
117
  assert len(model(source=im, save=True, save_txt=True, imgsz=32)) == 1 # ndarray
118
118
  assert len(model(torch.rand((2, channels, 32, 32)), imgsz=32)) == 2 # batch-size 2 Tensor, FP32 0.0-1.0 RGB order
@@ -572,7 +572,7 @@ def test_hub():
572
572
 
573
573
  @pytest.fixture
574
574
  def image():
575
- """Load and return an image from a predefined source."""
575
+ """Load and return an image from a predefined source (OpenCV BGR)."""
576
576
  return cv2.imread(str(SOURCE))
577
577
 
578
578
 
@@ -1,7 +1,7 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
3
  # Tests Ultralytics Solutions: https://docs.ultralytics.com/solutions/,
4
- # including every solution excluding DistanceCalculation and Security Alarm System.
4
+ # Includes all solutions except DistanceCalculation and the Security Alarm System.
5
5
 
6
6
  import os
7
7
  from unittest.mock import patch
@@ -16,7 +16,7 @@ from ultralytics.utils import ASSETS_URL, IS_RASPBERRYPI, TORCH_VERSION, checks
16
16
  from ultralytics.utils.downloads import safe_download
17
17
  from ultralytics.utils.torch_utils import TORCH_2_4
18
18
 
19
- # Pre-defined arguments values
19
+ # Predefined argument values
20
20
  SHOW = False
21
21
  DEMO_VIDEO = "solutions_ci_demo.mp4" # for all the solutions, except workout, object cropping and parking management
22
22
  CROP_VIDEO = "decelera_landscape_min.mov" # for object cropping solution
@@ -243,13 +243,13 @@ def test_parking_json_none():
243
243
 
244
244
 
245
245
  def test_analytics_graph_not_supported():
246
- """Test that unsupported analytics type raises ModuleNotFoundError."""
246
+ """Test that unsupported analytics type raises ValueError."""
247
247
  try:
248
248
  analytics = solutions.Analytics(analytics_type="test") # 'test' is unsupported
249
249
  analytics.process(im0=np.zeros((640, 480, 3), dtype=np.uint8), frame_number=0)
250
- assert False, "Expected ModuleNotFoundError for unsupported chart type"
251
- except ModuleNotFoundError as e:
252
- assert "test chart is not supported" in str(e)
250
+ assert False, "Expected ValueError for unsupported chart type"
251
+ except ValueError as e:
252
+ assert "Unsupported analytics_type" in str(e)
253
253
 
254
254
 
255
255
  def test_area_chart_padding():
@@ -1,6 +1,6 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- __version__ = "8.3.237"
3
+ __version__ = "8.3.240"
4
4
 
5
5
  import importlib
6
6
  import os
@@ -89,13 +89,13 @@ SOLUTIONS_HELP_MSG = f"""
89
89
  1. Call object counting solution
90
90
  yolo solutions count source="path/to/video.mp4" region="[(20, 400), (1080, 400), (1080, 360), (20, 360)]"
91
91
 
92
- 2. Call heatmaps solution
92
+ 2. Call heatmap solution
93
93
  yolo solutions heatmap colormap=cv2.COLORMAP_PARULA model=yolo11n.pt
94
94
 
95
95
  3. Call queue management solution
96
96
  yolo solutions queue region="[(20, 400), (1080, 400), (1080, 360), (20, 360)]" model=yolo11n.pt
97
97
 
98
- 4. Call workouts monitoring solution for push-ups
98
+ 4. Call workout monitoring solution for push-ups
99
99
  yolo solutions workout model=yolo11n-pose.pt kpts=[6, 8, 10]
100
100
 
101
101
  5. Generate analytical graphs
@@ -123,14 +123,14 @@ CLI_HELP_MSG = f"""
123
123
  2. Predict a YouTube video using a pretrained segmentation model at image size 320:
124
124
  yolo predict model=yolo11n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320
125
125
 
126
- 3. Val a pretrained detection model at batch-size 1 and image size 640:
126
+ 3. Validate a pretrained detection model at batch-size 1 and image size 640:
127
127
  yolo val model=yolo11n.pt data=coco8.yaml batch=1 imgsz=640
128
128
 
129
129
  4. Export a YOLO11n classification model to ONNX format at image size 224 by 128 (no TASK required)
130
130
  yolo export model=yolo11n-cls.pt format=onnx imgsz=224,128
131
131
 
132
132
  5. Ultralytics solutions usage
133
- yolo solutions count or in {list(SOLUTION_MAP.keys())[1:-1]} source="path/to/video.mp4"
133
+ yolo solutions count or any of {list(SOLUTION_MAP.keys())[1:-1]} source="path/to/video.mp4"
134
134
 
135
135
  6. Run special commands:
136
136
  yolo help
@@ -1,6 +1,6 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- # Argoverse-HD dataset (ring-front-center camera) https://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
3
+ # Argoverse-HD dataset (ring-front-center camera) by Argo AI: https://www.cs.cmu.edu/~mengtial/proj/streaming/
4
4
  # Documentation: https://docs.ultralytics.com/datasets/detect/argoverse/
5
5
  # Example usage: yolo train data=Argoverse.yaml
6
6
  # parent
@@ -33,14 +33,15 @@ download: |
33
33
  from ultralytics.utils import TQDM
34
34
  from ultralytics.utils.downloads import download
35
35
 
36
- def argoverse2yolo(set):
36
+ def argoverse2yolo(annotation_file):
37
37
  """Convert Argoverse dataset annotations to YOLO format for object detection tasks."""
38
38
  labels = {}
39
- a = json.load(open(set, "rb"))
40
- for annot in TQDM(a["annotations"], desc=f"Converting {set} to YOLOv5 format..."):
39
+ with open(annotation_file, encoding="utf-8") as f:
40
+ a = json.load(f)
41
+ for annot in TQDM(a["annotations"], desc=f"Converting {annotation_file} to YOLO format..."):
41
42
  img_id = annot["image_id"]
42
43
  img_name = a["images"][img_id]["name"]
43
- img_label_name = f"{img_name[:-3]}txt"
44
+ img_label_name = f"{Path(img_name).stem}.txt"
44
45
 
45
46
  cls = annot["category_id"] # instance class id
46
47
  x_center, y_center, width, height = annot["bbox"]
@@ -49,7 +50,7 @@ download: |
49
50
  width /= 1920.0 # scale
50
51
  height /= 1200.0 # scale
51
52
 
52
- img_dir = set.parents[2] / "Argoverse-1.1" / "labels" / a["seq_dirs"][a["images"][annot["image_id"]]["sid"]]
53
+ img_dir = annotation_file.parents[2] / "Argoverse-1.1" / "labels" / a["seq_dirs"][a["images"][annot["image_id"]]["sid"]]
53
54
  if not img_dir.exists():
54
55
  img_dir.mkdir(parents=True, exist_ok=True)
55
56
 
@@ -6,7 +6,7 @@
6
6
  # parent
7
7
  # ├── ultralytics
8
8
  # └── datasets
9
- # └── dota1.5 ← downloads here (2GB)
9
+ # └── dota1.5 ← downloads here (2 GB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
12
  path: DOTAv1.5 # dataset root dir
@@ -6,7 +6,7 @@
6
6
  # parent
7
7
  # ├── ultralytics
8
8
  # └── datasets
9
- # └── dota1 ← downloads here (2GB)
9
+ # └── dota1 ← downloads here (2 GB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
12
  path: DOTAv1 # dataset root dir
@@ -1,7 +1,7 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
3
  # PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford
4
- # Documentation: # Documentation: https://docs.ultralytics.com/datasets/detect/voc/
4
+ # Documentation: https://docs.ultralytics.com/datasets/detect/voc/
5
5
  # Example usage: yolo train data=VOC.yaml
6
6
  # parent
7
7
  # ├── ultralytics
@@ -59,22 +59,21 @@ download: |
59
59
  x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2]
60
60
  return x * dw, y * dh, w * dw, h * dh
61
61
 
62
- in_file = open(path / f"VOC{year}/Annotations/{image_id}.xml")
63
- out_file = open(lb_path, "w")
64
- tree = ET.parse(in_file)
65
- root = tree.getroot()
66
- size = root.find("size")
67
- w = int(size.find("width").text)
68
- h = int(size.find("height").text)
62
+ with open(path / f"VOC{year}/Annotations/{image_id}.xml") as in_file, open(lb_path, "w", encoding="utf-8") as out_file:
63
+ tree = ET.parse(in_file)
64
+ root = tree.getroot()
65
+ size = root.find("size")
66
+ w = int(size.find("width").text)
67
+ h = int(size.find("height").text)
69
68
 
70
- names = list(yaml["names"].values()) # names list
71
- for obj in root.iter("object"):
72
- cls = obj.find("name").text
73
- if cls in names and int(obj.find("difficult").text) != 1:
74
- xmlbox = obj.find("bndbox")
75
- bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ("xmin", "xmax", "ymin", "ymax")])
76
- cls_id = names.index(cls) # class id
77
- out_file.write(" ".join(str(a) for a in (cls_id, *bb)) + "\n")
69
+ names = list(yaml["names"].values()) # names list
70
+ for obj in root.iter("object"):
71
+ cls = obj.find("name").text
72
+ if cls in names and int(obj.find("difficult").text) != 1:
73
+ xmlbox = obj.find("bndbox")
74
+ bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ("xmin", "xmax", "ymin", "ymax")])
75
+ cls_id = names.index(cls) # class id
76
+ out_file.write(" ".join(str(a) for a in (cls_id, *bb)) + "\n")
78
77
 
79
78
 
80
79
  # Download
@@ -1,6 +1,6 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- # African-wildlife dataset by Ultralytics
3
+ # African Wildlife dataset by Ultralytics
4
4
  # Documentation: https://docs.ultralytics.com/datasets/detect/african-wildlife/
5
5
  # Example usage: yolo train data=african-wildlife.yaml
6
6
  # parent
@@ -2,7 +2,7 @@
2
2
 
3
3
  # COCO128-seg dataset https://www.kaggle.com/datasets/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
4
4
  # Documentation: https://docs.ultralytics.com/datasets/segment/coco/
5
- # Example usage: yolo train data=coco128.yaml
5
+ # Example usage: yolo train data=coco128-seg.yaml
6
6
  # parent
7
7
  # ├── ultralytics
8
8
  # └── datasets
@@ -6,7 +6,7 @@
6
6
  # parent
7
7
  # ├── ultralytics
8
8
  # └── datasets
9
- # └── dota8-multispectral ← downloads here (37.3MB)
9
+ # └── dota8-multispectral ← downloads here (37.3 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
12
  path: dota8-multispectral # dataset root dir
@@ -1,12 +1,12 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- # DOTA8 dataset 8 images from split DOTAv1 dataset by Ultralytics
3
+ # DOTA8 dataset (8 images from the DOTAv1 split) by Ultralytics
4
4
  # Documentation: https://docs.ultralytics.com/datasets/obb/dota8/
5
5
  # Example usage: yolo train model=yolov8n-obb.pt data=dota8.yaml
6
6
  # parent
7
7
  # ├── ultralytics
8
8
  # └── datasets
9
- # └── dota8 ← downloads here (1MB)
9
+ # └── dota8 ← downloads here (1 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
12
  path: dota8 # dataset root dir
@@ -1,6 +1,6 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- # Kitti dataset by Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago
3
+ # KITTI dataset by Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago
4
4
  # Documentation: https://docs.ultralytics.com/datasets/detect/kitti/
5
5
  # Example usage: yolo train data=kitti.yaml
6
6
  # parent
@@ -1,7 +1,7 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- # DIUx xView 2018 Challenge https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA)
4
- # -------- DOWNLOAD DATA MANUALLY and jar xf val_images.zip to 'datasets/xView' before running train command! --------
3
+ # DIUx xView 2018 Challenge dataset https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA)
4
+ # -------- Download and extract data manually to `datasets/xView` before running the train command. --------
5
5
  # Documentation: https://docs.ultralytics.com/datasets/detect/xview/
6
6
  # Example usage: yolo train data=xView.yaml
7
7
  # parent
@@ -12,7 +12,7 @@
12
12
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
13
13
  path: xView # dataset root dir
14
14
  train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images
15
- val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images
15
+ val: images/autosplit_val.txt # val images (relative to 'path') 10% of 847 train images
16
16
 
17
17
  # Classes
18
18
  names:
@@ -80,8 +80,8 @@ names:
80
80
  # Download script/URL (optional) ---------------------------------------------------------------------------------------
81
81
  download: |
82
82
  import json
83
- import os
84
83
  from pathlib import Path
84
+ import shutil
85
85
 
86
86
  import numpy as np
87
87
  from PIL import Image
@@ -92,15 +92,15 @@ download: |
92
92
 
93
93
 
94
94
  def convert_labels(fname=Path("xView/xView_train.geojson")):
95
- """Converts xView geoJSON labels to YOLO format, mapping classes to indices 0-59 and saving as text files."""
95
+ """Convert xView GeoJSON labels to YOLO format (classes 0-59) and save them as text files."""
96
96
  path = fname.parent
97
97
  with open(fname, encoding="utf-8") as f:
98
98
  print(f"Loading {fname}...")
99
99
  data = json.load(f)
100
100
 
101
101
  # Make dirs
102
- labels = Path(path / "labels" / "train")
103
- os.system(f"rm -rf {labels}")
102
+ labels = path / "labels" / "train"
103
+ shutil.rmtree(labels, ignore_errors=True)
104
104
  labels.mkdir(parents=True, exist_ok=True)
105
105
 
106
106
  # xView classes 11-94 to 0-59
@@ -113,24 +113,24 @@ download: |
113
113
  for feature in TQDM(data["features"], desc=f"Converting {fname}"):
114
114
  p = feature["properties"]
115
115
  if p["bounds_imcoords"]:
116
- id = p["image_id"]
117
- file = path / "train_images" / id
118
- if file.exists(): # 1395.tif missing
116
+ image_id = p["image_id"]
117
+ image_file = path / "train_images" / image_id
118
+ if image_file.exists(): # 1395.tif missing
119
119
  try:
120
120
  box = np.array([int(num) for num in p["bounds_imcoords"].split(",")])
121
121
  assert box.shape[0] == 4, f"incorrect box shape {box.shape[0]}"
122
122
  cls = p["type_id"]
123
- cls = xview_class2index[int(cls)] # xView class to 0-60
123
+ cls = xview_class2index[int(cls)] # xView class to 0-59
124
124
  assert 59 >= cls >= 0, f"incorrect class index {cls}"
125
125
 
126
126
  # Write YOLO label
127
- if id not in shapes:
128
- shapes[id] = Image.open(file).size
129
- box = xyxy2xywhn(box[None].astype(np.float), w=shapes[id][0], h=shapes[id][1], clip=True)
130
- with open((labels / id).with_suffix(".txt"), "a", encoding="utf-8") as f:
127
+ if image_id not in shapes:
128
+ shapes[image_id] = Image.open(image_file).size
129
+ box = xyxy2xywhn(box[None].astype(float), w=shapes[image_id][0], h=shapes[image_id][1], clip=True)
130
+ with open((labels / image_id).with_suffix(".txt"), "a", encoding="utf-8") as f:
131
131
  f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n") # write label.txt
132
132
  except Exception as e:
133
- print(f"WARNING: skipping one label for {file}: {e}")
133
+ print(f"WARNING: skipping one label for {image_file}: {e}")
134
134
 
135
135
 
136
136
  # Download manually from https://challenge.xviewdataset.org
@@ -7,7 +7,7 @@
7
7
  # Parameters
8
8
  nc: 80 # number of classes
9
9
  kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
10
- scales: # model compound scaling constants, i.e. 'model=yolo11n-pose.yaml' will call yolo11.yaml with scale 'n'
10
+ scales: # model compound scaling constants, i.e. 'model=yolo11n-pose.yaml' will call yolo11-pose.yaml with scale 'n'
11
11
  # [depth, width, max_channels]
12
12
  n: [0.50, 0.25, 1024] # summary: 196 layers, 2908507 parameters, 2908491 gradients, 7.7 GFLOPs
13
13
  s: [0.50, 0.50, 1024] # summary: 196 layers, 9948811 parameters, 9948795 gradients, 23.5 GFLOPs
@@ -1,10 +1,10 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- # YOLO11-seg instance segmentation model. For Usage examples see https://docs.ultralytics.com/tasks/segment
3
+ # Ultralytics YOLOE-11-seg instance segmentation model. For usage examples, see https://docs.ultralytics.com/tasks/segment
4
4
 
5
5
  # Parameters
6
6
  nc: 80 # number of classes
7
- scales: # model compound scaling constants, i.e. 'model=yolo11n-seg.yaml' will call yolo11-seg.yaml with scale 'n'
7
+ scales: # model compound scaling constants, i.e. 'model=yoloe-11n-seg.yaml' will call yoloe-11-seg.yaml with scale 'n'
8
8
  # [depth, width, max_channels]
9
9
  n: [0.50, 0.25, 1024] # summary: 355 layers, 2876848 parameters, 2876832 gradients, 10.5 GFLOPs
10
10
  s: [0.50, 0.50, 1024] # summary: 355 layers, 10113248 parameters, 10113232 gradients, 35.8 GFLOPs
@@ -1,10 +1,10 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- # YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
3
+ # Ultralytics YOLOE-11 object detection model with P3/8 - P5/32 outputs. For usage examples, see https://docs.ultralytics.com/tasks/detect
4
4
 
5
5
  # Parameters
6
6
  nc: 80 # number of classes
7
- scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
7
+ scales: # model compound scaling constants, i.e. 'model=yoloe-11n.yaml' will call yoloe-11.yaml with scale 'n'
8
8
  # [depth, width, max_channels]
9
9
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
10
10
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
@@ -1,14 +1,17 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
+ # Ultralytics YOLOE-v8-seg instance segmentation model with P3/8 - P5/32 outputs
4
+ # Task docs: https://docs.ultralytics.com/tasks/segment
5
+
3
6
  # Parameters
4
7
  nc: 80 # number of classes
5
- scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
8
+ scales: # model compound scaling constants, i.e. 'model=yoloe-v8n-seg.yaml' will call yoloe-v8-seg.yaml with scale 'n'
6
9
  # [depth, width, max_channels]
7
- n: [0.33, 0.25, 1024] # YOLOv8n-world summary: 161 layers, 4204111 parameters, 4204095 gradients, 39.6 GFLOPs
8
- s: [0.33, 0.50, 1024] # YOLOv8s-world summary: 161 layers, 13383496 parameters, 13383480 gradients, 71.5 GFLOPs
9
- m: [0.67, 0.75, 768] # YOLOv8m-world summary: 201 layers, 29065310 parameters, 29065294 gradients, 131.4 GFLOPs
10
- l: [1.00, 1.00, 512] # YOLOv8l-world summary: 241 layers, 47553970 parameters, 47553954 gradients, 225.6 GFLOPs
11
- x: [1.00, 1.25, 512] # YOLOv8x-world summary: 241 layers, 73690217 parameters, 73690201 gradients, 330.8 GFLOPs
10
+ n: [0.33, 0.25, 1024] # YOLOE-v8n-seg summary: 161 layers, 4204111 parameters, 4204095 gradients, 39.6 GFLOPs
11
+ s: [0.33, 0.50, 1024] # YOLOE-v8s-seg summary: 161 layers, 13383496 parameters, 13383480 gradients, 71.5 GFLOPs
12
+ m: [0.67, 0.75, 768] # YOLOE-v8m-seg summary: 201 layers, 29065310 parameters, 29065294 gradients, 131.4 GFLOPs
13
+ l: [1.00, 1.00, 512] # YOLOE-v8l-seg summary: 241 layers, 47553970 parameters, 47553954 gradients, 225.6 GFLOPs
14
+ x: [1.00, 1.25, 512] # YOLOE-v8x-seg summary: 241 layers, 73690217 parameters, 73690201 gradients, 330.8 GFLOPs
12
15
 
13
16
  # YOLOv8.0n backbone
14
17
  backbone:
@@ -1,14 +1,17 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
+ # Ultralytics YOLOE-v8 object detection model with P3/8 - P5/32 outputs
4
+ # Task docs: https://docs.ultralytics.com/tasks/detect
5
+
3
6
  # Parameters
4
7
  nc: 80 # number of classes
5
- scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
8
+ scales: # model compound scaling constants, i.e. 'model=yoloe-v8n.yaml' will call yoloe-v8.yaml with scale 'n'
6
9
  # [depth, width, max_channels]
7
- n: [0.33, 0.25, 1024] # YOLOv8n-worldv2 summary: 148 layers, 3695183 parameters, 3695167 gradients, 19.5 GFLOPS
8
- s: [0.33, 0.50, 1024] # YOLOv8s-worldv2 summary: 148 layers, 12759880 parameters, 12759864 gradients, 51.0 GFLOPS
9
- m: [0.67, 0.75, 768] # YOLOv8m-worldv2 summary: 188 layers, 28376158 parameters, 28376142 gradients, 110.5 GFLOPS
10
- l: [1.00, 1.00, 512] # YOLOv8l-worldv2 summary: 228 layers, 46832050 parameters, 46832034 gradients, 204.5 GFLOPS
11
- x: [1.00, 1.25, 512] # YOLOv8x-worldv2 summary: 228 layers, 72886377 parameters, 72886361 gradients, 309.3 GFLOPS
10
+ n: [0.33, 0.25, 1024] # YOLOE-v8n summary: 148 layers, 3695183 parameters, 3695167 gradients, 19.5 GFLOPs
11
+ s: [0.33, 0.50, 1024] # YOLOE-v8s summary: 148 layers, 12759880 parameters, 12759864 gradients, 51.0 GFLOPs
12
+ m: [0.67, 0.75, 768] # YOLOE-v8m summary: 188 layers, 28376158 parameters, 28376142 gradients, 110.5 GFLOPs
13
+ l: [1.00, 1.00, 512] # YOLOE-v8l summary: 228 layers, 46832050 parameters, 46832034 gradients, 204.5 GFLOPs
14
+ x: [1.00, 1.25, 512] # YOLOE-v8x summary: 228 layers, 72886377 parameters, 72886361 gradients, 309.3 GFLOPs
12
15
 
13
16
  # YOLOv8.0n backbone
14
17
  backbone:
@@ -6,7 +6,7 @@
6
6
 
7
7
  # Parameters
8
8
  nc: 1000 # number of classes
9
- scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
9
+ scales: # model compound scaling constants, i.e. 'model=yolov8n-cls-resnet101.yaml' will call yolov8-cls-resnet101.yaml with scale 'n'
10
10
  # [depth, width, max_channels]
11
11
  n: [0.33, 0.25, 1024]
12
12
  s: [0.33, 0.50, 1024]
@@ -6,7 +6,7 @@
6
6
 
7
7
  # Parameters
8
8
  nc: 1000 # number of classes
9
- scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
9
+ scales: # model compound scaling constants, i.e. 'model=yolov8n-cls-resnet50.yaml' will call yolov8-cls-resnet50.yaml with scale 'n'
10
10
  # [depth, width, max_channels]
11
11
  n: [0.33, 0.25, 1024]
12
12
  s: [0.33, 0.50, 1024]
@@ -1,13 +1,13 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- # Ultralytics YOLOv8 object detection model with P2/4 - P5/32 outputs
3
+ # Ultralytics YOLOv8-ghost object detection model with P2/4 - P5/32 outputs
4
4
  # Model docs: https://docs.ultralytics.com/models/yolov8
5
5
  # Task docs: https://docs.ultralytics.com/tasks/detect
6
6
  # Employs Ghost convolutions and modules proposed in Huawei's GhostNet in https://arxiv.org/abs/1911.11907v2
7
7
 
8
8
  # Parameters
9
9
  nc: 80 # number of classes
10
- scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
10
+ scales: # model compound scaling constants, i.e. 'model=yolov8n-ghost-p2.yaml' will call yolov8-ghost-p2.yaml with scale 'n'
11
11
  # [depth, width, max_channels]
12
12
  n: [0.33, 0.25, 1024] # YOLOv8n-ghost-p2 summary: 290 layers, 2033944 parameters, 2033928 gradients, 13.8 GFLOPs
13
13
  s: [0.33, 0.50, 1024] # YOLOv8s-ghost-p2 summary: 290 layers, 5562080 parameters, 5562064 gradients, 25.1 GFLOPs
@@ -1,13 +1,13 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- # Ultralytics YOLOv8 object detection model with P3/8 - P6/64 outputs
3
+ # Ultralytics YOLOv8-ghost object detection model with P3/8 - P6/64 outputs
4
4
  # Model docs: https://docs.ultralytics.com/models/yolov8
5
5
  # Task docs: https://docs.ultralytics.com/tasks/detect
6
6
  # Employs Ghost convolutions and modules proposed in Huawei's GhostNet in https://arxiv.org/abs/1911.11907v2
7
7
 
8
8
  # Parameters
9
9
  nc: 80 # number of classes
10
- scales: # model compound scaling constants, i.e. 'model=yolov8n-p6.yaml' will call yolov8-p6.yaml with scale 'n'
10
+ scales: # model compound scaling constants, i.e. 'model=yolov8n-ghost-p6.yaml' will call yolov8-ghost-p6.yaml with scale 'n'
11
11
  # [depth, width, max_channels]
12
12
  n: [0.33, 0.25, 1024] # YOLOv8n-ghost-p6 summary: 312 layers, 2901100 parameters, 2901084 gradients, 5.8 GFLOPs
13
13
  s: [0.33, 0.50, 1024] # YOLOv8s-ghost-p6 summary: 312 layers, 9520008 parameters, 9519992 gradients, 16.4 GFLOPs
@@ -1,13 +1,13 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- # Ultralytics YOLOv8 object detection model with P3/8 - P5/32 outputs
3
+ # Ultralytics YOLOv8-ghost object detection model with P3/8 - P5/32 outputs
4
4
  # Model docs: https://docs.ultralytics.com/models/yolov8
5
5
  # Task docs: https://docs.ultralytics.com/tasks/detect
6
6
  # Employs Ghost convolutions and modules proposed in Huawei's GhostNet in https://arxiv.org/abs/1911.11907v2
7
7
 
8
8
  # Parameters
9
9
  nc: 80 # number of classes
10
- scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
10
+ scales: # model compound scaling constants, i.e. 'model=yolov8n-ghost.yaml' will call yolov8-ghost.yaml with scale 'n'
11
11
  # [depth, width, max_channels]
12
12
  n: [0.33, 0.25, 1024] # YOLOv8n-ghost summary: 237 layers, 1865316 parameters, 1865300 gradients, 5.8 GFLOPs
13
13
  s: [0.33, 0.50, 1024] # YOLOv8s-ghost summary: 237 layers, 5960072 parameters, 5960056 gradients, 16.4 GFLOPs
@@ -6,7 +6,7 @@
6
6
 
7
7
  # Parameters
8
8
  nc: 80 # number of classes
9
- scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
9
+ scales: # model compound scaling constants, i.e. 'model=yolov8n-obb.yaml' will call yolov8-obb.yaml with scale 'n'
10
10
  # [depth, width, max_channels]
11
11
  n: [0.33, 0.25, 1024] # YOLOv8n-obb summary: 144 layers, 3228867 parameters, 3228851 gradients, 9.1 GFLOPs
12
12
  s: [0.33, 0.50, 1024] # YOLOv8s-obb summary: 144 layers, 11452739 parameters, 11452723 gradients, 29.8 GFLOPs
@@ -6,7 +6,7 @@
6
6
 
7
7
  # Parameters
8
8
  nc: 80 # number of classes
9
- scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
9
+ scales: # model compound scaling constants, i.e. 'model=yolov8n-p2.yaml' will call yolov8-p2.yaml with scale 'n'
10
10
  # [depth, width, max_channels]
11
11
  n: [0.33, 0.25, 1024]
12
12
  s: [0.33, 0.50, 1024]