dgenerate-ultralytics-headless 8.3.230__tar.gz → 8.3.232__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (291) hide show
  1. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/PKG-INFO +4 -6
  2. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/dgenerate_ultralytics_headless.egg-info/PKG-INFO +4 -6
  3. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/dgenerate_ultralytics_headless.egg-info/requires.txt +3 -5
  4. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/pyproject.toml +3 -5
  5. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/__init__.py +1 -1
  6. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/data/augment.py +3 -131
  7. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/engine/exporter.py +1 -1
  8. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/engine/model.py +0 -5
  9. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/engine/results.py +0 -67
  10. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/sam/model.py +0 -4
  11. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/sam/modules/blocks.py +0 -51
  12. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/sam/modules/decoders.py +0 -10
  13. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/sam/modules/encoders.py +0 -44
  14. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/sam/modules/memory_attention.py +0 -12
  15. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/sam/modules/sam.py +0 -16
  16. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/sam/predict.py +0 -17
  17. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/yolo/classify/val.py +0 -6
  18. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/yolo/model.py +0 -5
  19. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/yolo/obb/predict.py +0 -6
  20. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/yolo/pose/predict.py +1 -13
  21. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/yolo/pose/train.py +1 -7
  22. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/yolo/pose/val.py +6 -17
  23. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/yolo/world/train_world.py +0 -18
  24. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/nn/text_model.py +0 -16
  25. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/trackers/bot_sort.py +0 -13
  26. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/trackers/byte_tracker.py +0 -11
  27. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/trackers/utils/gmc.py +0 -4
  28. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/trackers/utils/kalman_filter.py +0 -4
  29. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/__init__.py +2 -1
  30. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/benchmarks.py +0 -6
  31. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/errors.py +0 -6
  32. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/metrics.py +4 -1
  33. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/tqdm.py +0 -5
  34. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/triton.py +0 -4
  35. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/LICENSE +0 -0
  36. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/README.md +0 -0
  37. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/dgenerate_ultralytics_headless.egg-info/SOURCES.txt +0 -0
  38. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/dgenerate_ultralytics_headless.egg-info/dependency_links.txt +0 -0
  39. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/dgenerate_ultralytics_headless.egg-info/entry_points.txt +0 -0
  40. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/dgenerate_ultralytics_headless.egg-info/top_level.txt +0 -0
  41. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/setup.cfg +0 -0
  42. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/tests/__init__.py +0 -0
  43. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/tests/conftest.py +0 -0
  44. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/tests/test_cli.py +0 -0
  45. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/tests/test_cuda.py +0 -0
  46. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/tests/test_engine.py +0 -0
  47. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/tests/test_exports.py +0 -0
  48. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/tests/test_integrations.py +0 -0
  49. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/tests/test_python.py +0 -0
  50. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/tests/test_solutions.py +0 -0
  51. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/assets/bus.jpg +0 -0
  52. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/assets/zidane.jpg +0 -0
  53. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/__init__.py +0 -0
  54. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/datasets/Argoverse.yaml +0 -0
  55. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/datasets/DOTAv1.5.yaml +0 -0
  56. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/datasets/DOTAv1.yaml +0 -0
  57. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/datasets/GlobalWheat2020.yaml +0 -0
  58. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/datasets/HomeObjects-3K.yaml +0 -0
  59. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/datasets/ImageNet.yaml +0 -0
  60. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/datasets/Objects365.yaml +0 -0
  61. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/datasets/SKU-110K.yaml +0 -0
  62. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/datasets/VOC.yaml +0 -0
  63. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/datasets/VisDrone.yaml +0 -0
  64. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/datasets/african-wildlife.yaml +0 -0
  65. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/datasets/brain-tumor.yaml +0 -0
  66. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/datasets/carparts-seg.yaml +0 -0
  67. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/datasets/coco-pose.yaml +0 -0
  68. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/datasets/coco.yaml +0 -0
  69. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/datasets/coco128-seg.yaml +0 -0
  70. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/datasets/coco128.yaml +0 -0
  71. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/datasets/coco8-grayscale.yaml +0 -0
  72. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/datasets/coco8-multispectral.yaml +0 -0
  73. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/datasets/coco8-pose.yaml +0 -0
  74. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/datasets/coco8-seg.yaml +0 -0
  75. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/datasets/coco8.yaml +0 -0
  76. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/datasets/construction-ppe.yaml +0 -0
  77. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/datasets/crack-seg.yaml +0 -0
  78. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/datasets/dog-pose.yaml +0 -0
  79. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/datasets/dota8-multispectral.yaml +0 -0
  80. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/datasets/dota8.yaml +0 -0
  81. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/datasets/hand-keypoints.yaml +0 -0
  82. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/datasets/kitti.yaml +0 -0
  83. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/datasets/lvis.yaml +0 -0
  84. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/datasets/medical-pills.yaml +0 -0
  85. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/datasets/open-images-v7.yaml +0 -0
  86. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/datasets/package-seg.yaml +0 -0
  87. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/datasets/signature.yaml +0 -0
  88. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/datasets/tiger-pose.yaml +0 -0
  89. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/datasets/xView.yaml +0 -0
  90. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/default.yaml +0 -0
  91. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +0 -0
  92. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/11/yolo11-cls.yaml +0 -0
  93. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/11/yolo11-obb.yaml +0 -0
  94. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/11/yolo11-pose.yaml +0 -0
  95. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/11/yolo11-seg.yaml +0 -0
  96. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/11/yolo11.yaml +0 -0
  97. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/11/yoloe-11-seg.yaml +0 -0
  98. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/11/yoloe-11.yaml +0 -0
  99. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/12/yolo12-cls.yaml +0 -0
  100. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/12/yolo12-obb.yaml +0 -0
  101. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/12/yolo12-pose.yaml +0 -0
  102. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/12/yolo12-seg.yaml +0 -0
  103. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/12/yolo12.yaml +0 -0
  104. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +0 -0
  105. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +0 -0
  106. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +0 -0
  107. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +0 -0
  108. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v10/yolov10b.yaml +0 -0
  109. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v10/yolov10l.yaml +0 -0
  110. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v10/yolov10m.yaml +0 -0
  111. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v10/yolov10n.yaml +0 -0
  112. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v10/yolov10s.yaml +0 -0
  113. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v10/yolov10x.yaml +0 -0
  114. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v3/yolov3-spp.yaml +0 -0
  115. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v3/yolov3-tiny.yaml +0 -0
  116. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v3/yolov3.yaml +0 -0
  117. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v5/yolov5-p6.yaml +0 -0
  118. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v5/yolov5.yaml +0 -0
  119. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v6/yolov6.yaml +0 -0
  120. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +0 -0
  121. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v8/yoloe-v8.yaml +0 -0
  122. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +0 -0
  123. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +0 -0
  124. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v8/yolov8-cls.yaml +0 -0
  125. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +0 -0
  126. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +0 -0
  127. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v8/yolov8-ghost.yaml +0 -0
  128. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v8/yolov8-obb.yaml +0 -0
  129. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v8/yolov8-p2.yaml +0 -0
  130. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v8/yolov8-p6.yaml +0 -0
  131. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +0 -0
  132. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v8/yolov8-pose.yaml +0 -0
  133. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +0 -0
  134. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +0 -0
  135. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v8/yolov8-seg.yaml +0 -0
  136. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v8/yolov8-world.yaml +0 -0
  137. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v8/yolov8-worldv2.yaml +0 -0
  138. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v8/yolov8.yaml +0 -0
  139. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v9/yolov9c-seg.yaml +0 -0
  140. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v9/yolov9c.yaml +0 -0
  141. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v9/yolov9e-seg.yaml +0 -0
  142. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v9/yolov9e.yaml +0 -0
  143. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v9/yolov9m.yaml +0 -0
  144. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v9/yolov9s.yaml +0 -0
  145. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/models/v9/yolov9t.yaml +0 -0
  146. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/trackers/botsort.yaml +0 -0
  147. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/cfg/trackers/bytetrack.yaml +0 -0
  148. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/data/__init__.py +0 -0
  149. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/data/annotator.py +0 -0
  150. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/data/base.py +0 -0
  151. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/data/build.py +0 -0
  152. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/data/converter.py +0 -0
  153. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/data/dataset.py +0 -0
  154. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/data/loaders.py +0 -0
  155. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/data/scripts/download_weights.sh +0 -0
  156. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/data/scripts/get_coco.sh +0 -0
  157. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/data/scripts/get_coco128.sh +0 -0
  158. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/data/scripts/get_imagenet.sh +0 -0
  159. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/data/split.py +0 -0
  160. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/data/split_dota.py +0 -0
  161. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/data/utils.py +0 -0
  162. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/engine/__init__.py +0 -0
  163. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/engine/predictor.py +0 -0
  164. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/engine/trainer.py +0 -0
  165. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/engine/tuner.py +0 -0
  166. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/engine/validator.py +0 -0
  167. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/hub/__init__.py +0 -0
  168. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/hub/auth.py +0 -0
  169. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/hub/google/__init__.py +0 -0
  170. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/hub/session.py +0 -0
  171. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/hub/utils.py +0 -0
  172. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/__init__.py +0 -0
  173. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/fastsam/__init__.py +0 -0
  174. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/fastsam/model.py +0 -0
  175. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/fastsam/predict.py +0 -0
  176. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/fastsam/utils.py +0 -0
  177. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/fastsam/val.py +0 -0
  178. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/nas/__init__.py +0 -0
  179. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/nas/model.py +0 -0
  180. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/nas/predict.py +0 -0
  181. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/nas/val.py +0 -0
  182. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/rtdetr/__init__.py +0 -0
  183. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/rtdetr/model.py +0 -0
  184. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/rtdetr/predict.py +0 -0
  185. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/rtdetr/train.py +0 -0
  186. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/rtdetr/val.py +0 -0
  187. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/sam/__init__.py +0 -0
  188. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/sam/amg.py +0 -0
  189. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/sam/build.py +0 -0
  190. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/sam/modules/__init__.py +0 -0
  191. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/sam/modules/tiny_encoder.py +0 -0
  192. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/sam/modules/transformer.py +0 -0
  193. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/sam/modules/utils.py +0 -0
  194. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/utils/__init__.py +0 -0
  195. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/utils/loss.py +0 -0
  196. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/utils/ops.py +0 -0
  197. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/yolo/__init__.py +0 -0
  198. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/yolo/classify/__init__.py +0 -0
  199. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/yolo/classify/predict.py +0 -0
  200. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/yolo/classify/train.py +0 -0
  201. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/yolo/detect/__init__.py +0 -0
  202. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/yolo/detect/predict.py +0 -0
  203. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/yolo/detect/train.py +0 -0
  204. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/yolo/detect/val.py +0 -0
  205. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/yolo/obb/__init__.py +0 -0
  206. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/yolo/obb/train.py +0 -0
  207. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/yolo/obb/val.py +0 -0
  208. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/yolo/pose/__init__.py +0 -0
  209. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/yolo/segment/__init__.py +0 -0
  210. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/yolo/segment/predict.py +0 -0
  211. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/yolo/segment/train.py +0 -0
  212. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/yolo/segment/val.py +0 -0
  213. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/yolo/world/__init__.py +0 -0
  214. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/yolo/world/train.py +0 -0
  215. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/yolo/yoloe/__init__.py +0 -0
  216. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/yolo/yoloe/predict.py +0 -0
  217. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/yolo/yoloe/train.py +0 -0
  218. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/yolo/yoloe/train_seg.py +0 -0
  219. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/models/yolo/yoloe/val.py +0 -0
  220. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/nn/__init__.py +0 -0
  221. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/nn/autobackend.py +0 -0
  222. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/nn/modules/__init__.py +0 -0
  223. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/nn/modules/activation.py +0 -0
  224. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/nn/modules/block.py +0 -0
  225. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/nn/modules/conv.py +0 -0
  226. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/nn/modules/head.py +0 -0
  227. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/nn/modules/transformer.py +0 -0
  228. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/nn/modules/utils.py +0 -0
  229. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/nn/tasks.py +0 -0
  230. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/py.typed +0 -0
  231. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/solutions/__init__.py +0 -0
  232. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/solutions/ai_gym.py +0 -0
  233. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/solutions/analytics.py +0 -0
  234. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/solutions/config.py +0 -0
  235. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/solutions/distance_calculation.py +0 -0
  236. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/solutions/heatmap.py +0 -0
  237. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/solutions/instance_segmentation.py +0 -0
  238. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/solutions/object_blurrer.py +0 -0
  239. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/solutions/object_counter.py +0 -0
  240. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/solutions/object_cropper.py +0 -0
  241. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/solutions/parking_management.py +0 -0
  242. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/solutions/queue_management.py +0 -0
  243. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/solutions/region_counter.py +0 -0
  244. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/solutions/security_alarm.py +0 -0
  245. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/solutions/similarity_search.py +0 -0
  246. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/solutions/solutions.py +0 -0
  247. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/solutions/speed_estimation.py +0 -0
  248. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/solutions/streamlit_inference.py +0 -0
  249. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/solutions/templates/similarity-search.html +0 -0
  250. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/solutions/trackzone.py +0 -0
  251. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/solutions/vision_eye.py +0 -0
  252. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/trackers/__init__.py +0 -0
  253. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/trackers/basetrack.py +0 -0
  254. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/trackers/track.py +0 -0
  255. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/trackers/utils/__init__.py +0 -0
  256. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/trackers/utils/matching.py +0 -0
  257. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/autobatch.py +0 -0
  258. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/autodevice.py +0 -0
  259. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/callbacks/__init__.py +0 -0
  260. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/callbacks/base.py +0 -0
  261. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/callbacks/clearml.py +0 -0
  262. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/callbacks/comet.py +0 -0
  263. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/callbacks/dvc.py +0 -0
  264. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/callbacks/hub.py +0 -0
  265. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/callbacks/mlflow.py +0 -0
  266. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/callbacks/neptune.py +0 -0
  267. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/callbacks/platform.py +0 -0
  268. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/callbacks/raytune.py +0 -0
  269. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/callbacks/tensorboard.py +0 -0
  270. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/callbacks/wb.py +0 -0
  271. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/checks.py +0 -0
  272. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/cpu.py +0 -0
  273. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/dist.py +0 -0
  274. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/downloads.py +0 -0
  275. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/events.py +0 -0
  276. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/export/__init__.py +0 -0
  277. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/export/engine.py +0 -0
  278. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/export/imx.py +0 -0
  279. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/export/tensorflow.py +0 -0
  280. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/files.py +0 -0
  281. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/git.py +0 -0
  282. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/instance.py +0 -0
  283. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/logger.py +0 -0
  284. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/loss.py +0 -0
  285. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/nms.py +0 -0
  286. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/ops.py +0 -0
  287. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/patches.py +0 -0
  288. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/plotting.py +0 -0
  289. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/tal.py +0 -0
  290. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/torch_utils.py +0 -0
  291. {dgenerate_ultralytics_headless-8.3.230 → dgenerate_ultralytics_headless-8.3.232}/ultralytics/utils/tuner.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: dgenerate-ultralytics-headless
3
- Version: 8.3.230
3
+ Version: 8.3.232
4
4
  Summary: Automatically built Ultralytics package with python-opencv-headless dependency instead of python-opencv
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -50,11 +50,9 @@ Requires-Dist: ipython; extra == "dev"
50
50
  Requires-Dist: pytest; extra == "dev"
51
51
  Requires-Dist: pytest-cov; extra == "dev"
52
52
  Requires-Dist: coverage[toml]; extra == "dev"
53
- Requires-Dist: mkdocs>=1.6.0; extra == "dev"
54
- Requires-Dist: mkdocs-material>=9.5.9; extra == "dev"
55
- Requires-Dist: mkdocstrings[python]; extra == "dev"
56
- Requires-Dist: mkdocs-ultralytics-plugin>=0.1.29; extra == "dev"
57
- Requires-Dist: mkdocs-macros-plugin>=1.0.5; extra == "dev"
53
+ Requires-Dist: zensical>=0.0.9; extra == "dev"
54
+ Requires-Dist: mkdocs-ultralytics-plugin>=0.2.3; extra == "dev"
55
+ Requires-Dist: minijinja>=2.0.0; extra == "dev"
58
56
  Provides-Extra: export
59
57
  Requires-Dist: numpy<2.0.0; extra == "export"
60
58
  Requires-Dist: onnx>=1.12.0; platform_system != "Darwin" and extra == "export"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: dgenerate-ultralytics-headless
3
- Version: 8.3.230
3
+ Version: 8.3.232
4
4
  Summary: Automatically built Ultralytics package with python-opencv-headless dependency instead of python-opencv
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -50,11 +50,9 @@ Requires-Dist: ipython; extra == "dev"
50
50
  Requires-Dist: pytest; extra == "dev"
51
51
  Requires-Dist: pytest-cov; extra == "dev"
52
52
  Requires-Dist: coverage[toml]; extra == "dev"
53
- Requires-Dist: mkdocs>=1.6.0; extra == "dev"
54
- Requires-Dist: mkdocs-material>=9.5.9; extra == "dev"
55
- Requires-Dist: mkdocstrings[python]; extra == "dev"
56
- Requires-Dist: mkdocs-ultralytics-plugin>=0.1.29; extra == "dev"
57
- Requires-Dist: mkdocs-macros-plugin>=1.0.5; extra == "dev"
53
+ Requires-Dist: zensical>=0.0.9; extra == "dev"
54
+ Requires-Dist: mkdocs-ultralytics-plugin>=0.2.3; extra == "dev"
55
+ Requires-Dist: minijinja>=2.0.0; extra == "dev"
58
56
  Provides-Extra: export
59
57
  Requires-Dist: numpy<2.0.0; extra == "export"
60
58
  Requires-Dist: onnx>=1.12.0; platform_system != "Darwin" and extra == "export"
@@ -19,11 +19,9 @@ ipython
19
19
  pytest
20
20
  pytest-cov
21
21
  coverage[toml]
22
- mkdocs>=1.6.0
23
- mkdocs-material>=9.5.9
24
- mkdocstrings[python]
25
- mkdocs-ultralytics-plugin>=0.1.29
26
- mkdocs-macros-plugin>=1.0.5
22
+ zensical>=0.0.9
23
+ mkdocs-ultralytics-plugin>=0.2.3
24
+ minijinja>=2.0.0
27
25
 
28
26
  [export]
29
27
  numpy<2.0.0
@@ -83,11 +83,9 @@ dev = [
83
83
  "pytest",
84
84
  "pytest-cov",
85
85
  "coverage[toml]",
86
- "mkdocs>=1.6.0",
87
- "mkdocs-material>=9.5.9",
88
- "mkdocstrings[python]",
89
- "mkdocs-ultralytics-plugin>=0.1.29", # for meta descriptions and images, dates and authors
90
- "mkdocs-macros-plugin>=1.0.5", # duplicating content (i.e. export tables) in multiple places
86
+ "zensical>=0.0.9",
87
+ "mkdocs-ultralytics-plugin>=0.2.3", # for meta descriptions and images, dates and authors
88
+ "minijinja>=2.0.0", # render docs macros without mkdocs-macros-plugin
91
89
  ]
92
90
  export = [
93
91
  "numpy<2.0.0", # TF 2.20 compatibility
@@ -1,6 +1,6 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- __version__ = "8.3.230"
3
+ __version__ = "8.3.232"
4
4
 
5
5
  import importlib
6
6
  import os
@@ -48,9 +48,6 @@ class BaseTransform:
48
48
 
49
49
  This constructor sets up the base transformation object, which can be extended for specific image processing
50
50
  tasks. It is designed to be compatible with both classification and semantic segmentation.
51
-
52
- Examples:
53
- >>> transform = BaseTransform()
54
51
  """
55
52
  pass
56
53
 
@@ -166,11 +163,6 @@ class Compose:
166
163
 
167
164
  Args:
168
165
  transforms (list[Callable]): A list of callable transform objects to be applied sequentially.
169
-
170
- Examples:
171
- >>> from ultralytics.data.augment import Compose, RandomHSV, RandomFlip
172
- >>> transforms = [RandomHSV(), RandomFlip()]
173
- >>> compose = Compose(transforms)
174
166
  """
175
167
  self.transforms = transforms if isinstance(transforms, list) else [transforms]
176
168
 
@@ -341,11 +333,6 @@ class BaseMixTransform:
341
333
  dataset (Any): The dataset object containing images and labels for mixing.
342
334
  pre_transform (Callable | None): Optional transform to apply before mixing.
343
335
  p (float): Probability of applying the mix transformation. Should be in the range [0.0, 1.0].
344
-
345
- Examples:
346
- >>> dataset = YOLODataset("path/to/data")
347
- >>> pre_transform = Compose([RandomFlip(), RandomPerspective()])
348
- >>> mix_transform = BaseMixTransform(dataset, pre_transform, p=0.5)
349
336
  """
350
337
  self.dataset = dataset
351
338
  self.pre_transform = pre_transform
@@ -508,11 +495,6 @@ class Mosaic(BaseMixTransform):
508
495
  imgsz (int): Image size (height and width) after mosaic pipeline of a single image.
509
496
  p (float): Probability of applying the mosaic augmentation. Must be in the range 0-1.
510
497
  n (int): The grid size, either 4 (for 2x2) or 9 (for 3x3).
511
-
512
- Examples:
513
- >>> from ultralytics.data.augment import Mosaic
514
- >>> dataset = YourDataset(...)
515
- >>> mosaic_aug = Mosaic(dataset, imgsz=640, p=0.5, n=4)
516
498
  """
517
499
  assert 0 <= p <= 1.0, f"The probability should be in range [0, 1], but got {p}."
518
500
  assert n in {4, 9}, "grid must be equal to 4 or 9."
@@ -866,11 +848,6 @@ class MixUp(BaseMixTransform):
866
848
  dataset (Any): The dataset to which MixUp augmentation will be applied.
867
849
  pre_transform (Callable | None): Optional transform to apply to images before MixUp.
868
850
  p (float): Probability of applying MixUp augmentation to an image. Must be in the range [0, 1].
869
-
870
- Examples:
871
- >>> from ultralytics.data.dataset import YOLODataset
872
- >>> dataset = YOLODataset("path/to/data.yaml")
873
- >>> mixup = MixUp(dataset, pre_transform=None, p=0.5)
874
851
  """
875
852
  super().__init__(dataset=dataset, pre_transform=pre_transform, p=p)
876
853
 
@@ -1069,10 +1046,6 @@ class RandomPerspective:
1069
1046
  border (tuple[int, int]): Tuple specifying mosaic border (top/bottom, left/right).
1070
1047
  pre_transform (Callable | None): Function/transform to apply to the image before starting the random
1071
1048
  transformation.
1072
-
1073
- Examples:
1074
- >>> transform = RandomPerspective(degrees=10.0, translate=0.1, scale=0.5, shear=5.0)
1075
- >>> result = transform(labels) # Apply random perspective to labels
1076
1049
  """
1077
1050
  self.degrees = degrees
1078
1051
  self.translate = translate
@@ -1402,10 +1375,6 @@ class RandomHSV:
1402
1375
  hgain (float): Maximum variation for hue. Should be in the range [0, 1].
1403
1376
  sgain (float): Maximum variation for saturation. Should be in the range [0, 1].
1404
1377
  vgain (float): Maximum variation for value. Should be in the range [0, 1].
1405
-
1406
- Examples:
1407
- >>> hsv_aug = RandomHSV(hgain=0.5, sgain=0.5, vgain=0.5)
1408
- >>> hsv_aug(image)
1409
1378
  """
1410
1379
  self.hgain = hgain
1411
1380
  self.sgain = sgain
@@ -1484,10 +1453,6 @@ class RandomFlip:
1484
1453
 
1485
1454
  Raises:
1486
1455
  AssertionError: If direction is not 'horizontal' or 'vertical', or if p is not between 0 and 1.
1487
-
1488
- Examples:
1489
- >>> flip = RandomFlip(p=0.5, direction="horizontal")
1490
- >>> flip_with_idx = RandomFlip(p=0.7, direction="vertical", flip_idx=[1, 0, 3, 2, 5, 4])
1491
1456
  """
1492
1457
  assert direction in {"horizontal", "vertical"}, f"Support direction `horizontal` or `vertical`, got {direction}"
1493
1458
  assert 0 <= p <= 1.0, f"The probability should be in range [0, 1], but got {p}."
@@ -1590,19 +1555,6 @@ class LetterBox:
1590
1555
  stride (int): Stride of the model (e.g., 32 for YOLOv5).
1591
1556
  padding_value (int): Value for padding the image. Default is 114.
1592
1557
  interpolation (int): Interpolation method for resizing. Default is cv2.INTER_LINEAR.
1593
-
1594
- Attributes:
1595
- new_shape (tuple[int, int]): Target size for the resized image.
1596
- auto (bool): Flag for using minimum rectangle resizing.
1597
- scale_fill (bool): Flag for stretching image without padding.
1598
- scaleup (bool): Flag for allowing upscaling.
1599
- stride (int): Stride value for ensuring image size is divisible by stride.
1600
- padding_value (int): Value used for padding the image.
1601
- interpolation (int): Interpolation method used for resizing.
1602
-
1603
- Examples:
1604
- >>> letterbox = LetterBox(new_shape=(640, 640), auto=False, scale_fill=False, scaleup=True, stride=32)
1605
- >>> resized_img = letterbox(original_img)
1606
1558
  """
1607
1559
  self.new_shape = new_shape
1608
1560
  self.auto = auto
@@ -1840,9 +1792,9 @@ class Albumentations:
1840
1792
  >>> augmented_labels = transform(labels)
1841
1793
 
1842
1794
  Notes:
1843
- - The Albumentations package must be installed to use this class.
1844
- - If the package is not installed or an error occurs during initialization, the transform will be set to None.
1845
- - Spatial transforms are handled differently and require special processing for bounding boxes.
1795
+ - Requires Albumentations version 1.0.3 or higher.
1796
+ - Spatial transforms are handled differently to ensure bbox compatibility.
1797
+ - Some transforms are applied with very low probability (0.01) by default.
1846
1798
  """
1847
1799
 
1848
1800
  def __init__(self, p: float = 1.0, transforms: list | None = None) -> None:
@@ -1856,30 +1808,9 @@ class Albumentations:
1856
1808
  p (float): Probability of applying the augmentations. Must be between 0 and 1.
1857
1809
  transforms (list, optional): List of custom Albumentations transforms. If None, uses default transforms.
1858
1810
 
1859
- Attributes:
1860
- p (float): Probability of applying the augmentations.
1861
- transform (albumentations.Compose): Composed Albumentations transforms.
1862
- contains_spatial (bool): Indicates if the transforms include spatial transformations.
1863
-
1864
1811
  Raises:
1865
1812
  ImportError: If the Albumentations package is not installed.
1866
1813
  Exception: For any other errors during initialization.
1867
-
1868
- Examples:
1869
- >>> transform = Albumentations(p=0.5)
1870
- >>> augmented = transform(image=image, bboxes=bboxes, class_labels=classes)
1871
- >>> augmented_image = augmented["image"]
1872
- >>> augmented_bboxes = augmented["bboxes"]
1873
-
1874
- >>> # Custom transforms example
1875
- >>> import albumentations as A
1876
- >>> custom_transforms = [A.Blur(p=0.01), A.CLAHE(p=0.01)]
1877
- >>> transform = Albumentations(p=1.0, transforms=custom_transforms)
1878
-
1879
- Notes:
1880
- - Requires Albumentations version 1.0.3 or higher.
1881
- - Spatial transforms are handled differently to ensure bbox compatibility.
1882
- - Some transforms are applied with very low probability (0.01) by default.
1883
1814
  """
1884
1815
  self.p = p
1885
1816
  self.transform = None
@@ -2080,22 +2011,6 @@ class Format:
2080
2011
  mask_overlap (bool): If True, allows mask overlap.
2081
2012
  batch_idx (bool): If True, keeps batch indexes.
2082
2013
  bgr (float): Probability of returning BGR images instead of RGB.
2083
-
2084
- Attributes:
2085
- bbox_format (str): Format for bounding boxes.
2086
- normalize (bool): Whether bounding boxes are normalized.
2087
- return_mask (bool): Whether to return instance masks.
2088
- return_keypoint (bool): Whether to return keypoints.
2089
- return_obb (bool): Whether to return oriented bounding boxes.
2090
- mask_ratio (int): Downsample ratio for masks.
2091
- mask_overlap (bool): Whether masks can overlap.
2092
- batch_idx (bool): Whether to keep batch indexes.
2093
- bgr (float): The probability to return BGR images.
2094
-
2095
- Examples:
2096
- >>> format = Format(bbox_format="xyxy", return_mask=True, return_keypoint=False)
2097
- >>> print(format.bbox_format)
2098
- xyxy
2099
2014
  """
2100
2015
  self.bbox_format = bbox_format
2101
2016
  self.normalize = normalize
@@ -2380,22 +2295,6 @@ class RandomLoadText:
2380
2295
  padding (bool): Whether to pad texts to max_samples. If True, the number of texts will always be equal to
2381
2296
  max_samples.
2382
2297
  padding_value (str): The padding text to use when padding is True.
2383
-
2384
- Attributes:
2385
- prompt_format (str): The format string for the prompt.
2386
- neg_samples (tuple[int, int]): The range for sampling negative texts.
2387
- max_samples (int): The maximum number of text samples.
2388
- padding (bool): Whether padding is enabled.
2389
- padding_value (str): The value used for padding.
2390
-
2391
- Examples:
2392
- >>> random_load_text = RandomLoadText(prompt_format="Object: {}", neg_samples=(50, 100), max_samples=120)
2393
- >>> random_load_text.prompt_format
2394
- 'Object: {}'
2395
- >>> random_load_text.neg_samples
2396
- (50, 100)
2397
- >>> random_load_text.max_samples
2398
- 120
2399
2298
  """
2400
2299
  self.prompt_format = prompt_format
2401
2300
  self.neg_samples = neg_samples
@@ -2731,19 +2630,6 @@ class ClassifyLetterBox:
2731
2630
  size) is created. If a tuple, it should be (height, width).
2732
2631
  auto (bool): If True, automatically calculates the short side based on stride.
2733
2632
  stride (int): The stride value, used when 'auto' is True.
2734
-
2735
- Attributes:
2736
- h (int): Target height of the letterboxed image.
2737
- w (int): Target width of the letterboxed image.
2738
- auto (bool): Flag indicating whether to automatically calculate short side.
2739
- stride (int): Stride value for automatic short side calculation.
2740
-
2741
- Examples:
2742
- >>> transform = ClassifyLetterBox(size=224)
2743
- >>> img = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)
2744
- >>> result = transform(img)
2745
- >>> print(result.shape)
2746
- (224, 224, 3)
2747
2633
  """
2748
2634
  super().__init__()
2749
2635
  self.h, self.w = (size, size) if isinstance(size, int) else size
@@ -2818,13 +2704,6 @@ class CenterCrop:
2818
2704
 
2819
2705
  Returns:
2820
2706
  (None): This method initializes the object and does not return anything.
2821
-
2822
- Examples:
2823
- >>> transform = CenterCrop(224)
2824
- >>> img = np.random.rand(300, 300, 3)
2825
- >>> cropped_img = transform(img)
2826
- >>> print(cropped_img.shape)
2827
- (224, 224, 3)
2828
2707
  """
2829
2708
  super().__init__()
2830
2709
  self.h, self.w = (size, size) if isinstance(size, int) else size
@@ -2889,13 +2768,6 @@ class ToTensor:
2889
2768
 
2890
2769
  Args:
2891
2770
  half (bool): If True, converts the tensor to half precision (float16).
2892
-
2893
- Examples:
2894
- >>> transform = ToTensor(half=True)
2895
- >>> img = np.random.rand(640, 640, 3)
2896
- >>> tensor_img = transform(img)
2897
- >>> print(tensor_img.dtype)
2898
- torch.float16
2899
2771
  """
2900
2772
  super().__init__()
2901
2773
  self.half = half
@@ -1408,7 +1408,7 @@ class NMSModel(torch.nn.Module):
1408
1408
  box, score, cls, extra = box[mask], score[mask], cls[mask], extra[mask]
1409
1409
  nmsbox = box.clone()
1410
1410
  # `8` is the minimum value experimented to get correct NMS results for obb
1411
- multiplier = (8 if self.obb else 1) / max(len(self.model.names), 1)
1411
+ multiplier = 8 if self.obb else 1 / max(len(self.model.names), 1)
1412
1412
  # Normalize boxes for NMS since large values for class offset causes issue with int8 quantization
1413
1413
  if self.args.format == "tflite": # TFLite is already normalized
1414
1414
  nmsbox *= multiplier
@@ -100,11 +100,6 @@ class Model(torch.nn.Module):
100
100
  FileNotFoundError: If the specified model file does not exist or is inaccessible.
101
101
  ValueError: If the model file or configuration is invalid or unsupported.
102
102
  ImportError: If required dependencies for specific model types (like HUB SDK) are not installed.
103
-
104
- Examples:
105
- >>> model = Model("yolo11n.pt")
106
- >>> model = Model("path/to/model.yaml", task="detect")
107
- >>> model = Model("hub_model", verbose=True)
108
103
  """
109
104
  if isinstance(model, Model):
110
105
  self.__dict__ = model.__dict__ # accepts an already initialized Model
@@ -53,12 +53,6 @@ class BaseTensor(SimpleClass):
53
53
  Args:
54
54
  data (torch.Tensor | np.ndarray): Prediction data such as bounding boxes, masks, or keypoints.
55
55
  orig_shape (tuple[int, int]): Original shape of the image in (height, width) format.
56
-
57
- Examples:
58
- >>> import torch
59
- >>> data = torch.tensor([[1, 2, 3], [4, 5, 6]])
60
- >>> orig_shape = (720, 1280)
61
- >>> base_tensor = BaseTensor(data, orig_shape)
62
56
  """
63
57
  assert isinstance(data, (torch.Tensor, np.ndarray)), "data must be torch.Tensor or np.ndarray"
64
58
  self.data = data
@@ -252,12 +246,6 @@ class Results(SimpleClass, DataExportMixin):
252
246
  obb (torch.Tensor | None): A 2D tensor of oriented bounding box coordinates for each detection.
253
247
  speed (dict | None): A dictionary containing preprocess, inference, and postprocess speeds (ms/image).
254
248
 
255
- Examples:
256
- >>> results = model("path/to/image.jpg")
257
- >>> result = results[0] # Get the first result
258
- >>> boxes = result.boxes # Get the boxes for the first result
259
- >>> masks = result.masks # Get the masks for the first result
260
-
261
249
  Notes:
262
250
  For the default pose model, keypoint indices for human body pose estimation are:
263
251
  0: Nose, 1: Left Eye, 2: Right Eye, 3: Left Ear, 4: Right Ear
@@ -872,19 +860,6 @@ class Boxes(BaseTensor):
872
860
  boxes (torch.Tensor | np.ndarray): A tensor or numpy array with detection boxes of shape (num_boxes, 6) or
873
861
  (num_boxes, 7). Columns should contain [x1, y1, x2, y2, (optional) track_id, confidence, class].
874
862
  orig_shape (tuple[int, int]): The original image shape as (height, width). Used for normalization.
875
-
876
- Attributes:
877
- data (torch.Tensor): The raw tensor containing detection boxes and their associated data.
878
- orig_shape (tuple[int, int]): The original image size, used for normalization.
879
- is_track (bool): Indicates whether tracking IDs are included in the box data.
880
-
881
- Examples:
882
- >>> import torch
883
- >>> boxes = torch.tensor([[100, 50, 150, 100, 0.9, 0]])
884
- >>> orig_shape = (480, 640)
885
- >>> detection_boxes = Boxes(boxes, orig_shape)
886
- >>> print(detection_boxes.xyxy)
887
- tensor([[100., 50., 150., 100.]])
888
863
  """
889
864
  if boxes.ndim == 1:
890
865
  boxes = boxes[None, :]
@@ -1065,13 +1040,6 @@ class Masks(BaseTensor):
1065
1040
  Args:
1066
1041
  masks (torch.Tensor | np.ndarray): Detection masks with shape (num_masks, height, width).
1067
1042
  orig_shape (tuple): The original image shape as (height, width). Used for normalization.
1068
-
1069
- Examples:
1070
- >>> import torch
1071
- >>> from ultralytics.engine.results import Masks
1072
- >>> masks = torch.rand(10, 160, 160) # 10 masks of 160x160 resolution
1073
- >>> orig_shape = (720, 1280) # Original image shape
1074
- >>> mask_obj = Masks(masks, orig_shape)
1075
1043
  """
1076
1044
  if masks.ndim == 2:
1077
1045
  masks = masks[None, :]
@@ -1168,11 +1136,6 @@ class Keypoints(BaseTensor):
1168
1136
  - (num_objects, num_keypoints, 2) for x, y coordinates only
1169
1137
  - (num_objects, num_keypoints, 3) for x, y coordinates and confidence scores
1170
1138
  orig_shape (tuple[int, int]): The original image dimensions (height, width).
1171
-
1172
- Examples:
1173
- >>> kpts = torch.rand(1, 17, 3) # 1 object, 17 keypoints (COCO format), x,y,conf
1174
- >>> orig_shape = (720, 1280) # Original image height, width
1175
- >>> keypoints = Keypoints(kpts, orig_shape)
1176
1139
  """
1177
1140
  if keypoints.ndim == 2:
1178
1141
  keypoints = keypoints[None, :]
@@ -1283,24 +1246,6 @@ class Probs(BaseTensor):
1283
1246
  probs (torch.Tensor | np.ndarray): A 1D tensor or array of classification probabilities.
1284
1247
  orig_shape (tuple | None): The original image shape as (height, width). Not used in this class but kept for
1285
1248
  consistency with other result classes.
1286
-
1287
- Attributes:
1288
- data (torch.Tensor | np.ndarray): The raw tensor or array containing classification probabilities.
1289
- top1 (int): Index of the top 1 class.
1290
- top5 (list[int]): Indices of the top 5 classes.
1291
- top1conf (torch.Tensor | np.ndarray): Confidence of the top 1 class.
1292
- top5conf (torch.Tensor | np.ndarray): Confidences of the top 5 classes.
1293
-
1294
- Examples:
1295
- >>> import torch
1296
- >>> probs = torch.tensor([0.1, 0.3, 0.2, 0.4])
1297
- >>> p = Probs(probs)
1298
- >>> print(p.top1)
1299
- 3
1300
- >>> print(p.top1conf)
1301
- tensor(0.4000)
1302
- >>> print(p.top5)
1303
- [3, 1, 2, 0]
1304
1249
  """
1305
1250
  super().__init__(probs, orig_shape)
1306
1251
 
@@ -1419,20 +1364,8 @@ class OBB(BaseTensor):
1419
1364
  the third last column contains track IDs, and the fifth column contains rotation.
1420
1365
  orig_shape (tuple[int, int]): Original image size, in the format (height, width).
1421
1366
 
1422
- Attributes:
1423
- data (torch.Tensor | np.ndarray): The raw OBB tensor.
1424
- orig_shape (tuple[int, int]): The original image shape.
1425
- is_track (bool): Whether the boxes include tracking IDs.
1426
-
1427
1367
  Raises:
1428
1368
  AssertionError: If the number of values per box is not 7 or 8.
1429
-
1430
- Examples:
1431
- >>> import torch
1432
- >>> boxes = torch.rand(3, 7) # 3 boxes with 7 values each
1433
- >>> orig_shape = (640, 480)
1434
- >>> obb = OBB(boxes, orig_shape)
1435
- >>> print(obb.xywhr) # Access the boxes in xywhr format
1436
1369
  """
1437
1370
  if boxes.ndim == 1:
1438
1371
  boxes = boxes[None, :]
@@ -55,10 +55,6 @@ class SAM(Model):
55
55
 
56
56
  Raises:
57
57
  NotImplementedError: If the model file extension is not .pt or .pth.
58
-
59
- Examples:
60
- >>> sam = SAM("sam_b.pt")
61
- >>> print(sam.is_sam2)
62
58
  """
63
59
  if model and Path(model).suffix not in {".pt", ".pth"}:
64
60
  raise NotImplementedError("SAM prediction requires pre-trained *.pt or *.pth model.")
@@ -156,13 +156,6 @@ class CXBlock(nn.Module):
156
156
  drop_path (float): Stochastic depth rate.
157
157
  layer_scale_init_value (float): Initial value for Layer Scale.
158
158
  use_dwconv (bool): Whether to use depthwise convolution.
159
-
160
- Examples:
161
- >>> block = CXBlock(dim=64, kernel_size=7, padding=3)
162
- >>> x = torch.randn(1, 64, 32, 32)
163
- >>> output = block(x)
164
- >>> print(output.shape)
165
- torch.Size([1, 64, 32, 32])
166
159
  """
167
160
  super().__init__()
168
161
  self.dwconv = nn.Conv2d(
@@ -231,12 +224,6 @@ class Fuser(nn.Module):
231
224
  num_layers (int): The number of times to replicate the layer.
232
225
  dim (int | None): The dimension for input projection, if used.
233
226
  input_projection (bool): Whether to use input projection.
234
-
235
- Examples:
236
- >>> layer = nn.Linear(64, 64)
237
- >>> fuser = Fuser(layer, num_layers=3, dim=64, input_projection=True)
238
- >>> input_tensor = torch.randn(1, 64)
239
- >>> output = fuser(input_tensor)
240
227
  """
241
228
  super().__init__()
242
229
  self.proj = nn.Identity()
@@ -304,12 +291,6 @@ class SAM2TwoWayAttentionBlock(TwoWayAttentionBlock):
304
291
  activation (Type[nn.Module]): The activation function of the MLP block.
305
292
  attention_downsample_rate (int): The downsample rate for attention computations.
306
293
  skip_first_layer_pe (bool): Whether to skip the positional encoding in the first layer.
307
-
308
- Examples:
309
- >>> block = SAM2TwoWayAttentionBlock(embedding_dim=256, num_heads=8, mlp_dim=2048)
310
- >>> sparse_inputs = torch.randn(1, 100, 256)
311
- >>> dense_inputs = torch.randn(1, 256, 32, 32)
312
- >>> sparse_outputs, dense_outputs = block(sparse_inputs, dense_inputs)
313
294
  """
314
295
  super().__init__(embedding_dim, num_heads, mlp_dim, activation, attention_downsample_rate, skip_first_layer_pe)
315
296
  self.mlp = MLP(embedding_dim, mlp_dim, embedding_dim, num_layers=2, act=activation)
@@ -364,17 +345,6 @@ class SAM2TwoWayTransformer(TwoWayTransformer):
364
345
  mlp_dim (int): Channel dimension internal to the MLP block.
365
346
  activation (Type[nn.Module]): Activation function to use in the MLP block.
366
347
  attention_downsample_rate (int): Downsampling rate for attention computations.
367
-
368
- Examples:
369
- >>> transformer = SAM2TwoWayTransformer(depth=5, embedding_dim=256, num_heads=8, mlp_dim=2048)
370
- >>> transformer
371
- SAM2TwoWayTransformer(
372
- (layers): ModuleList(
373
- (0-4): 5 x SAM2TwoWayAttentionBlock(...)
374
- )
375
- (final_attn_token_to_image): Attention(...)
376
- (norm_final_attn): LayerNorm(...)
377
- )
378
348
  """
379
349
  super().__init__(depth, embedding_dim, num_heads, mlp_dim, activation, attention_downsample_rate)
380
350
  self.layers = nn.ModuleList()
@@ -917,13 +887,6 @@ class Block(nn.Module):
917
887
  rel_pos_zero_init (bool): If True, initializes relative positional parameters to zero.
918
888
  window_size (int): Size of attention window. If 0, uses global attention.
919
889
  input_size (tuple[int, int] | None): Input resolution for calculating relative positional parameter size.
920
-
921
- Examples:
922
- >>> block = Block(dim=256, num_heads=8, window_size=7)
923
- >>> x = torch.randn(1, 56, 56, 256)
924
- >>> output = block(x)
925
- >>> print(output.shape)
926
- torch.Size([1, 56, 56, 256])
927
890
  """
928
891
  super().__init__()
929
892
  self.norm1 = norm_layer(dim)
@@ -1008,13 +971,6 @@ class REAttention(nn.Module):
1008
971
  rel_pos_zero_init (bool): If True, initializes relative positional parameters to zero.
1009
972
  input_size (tuple[int, int] | None): Input resolution for calculating relative positional parameter size.
1010
973
  Required if use_rel_pos is True.
1011
-
1012
- Examples:
1013
- >>> attention = REAttention(dim=256, num_heads=8, input_size=(32, 32))
1014
- >>> x = torch.randn(1, 32, 32, 256)
1015
- >>> output = attention(x)
1016
- >>> print(output.shape)
1017
- torch.Size([1, 32, 32, 256])
1018
974
  """
1019
975
  super().__init__()
1020
976
  self.num_heads = num_heads
@@ -1089,13 +1045,6 @@ class PatchEmbed(nn.Module):
1089
1045
  padding (tuple[int, int]): Padding applied to the input before convolution.
1090
1046
  in_chans (int): Number of input image channels.
1091
1047
  embed_dim (int): Dimensionality of the output patch embeddings.
1092
-
1093
- Examples:
1094
- >>> patch_embed = PatchEmbed(kernel_size=(16, 16), stride=(16, 16), in_chans=3, embed_dim=768)
1095
- >>> x = torch.randn(1, 3, 224, 224)
1096
- >>> output = patch_embed(x)
1097
- >>> print(output.shape)
1098
- torch.Size([1, 768, 14, 14])
1099
1048
  """
1100
1049
  super().__init__()
1101
1050
 
@@ -55,11 +55,6 @@ class MaskDecoder(nn.Module):
55
55
  activation (Type[nn.Module]): Type of activation to use when upscaling masks.
56
56
  iou_head_depth (int): Depth of the MLP used to predict mask quality.
57
57
  iou_head_hidden_dim (int): Hidden dimension of the MLP used to predict mask quality.
58
-
59
- Examples:
60
- >>> transformer = nn.TransformerEncoder(nn.TransformerEncoderLayer(d_model=256, nhead=8), num_layers=6)
61
- >>> decoder = MaskDecoder(transformer_dim=256, transformer=transformer)
62
- >>> print(decoder)
63
58
  """
64
59
  super().__init__()
65
60
  self.transformer_dim = transformer_dim
@@ -249,11 +244,6 @@ class SAM2MaskDecoder(nn.Module):
249
244
  pred_obj_scores (bool): Whether to predict object scores.
250
245
  pred_obj_scores_mlp (bool): Whether to use MLP for object score prediction.
251
246
  use_multimask_token_for_obj_ptr (bool): Whether to use multimask token for object pointer.
252
-
253
- Examples:
254
- >>> transformer = nn.TransformerEncoder(nn.TransformerEncoderLayer(d_model=256, nhead=8), num_layers=6)
255
- >>> decoder = SAM2MaskDecoder(transformer_dim=256, transformer=transformer)
256
- >>> print(decoder)
257
247
  """
258
248
  super().__init__()
259
249
  self.transformer_dim = transformer_dim