dfax 0.1.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
dfax-0.1.0/.gitignore ADDED
@@ -0,0 +1,210 @@
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[codz]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ share/python-wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+ MANIFEST
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .nox/
43
+ .coverage
44
+ .coverage.*
45
+ .cache
46
+ nosetests.xml
47
+ coverage.xml
48
+ *.cover
49
+ *.py.cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+ cover/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ .pybuilder/
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ # For a library or package, you might want to ignore these files since the code is
87
+ # intended to run in multiple environments; otherwise, check them in:
88
+ # .python-version
89
+
90
+ # pipenv
91
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
+ # install all needed dependencies.
95
+ #Pipfile.lock
96
+
97
+ # UV
98
+ # Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
99
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
100
+ # commonly ignored for libraries.
101
+ #uv.lock
102
+
103
+ # poetry
104
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
105
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
106
+ # commonly ignored for libraries.
107
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
108
+ #poetry.lock
109
+ #poetry.toml
110
+
111
+ # pdm
112
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
113
+ # pdm recommends including project-wide configuration in pdm.toml, but excluding .pdm-python.
114
+ # https://pdm-project.org/en/latest/usage/project/#working-with-version-control
115
+ #pdm.lock
116
+ #pdm.toml
117
+ .pdm-python
118
+ .pdm-build/
119
+
120
+ # pixi
121
+ # Similar to Pipfile.lock, it is generally recommended to include pixi.lock in version control.
122
+ #pixi.lock
123
+ # Pixi creates a virtual environment in the .pixi directory, just like venv module creates one
124
+ # in the .venv directory. It is recommended not to include this directory in version control.
125
+ .pixi
126
+
127
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
128
+ __pypackages__/
129
+
130
+ # Celery stuff
131
+ celerybeat-schedule
132
+ celerybeat.pid
133
+
134
+ # SageMath parsed files
135
+ *.sage.py
136
+
137
+ # Environments
138
+ .env
139
+ .envrc
140
+ .venv
141
+ env/
142
+ venv/
143
+ ENV/
144
+ env.bak/
145
+ venv.bak/
146
+
147
+ # Spyder project settings
148
+ .spyderproject
149
+ .spyproject
150
+
151
+ # Rope project settings
152
+ .ropeproject
153
+
154
+ # mkdocs documentation
155
+ /site
156
+
157
+ # mypy
158
+ .mypy_cache/
159
+ .dmypy.json
160
+ dmypy.json
161
+
162
+ # Pyre type checker
163
+ .pyre/
164
+
165
+ # pytype static type analyzer
166
+ .pytype/
167
+
168
+ # Cython debug symbols
169
+ cython_debug/
170
+
171
+ # PyCharm
172
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
173
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
174
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
175
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
176
+ #.idea/
177
+
178
+ # Abstra
179
+ # Abstra is an AI-powered process automation framework.
180
+ # Ignore directories containing user credentials, local state, and settings.
181
+ # Learn more at https://abstra.io/docs
182
+ .abstra/
183
+
184
+ # Visual Studio Code
185
+ # Visual Studio Code specific template is maintained in a separate VisualStudioCode.gitignore
186
+ # that can be found at https://github.com/github/gitignore/blob/main/Global/VisualStudioCode.gitignore
187
+ # and can be added to the global gitignore or merged into this file. However, if you prefer,
188
+ # you could uncomment the following to ignore the entire vscode folder
189
+ # .vscode/
190
+
191
+ # Ruff stuff:
192
+ .ruff_cache/
193
+
194
+ # PyPI configuration file
195
+ .pypirc
196
+
197
+ # Cursor
198
+ # Cursor is an AI-powered code editor. `.cursorignore` specifies files/directories to
199
+ # exclude from AI features like autocomplete and code analysis. Recommended for sensitive data
200
+ # refer to https://docs.cursor.com/context/ignore-files
201
+ .cursorignore
202
+ .cursorindexingignore
203
+
204
+ # Marimo
205
+ marimo/_static/
206
+ marimo/_lsp/
207
+ __marimo__/
208
+
209
+ # macos
210
+ .DS_Store
@@ -0,0 +1 @@
1
+ 3.10
dfax-0.1.0/LICENSE ADDED
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2025 RAD-Embeddings
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
dfax-0.1.0/PKG-INFO ADDED
@@ -0,0 +1,136 @@
1
+ Metadata-Version: 2.4
2
+ Name: dfax
3
+ Version: 0.1.0
4
+ Summary: Python library for modeling DFAs, Moore Machines, and Transition Systems in JAX.
5
+ Author-email: Beyazit Yalcinkaya <beyazit@berkeley.edu>
6
+ License-File: LICENSE
7
+ Requires-Python: >=3.10
8
+ Description-Content-Type: text/markdown
9
+
10
+ # DFAx
11
+
12
+ A JAX-compatible Python implementation of a Deterministic Finite Automaton (DFA).
13
+
14
+ ## Installation
15
+
16
+ This package will soon be made pip-installable. In the meantime, pull the repo and and install locally.
17
+
18
+ ```
19
+ git clone https://github.com/rad-dfa/dfax.git
20
+ pip install -e dfax
21
+ ```
22
+
23
+ ## Usage
24
+
25
+ Create DFAs by specifying a `start` state, `transitions` matrix, which is max number of states by number of alphabet symbols, and the associated `labels` for each state.
26
+
27
+ ```python
28
+ from dfax import DFAx
29
+
30
+ dfax = DFAx(
31
+ start=0, # State referred to as 0 is the initial state
32
+ transitions=jnp.array([
33
+ [1, 2, 0, 0, 0],
34
+ [1, 1, 1, 1, 1],
35
+ [2, 2, 2, 2, 2],
36
+ ]), # Max number of states is 3 and number of tokens is 5
37
+ labels=jnp.array([False, True, False]) # State labels
38
+ ) # Returns a DFA
39
+ ```
40
+
41
+ Take transitions on the DFA using a given symbol.
42
+
43
+ ```python
44
+ dfax = dfax.advance(0) # Returns the resulting DFA after reading the symbol referred to as 0
45
+ ```
46
+
47
+ Minimize DFAs.
48
+
49
+ ```python
50
+ dfax = dfax.minimize() # Returns a canonical minimal DFA
51
+ ```
52
+
53
+
54
+ Canonicalize DFAs by relabeling states based on a BFS search.
55
+
56
+ ```python
57
+ dfax = dfax.canonicalize() # Returns a canonical DFA
58
+ ```
59
+
60
+ Mutate DFAs by randomly toggling entries in the transition matrix.
61
+
62
+ ```python
63
+ import jax
64
+
65
+ key = jax.random.PRNGKey(0)
66
+ dfax = dfax.mutate(key) # Returns a mutated DFA
67
+ ```
68
+
69
+ Perform syntactic equality check between DFAs.
70
+
71
+ ```python
72
+ dfax1 == dfax2
73
+ ```
74
+
75
+ Perform semantic equality check between DFAs.
76
+
77
+ ```python
78
+ dfax1.minimize() == dfax2.minimize()
79
+ ```
80
+
81
+ Use DFAs as reward functions. With ternary semantics, reward is (i) `+1` if the `start` state has label `True`, (ii) `-1` if the `start` state has label `False` and is a sink state, and (iii) `0` otherwise. With binary semantics, `0` is returned instead of `-1`.
82
+
83
+ ```python
84
+ dfax.reward() # Returns a ternary reward
85
+ dfax.reward(binary=True) # Returns a binary reward
86
+ ```
87
+
88
+
89
+ Sample from different DFA distributions: `Reach` samples DFAs ordering alphabet symbols, `ReachAvoid` samples `Reach` DFAs but also includes `Avoid` constraints, and `ReachAvoidDerived` samples randomly mutated `Reach` and `ReachAvoid` DFAs.
90
+
91
+ ```python
92
+ import jax
93
+ from dfax.samplers import ReachSampler, ReachAvoidSampler, RADSampler
94
+
95
+ key = jax.random.PRNGKey(0)
96
+ sampler = ReachAvoidSampler()
97
+
98
+ dfax = sampler.sample(key)
99
+ ```
100
+
101
+
102
+ Define your own DFA samplers by overloading `DFASampler `.
103
+
104
+ ```python
105
+ @struct.dataclass
106
+ class MySampler(DFASampler):
107
+ @partial(jax.jit, static_argnums=(0,))
108
+ def sample(self, key: chex.PRNGKey) -> DFAx:
109
+ # Write sampling code and return sampled DFA
110
+ ```
111
+
112
+ Visualize DFAs.
113
+
114
+ ```python
115
+ from dfax.utils import visualize
116
+ visualize(dfax)
117
+ ```
118
+
119
+
120
+ This project is a JAX extension of [dfa](https://github.com/mvcisback/dfa). Therefore, we include helper methods for translating `DFAx` objects to and from `DFA` objects.
121
+
122
+ ```python
123
+ from dfax import dfa2dfax, dfax2dfa
124
+
125
+ dfa = dfax2dfa(dfax) # Create DFA from DFAx
126
+ dfax = dfa2dfax(dfa) # Create DFAx from DFA
127
+ ```
128
+
129
+ ## In progress
130
+
131
+ Currently, we are working on implementing Boolean operations on `DFAx` objects, e.g., conjunction, disjunction, etc. If there are other functionalities you would like to have in this package, create pull request or contact us to work together!
132
+
133
+
134
+
135
+
136
+
dfax-0.1.0/README.md ADDED
@@ -0,0 +1,127 @@
1
+ # DFAx
2
+
3
+ A JAX-compatible Python implementation of a Deterministic Finite Automaton (DFA).
4
+
5
+ ## Installation
6
+
7
+ This package will soon be made pip-installable. In the meantime, pull the repo and and install locally.
8
+
9
+ ```
10
+ git clone https://github.com/rad-dfa/dfax.git
11
+ pip install -e dfax
12
+ ```
13
+
14
+ ## Usage
15
+
16
+ Create DFAs by specifying a `start` state, `transitions` matrix, which is max number of states by number of alphabet symbols, and the associated `labels` for each state.
17
+
18
+ ```python
19
+ from dfax import DFAx
20
+
21
+ dfax = DFAx(
22
+ start=0, # State referred to as 0 is the initial state
23
+ transitions=jnp.array([
24
+ [1, 2, 0, 0, 0],
25
+ [1, 1, 1, 1, 1],
26
+ [2, 2, 2, 2, 2],
27
+ ]), # Max number of states is 3 and number of tokens is 5
28
+ labels=jnp.array([False, True, False]) # State labels
29
+ ) # Returns a DFA
30
+ ```
31
+
32
+ Take transitions on the DFA using a given symbol.
33
+
34
+ ```python
35
+ dfax = dfax.advance(0) # Returns the resulting DFA after reading the symbol referred to as 0
36
+ ```
37
+
38
+ Minimize DFAs.
39
+
40
+ ```python
41
+ dfax = dfax.minimize() # Returns a canonical minimal DFA
42
+ ```
43
+
44
+
45
+ Canonicalize DFAs by relabeling states based on a BFS search.
46
+
47
+ ```python
48
+ dfax = dfax.canonicalize() # Returns a canonical DFA
49
+ ```
50
+
51
+ Mutate DFAs by randomly toggling entries in the transition matrix.
52
+
53
+ ```python
54
+ import jax
55
+
56
+ key = jax.random.PRNGKey(0)
57
+ dfax = dfax.mutate(key) # Returns a mutated DFA
58
+ ```
59
+
60
+ Perform syntactic equality check between DFAs.
61
+
62
+ ```python
63
+ dfax1 == dfax2
64
+ ```
65
+
66
+ Perform semantic equality check between DFAs.
67
+
68
+ ```python
69
+ dfax1.minimize() == dfax2.minimize()
70
+ ```
71
+
72
+ Use DFAs as reward functions. With ternary semantics, reward is (i) `+1` if the `start` state has label `True`, (ii) `-1` if the `start` state has label `False` and is a sink state, and (iii) `0` otherwise. With binary semantics, `0` is returned instead of `-1`.
73
+
74
+ ```python
75
+ dfax.reward() # Returns a ternary reward
76
+ dfax.reward(binary=True) # Returns a binary reward
77
+ ```
78
+
79
+
80
+ Sample from different DFA distributions: `Reach` samples DFAs ordering alphabet symbols, `ReachAvoid` samples `Reach` DFAs but also includes `Avoid` constraints, and `ReachAvoidDerived` samples randomly mutated `Reach` and `ReachAvoid` DFAs.
81
+
82
+ ```python
83
+ import jax
84
+ from dfax.samplers import ReachSampler, ReachAvoidSampler, RADSampler
85
+
86
+ key = jax.random.PRNGKey(0)
87
+ sampler = ReachAvoidSampler()
88
+
89
+ dfax = sampler.sample(key)
90
+ ```
91
+
92
+
93
+ Define your own DFA samplers by overloading `DFASampler `.
94
+
95
+ ```python
96
+ @struct.dataclass
97
+ class MySampler(DFASampler):
98
+ @partial(jax.jit, static_argnums=(0,))
99
+ def sample(self, key: chex.PRNGKey) -> DFAx:
100
+ # Write sampling code and return sampled DFA
101
+ ```
102
+
103
+ Visualize DFAs.
104
+
105
+ ```python
106
+ from dfax.utils import visualize
107
+ visualize(dfax)
108
+ ```
109
+
110
+
111
+ This project is a JAX extension of [dfa](https://github.com/mvcisback/dfa). Therefore, we include helper methods for translating `DFAx` objects to and from `DFA` objects.
112
+
113
+ ```python
114
+ from dfax import dfa2dfax, dfax2dfa
115
+
116
+ dfa = dfax2dfa(dfax) # Create DFA from DFAx
117
+ dfax = dfa2dfax(dfa) # Create DFAx from DFA
118
+ ```
119
+
120
+ ## In progress
121
+
122
+ Currently, we are working on implementing Boolean operations on `DFAx` objects, e.g., conjunction, disjunction, etc. If there are other functionalities you would like to have in this package, create pull request or contact us to work together!
123
+
124
+
125
+
126
+
127
+
@@ -0,0 +1,2 @@
1
+ from dfax.dfax import *
2
+ from dfax.utils import *
@@ -0,0 +1,356 @@
1
+ import jax
2
+ import chex
3
+ import jax.numpy as jnp
4
+ from flax import struct
5
+
6
+
7
+ @jax.jit
8
+ def DFAx(start, transitions, labels):
9
+ n_states, n_tokens = transitions.shape
10
+ trans_flat = transitions.flatten()
11
+ is_reach_init = jnp.zeros((n_states,), dtype=bool).at[start].set(True)
12
+
13
+ def step(is_reach: jnp.ndarray) -> jnp.ndarray:
14
+ reach_repeat = jnp.repeat(is_reach, n_tokens)
15
+ dest_counts = jnp.zeros((n_states,), dtype=jnp.int32).at[trans_flat].add(reach_repeat)
16
+ return dest_counts > 0
17
+
18
+ def cond(pair):
19
+ prev_is_reach, curr_is_reach = pair
20
+ return jnp.any(prev_is_reach != curr_is_reach)
21
+
22
+ def body(pair):
23
+ prev_is_reach, curr_is_reach = pair
24
+ next_is_reach = step(curr_is_reach)
25
+ return (curr_is_reach, next_is_reach)
26
+
27
+ is_reach, _ = jax.lax.while_loop(cond, body, (is_reach_init, step(is_reach_init)))
28
+
29
+ return _DFAx(start=start,
30
+ transitions=transitions,
31
+ labels=labels,
32
+ is_reach=is_reach)
33
+
34
+
35
+ @struct.dataclass
36
+ class _DFAx:
37
+ start: int
38
+ transitions: jnp.ndarray
39
+ labels: jnp.ndarray
40
+ is_reach: jnp.ndarray
41
+
42
+ @property
43
+ def n_states(self):
44
+ return jnp.sum(self.is_reach)
45
+
46
+ @property
47
+ def max_n_states(self):
48
+ return self.transitions.shape[0]
49
+
50
+ @property
51
+ def n_tokens(self):
52
+ return self.transitions.shape[1]
53
+
54
+ @property
55
+ def is_reach_tile(self) -> jnp.ndarray:
56
+ return jnp.tile(self.is_reach.reshape(-1, 1), (1, self.n_tokens))
57
+
58
+ @jax.jit
59
+ def __eq__(self, other: "DFAx") -> jnp.ndarray:
60
+ n = min(self.max_n_states, other.max_n_states)
61
+
62
+ start_eq = (self.start == other.start)
63
+ transitions_eq = jnp.where(
64
+ self.n_tokens == other.n_tokens,
65
+ jnp.all(self.transitions[:n] == other.transitions[:n]),
66
+ False
67
+ )
68
+ labels_eq = jnp.all(self.labels[:n] == other.labels[:n])
69
+
70
+ return jnp.logical_and(start_eq, jnp.logical_and(transitions_eq, labels_eq))
71
+
72
+
73
+ @jax.jit
74
+ def advance(self, symbol: int) -> "DFAx":
75
+ return DFAx(
76
+ start=jnp.where(
77
+ jnp.logical_and(symbol >= 0, symbol < self.n_tokens),
78
+ self.transitions[self.start, symbol],
79
+ self.start
80
+ ),
81
+ transitions=self.transitions,
82
+ labels=self.labels)
83
+
84
+ @jax.jit
85
+ def mutate(self, key: chex.PRNGKey) -> "DFAx":
86
+ key, k1, k2 = jax.random.split(key, 3)
87
+
88
+ flat_is_reach_tile = self.is_reach_tile.flatten()
89
+
90
+ scores, indices = jax.lax.top_k(jnp.where(flat_is_reach_tile, 1, 0), flat_is_reach_tile.size)
91
+ num_valid = jnp.sum(scores > 0)
92
+ valid_idx = jax.random.randint(k1, (), 0, num_valid)
93
+ flat_idx = indices[valid_idx]
94
+ s, a = jnp.divmod(flat_idx, self.n_tokens)
95
+
96
+ scores, indices = jax.lax.top_k(jnp.where(self.is_reach, 1, 0), self.max_n_states)
97
+ num_valid = jnp.sum(scores > 0)
98
+ valid_idx = jax.random.randint(k2, (), 0, num_valid)
99
+ t = indices[valid_idx]
100
+
101
+ transitions = self.transitions.at[s, a].set(t)
102
+
103
+ return DFAx(start=self.start,
104
+ transitions=transitions,
105
+ labels=self.labels)
106
+
107
+ @jax.jit
108
+ def mutate_reject_lang(self, key: chex.PRNGKey) -> "DFAx":
109
+ key, k1, k2 = jax.random.split(key, 3)
110
+
111
+ is_self_loop = self.transitions == jnp.arange(self.max_n_states)[:, None]
112
+ sa_mask = jnp.logical_and(
113
+ jnp.logical_and(self.is_reach_tile, is_self_loop),
114
+ jnp.logical_not(self.labels)[:, None]
115
+ ).flatten()
116
+
117
+ scores, indices = jax.lax.top_k(jnp.where(sa_mask, 1, 0), sa_mask.size)
118
+ num_valid = jnp.sum(scores > 0)
119
+ valid_idx = jax.random.randint(k1, (), 0, num_valid)
120
+ flat_idx = indices[valid_idx]
121
+ s, a = jnp.divmod(flat_idx, self.n_tokens)
122
+
123
+ is_sink = jnp.all(is_self_loop, axis=-1)
124
+ is_reject = jnp.logical_and.reduce(jnp.array([self.is_reach, is_sink, jnp.logical_not(self.labels)]))
125
+ t_mask = jnp.where(jnp.any(is_reject), is_reject, jnp.logical_not(self.is_reach))
126
+
127
+ scores, indices = jax.lax.top_k(jnp.where(t_mask, 1, 0), t_mask.size)
128
+ num_valid = jnp.sum(scores > 0)
129
+ valid_idx = jax.random.randint(k2, (), 0, num_valid)
130
+ t = indices[valid_idx]
131
+
132
+ transitions = self.transitions.at[s, a].set(t)
133
+
134
+ return DFAx(start=self.start,
135
+ transitions=transitions,
136
+ labels=self.labels)
137
+
138
+ @jax.jit
139
+ def sink_accepts(self) -> "DFAx":
140
+ accept_mask = jnp.tile(self.labels.reshape(-1, 1), (1, self.n_tokens))
141
+ replace_mask = accept_mask & self.is_reach_tile
142
+
143
+ sink_indices = jnp.tile(jnp.arange(self.max_n_states).reshape(-1, 1), (1, self.n_tokens))
144
+ transitions = jnp.where(replace_mask, sink_indices, self.transitions)
145
+
146
+ return DFAx(
147
+ start=self.start,
148
+ transitions=transitions,
149
+ labels=self.labels
150
+ )
151
+
152
+ @jax.jit
153
+ def prune(self) -> "DFAx":
154
+ pruned_transitions = jnp.where(self.is_reach_tile, self.transitions, jnp.arange(self.max_n_states)[:, None])
155
+ pruned_labels = jnp.where(self.is_reach, self.labels, False)
156
+
157
+ return DFAx(start=self.start,
158
+ transitions=pruned_transitions,
159
+ labels=pruned_labels)
160
+
161
+ @jax.jit
162
+ def minimize(self) -> "DFAx":
163
+ return self.naivePR().prune().canonicalize()
164
+
165
+ @jax.jit
166
+ def naivePR(self) -> "DFAx":
167
+ # Algorithm 2 from https://arxiv.org/pdf/2410.22764
168
+ q_f = jnp.argmax(jnp.where(self.is_reach, self.labels, 0))
169
+ q_n = jnp.argmin(jnp.where(self.is_reach, self.labels, 1))
170
+ block = jnp.where(self.labels, q_f, q_n)
171
+ block = jnp.where(self.is_reach, block, jnp.arange(self.max_n_states))
172
+
173
+ qs = jnp.arange(self.max_n_states)
174
+ as_ = jnp.arange(self.n_tokens)
175
+ qas = jnp.stack(jnp.meshgrid(qs, as_, indexing="ij"), axis=-1).reshape(-1, 2)
176
+
177
+ def iteration(state):
178
+ block, _ = state
179
+
180
+ def elect(q_a):
181
+ q, a = q_a
182
+ return jax.lax.cond(
183
+ self.is_reach[q],
184
+ lambda _: (
185
+ block[q],
186
+ jnp.where(
187
+ block[self.transitions[q, a]] != block[self.transitions[block[q], a]],
188
+ q,
189
+ -1
190
+ )
191
+ ),
192
+ lambda _: (block[q], -1),
193
+ operand=None
194
+ )
195
+ blk_idx, leaders = jax.vmap(elect)(qas)
196
+ new_leader = jax.ops.segment_max(leaders, blk_idx, num_segments=self.max_n_states)
197
+
198
+ def assign(q_a):
199
+ q, a = q_a
200
+ return jax.lax.cond(
201
+ self.is_reach[q],
202
+ lambda _: (
203
+ q,
204
+ jnp.where(
205
+ (block[self.transitions[q, a]] != block[self.transitions[block[q], a]]),
206
+ new_leader[block[q]],
207
+ -1
208
+ )
209
+ ),
210
+ lambda _: (q, -1),
211
+ operand=None
212
+ )
213
+ qs_idx, new_vals = jax.vmap(assign)(qas)
214
+ new_block = jax.ops.segment_max(new_vals, qs_idx, num_segments=self.max_n_states)
215
+ new_block = jnp.where(new_block < 0, block, new_block)
216
+
217
+ return (new_block, jnp.any(new_block != block))
218
+
219
+ block, _ = jax.lax.while_loop(
220
+ lambda s: s[1],
221
+ lambda s: iteration((s[0], False)),
222
+ (block, True)
223
+ )
224
+
225
+ minimized_start = block[self.start]
226
+ minimized_labels = self.labels[block]
227
+ minimized_transitions = block[self.transitions]
228
+
229
+ return DFAx(start=minimized_start,
230
+ transitions=minimized_transitions,
231
+ labels=minimized_labels)
232
+
233
+ @jax.jit
234
+ def canonicalize(self) -> "DFAx":
235
+ old_to_new = (-jnp.ones((self.max_n_states,), dtype=jnp.int32)).at[self.start].set(0)
236
+ visited = jnp.zeros((self.max_n_states,), dtype=bool).at[self.start].set(True)
237
+ queue = (-jnp.ones((self.max_n_states,), dtype=jnp.int32)).at[0].set(self.start)
238
+ head = 0
239
+ tail = (head + 1) % self.max_n_states
240
+ count = 0
241
+
242
+ def cond(carry):
243
+ _, _, _, head, tail, _ = carry
244
+ return head != tail
245
+
246
+ def body(carry):
247
+ visited, old_to_new, queue, head, tail, count = carry
248
+
249
+ current_state = queue[head]
250
+ head = (head + 1) % self.max_n_states
251
+
252
+ old_to_new = old_to_new.at[current_state].set(count)
253
+ count += 1
254
+
255
+ next_states = self.transitions[current_state]
256
+
257
+ def push(i, carry):
258
+ visited, queue, tail = carry
259
+ ns = next_states[i]
260
+ unseen = jnp.logical_not(visited[ns])
261
+
262
+ queue = queue.at[tail].set(jnp.where(unseen, ns, queue[tail]))
263
+ tail = (tail + unseen) % self.max_n_states
264
+
265
+ visited = visited.at[ns].set(True)
266
+ return visited, queue, tail
267
+
268
+ visited, queue, tail = jax.lax.fori_loop(
269
+ 0, self.n_tokens, push, (visited, queue, tail)
270
+ )
271
+
272
+ return visited, old_to_new, queue, head, tail, count
273
+
274
+ visited, old_to_new, queue, head, tail, count = jax.lax.while_loop(
275
+ cond, body, (visited, old_to_new, queue, head, tail, count)
276
+ )
277
+
278
+ mask = (old_to_new < 0)
279
+ ranks = jnp.cumsum(mask) - 1
280
+ fill_vals = count + ranks
281
+ old_to_new = jnp.where(mask, fill_vals, old_to_new)
282
+
283
+ start = old_to_new[self.start]
284
+ transitions = self.transitions.at[old_to_new].set(old_to_new[self.transitions])
285
+ labels = self.labels.at[old_to_new].set(self.labels)
286
+
287
+ return DFAx(start=start,
288
+ transitions=transitions,
289
+ labels=labels)
290
+
291
+ @jax.jit
292
+ def to_graph(self):
293
+ srcs, tgts = jnp.meshgrid(jnp.arange(self.max_n_states), jnp.arange(self.max_n_states), indexing="ij")
294
+ srcs = srcs.flatten()
295
+ tgts = tgts.flatten()
296
+
297
+ edge_index = jnp.stack([srcs, tgts])
298
+
299
+ is_init = jnp.logical_and(
300
+ self.is_reach,
301
+ jnp.arange(self.max_n_states) == self.start
302
+ )
303
+ is_accept = jnp.logical_and(
304
+ self.is_reach,
305
+ self.labels
306
+ )
307
+ is_reject = jnp.logical_and(
308
+ self.is_reach,
309
+ jnp.all(
310
+ jnp.logical_and(
311
+ self.transitions == jnp.arange(self.max_n_states)[:, None], # has all loops
312
+ jnp.logical_not(self.labels[:, None]) # not accepting
313
+ ),
314
+ axis=1
315
+ )
316
+ )
317
+ is_non_terminal = jnp.logical_and(
318
+ self.is_reach,
319
+ jnp.logical_and(
320
+ jnp.logical_not(is_accept),
321
+ jnp.logical_not(is_reject)
322
+ )
323
+ )
324
+
325
+ node_features = jnp.stack([is_init, is_accept, is_reject, is_non_terminal], axis=1).astype(jnp.float32)
326
+
327
+ edge_features = jnp.logical_and(
328
+ self.is_reach[:, None, None],
329
+ self.transitions[:, None, :] == jnp.arange(self.max_n_states)[None, :, None] # one hot tokens
330
+ ).astype(jnp.float32).reshape(-1, self.n_tokens)
331
+
332
+ mask = jnp.any(edge_features != 0, axis=-1)[:, None]
333
+ edge_features = jnp.concatenate([node_features[srcs] * mask, edge_features, node_features[tgts] * mask], axis=-1)
334
+
335
+ graph = {
336
+ "node_features": node_features,
337
+ "edge_features": edge_features,
338
+ "edge_index": edge_index,
339
+ "current_state": jnp.array([self.start]),
340
+ "n_states": jnp.full(self.max_n_states, self.n_states)
341
+ }
342
+
343
+ return graph
344
+
345
+ @jax.jit
346
+ def reward(self, binary: bool = False) -> float:
347
+ is_accept = self.labels[self.start]
348
+ start_row = self.transitions[self.start]
349
+ start_vec = jnp.full((self.n_tokens,), self.start, dtype=start_row.dtype)
350
+ is_sink = jnp.all(start_row == start_vec)
351
+
352
+ return jnp.where(binary,
353
+ jnp.where(is_accept, 1.0, 0.0),
354
+ jnp.where(is_accept, 1.0, jnp.where(is_sink, -1.0, 0.0))
355
+ )
356
+
@@ -0,0 +1,179 @@
1
+ import jax
2
+ import chex
3
+ import jax.numpy as jnp
4
+ from flax import struct
5
+ from dfax import DFAx
6
+ from functools import partial
7
+
8
+
9
+ # Base sampler: holds parameters
10
+ @struct.dataclass
11
+ class DFASampler:
12
+ n_tokens: int = 10
13
+ max_size: int = 10
14
+ p: float | None = None
15
+
16
+ @partial(jax.jit, static_argnums=(0,))
17
+ def sample(self, key: chex.PRNGKey) -> DFAx:
18
+ raise NotImplementedError
19
+
20
+ @partial(jax.jit, static_argnums=(0, 2))
21
+ def sample_n(self, key: chex.PRNGKey, lower_bound: int = 2):
22
+ if self.p is not None:
23
+ values = jnp.arange(lower_bound, self.max_size + 1)
24
+ weights = self.p ** values
25
+ weights = weights / jnp.sum(weights)
26
+ idx = jax.random.choice(key, values, p=weights)
27
+ return idx
28
+ else:
29
+ return jax.random.randint(key, (), lower_bound, self.max_size + 1)
30
+
31
+ @partial(jax.jit, static_argnums=(0,))
32
+ def trivial(self, label):
33
+ start = 0
34
+ transitions = jnp.tile(jnp.arange(self.max_size).reshape(-1, 1), (1, self.n_tokens))
35
+ labels = jnp.zeros((self.max_size,), dtype=bool).at[start].set(label)
36
+ return DFAx(start=start,
37
+ transitions=transitions,
38
+ labels=labels)
39
+
40
+
41
+ # Reach sampler
42
+ @struct.dataclass
43
+ class ReachSampler(DFASampler):
44
+ prob_stutter: float = 0.9
45
+
46
+ @partial(jax.jit, static_argnums=(0,))
47
+ def sample(self, key: chex.PRNGKey) -> DFAx:
48
+ key, subkey = jax.random.split(key)
49
+ n = self.sample_n(subkey, lower_bound=2)
50
+ success = n-1
51
+ transitions = jnp.tile(jnp.arange(self.max_size).reshape(-1, 1), (1, self.n_tokens))
52
+ labels = jnp.zeros(self.max_size, dtype=bool)
53
+ labels = labels.at[success].set(True)
54
+ transitions = transitions.at[success, :].set(success)
55
+
56
+ def body_fn(i, carry):
57
+ transitions, labels, key = carry
58
+ key, k1, k2, k3 = jax.random.split(key, 4)
59
+ perm = jax.random.permutation(k1, jnp.arange(self.n_tokens))
60
+ row = jnp.full(self.n_tokens, i, dtype=jnp.int32)
61
+ row = row.at[perm[0]].set(i+1)
62
+ rest = perm[1:]
63
+ r = jax.random.uniform(k2, (self.n_tokens-1,))
64
+ choice = jax.random.bernoulli(k3, 0.5, (self.n_tokens-1,))
65
+ dest = jnp.where(r <= self.prob_stutter, i, i+1)
66
+ row = row.at[rest].set(dest)
67
+ transitions = transitions.at[i].set(row)
68
+ return (transitions, labels, key)
69
+
70
+ transitions, labels, _ = jax.lax.cond(
71
+ n == 0,
72
+ lambda _: (jnp.tile(jnp.arange(self.max_size).reshape(-1, 1), (1, self.n_tokens)), jnp.zeros(self.max_size, dtype=bool).at[0].set(True), key),
73
+ lambda _: jax.lax.fori_loop(0, n-1, body_fn, (transitions, labels, key)),
74
+ operand=None
75
+ )
76
+ return DFAx(start=0, transitions=transitions, labels=labels).minimize()
77
+
78
+
79
+ # Reach-Avoid sampler
80
+ @struct.dataclass
81
+ class ReachAvoidSampler(DFASampler):
82
+ prob_stutter: float = 0.9
83
+
84
+ @partial(jax.jit, static_argnums=(0,))
85
+ def sample(self, key: chex.PRNGKey) -> DFAx:
86
+ key, subkey = jax.random.split(key)
87
+ n = self.sample_n(subkey, lower_bound=3)
88
+ success, fail = n-2, n-1
89
+ transitions = jnp.tile(jnp.arange(self.max_size).reshape(-1, 1), (1, self.n_tokens))
90
+ labels = jnp.zeros(self.max_size, dtype=bool)
91
+ labels = labels.at[success].set(True)
92
+ transitions = transitions.at[success, :].set(success)
93
+ transitions = transitions.at[fail, :].set(fail)
94
+
95
+ def body_fn(i, carry):
96
+ transitions, labels, key = carry
97
+ key, k1, k2, k3 = jax.random.split(key, 4)
98
+ perm = jax.random.permutation(k1, jnp.arange(self.n_tokens))
99
+ row = jnp.full(self.n_tokens, i, dtype=jnp.int32)
100
+ row = row.at[perm[0]].set(i+1)
101
+ row = row.at[perm[1]].set(fail)
102
+ rest = perm[2:]
103
+ r = jax.random.uniform(k2, (self.n_tokens-2,))
104
+ choice = jax.random.bernoulli(k3, 0.5, (self.n_tokens-2,))
105
+ dest = jnp.where(r <= self.prob_stutter, i, jnp.where(choice, i+1, fail))
106
+ row = row.at[rest].set(dest)
107
+ transitions = transitions.at[i].set(row)
108
+ return (transitions, labels, key)
109
+
110
+ transitions, labels, _ = jax.lax.cond(
111
+ n == 0,
112
+ lambda _: (jnp.tile(jnp.arange(self.max_size).reshape(-1, 1), (1, self.n_tokens)), jnp.zeros(self.max_size, dtype=bool).at[0].set(True), key),
113
+ lambda _: jax.lax.fori_loop(0, n-2, body_fn, (transitions, labels, key)),
114
+ operand=None
115
+ )
116
+ return DFAx(start=0, transitions=transitions, labels=labels).minimize()
117
+
118
+
119
+ # Reach-Avoid with random mutations
120
+ @struct.dataclass
121
+ class RADSampler(DFASampler):
122
+ p: float | None = 0.5
123
+ prob_stutter: float = 0.9
124
+ max_mutations: int = 5
125
+
126
+ @partial(jax.jit, static_argnums=(0,))
127
+ def sample(self, key: chex.PRNGKey) -> DFAx:
128
+ key, subkey = jax.random.split(key)
129
+ n = self.sample_n(subkey, lower_bound=3)
130
+ success, fail = n-2, n-1
131
+ transitions = jnp.tile(jnp.arange(self.max_size).reshape(-1, 1), (1, self.n_tokens))
132
+ labels = jnp.zeros(self.max_size, dtype=bool)
133
+ labels = labels.at[success].set(True)
134
+ transitions = transitions.at[success, :].set(success)
135
+ transitions = transitions.at[fail, :].set(fail)
136
+
137
+ def body_fn(i, carry):
138
+ transitions, labels, key = carry
139
+ key, k1, k2, k3, k4 = jax.random.split(key, 5)
140
+ perm = jax.random.permutation(k1, jnp.arange(self.n_tokens))
141
+ row = jnp.full(self.n_tokens, i, dtype=jnp.int32)
142
+ row = row.at[perm[0]].set(i+1)
143
+ is_avoid_problem = jax.random.bernoulli(k2, 0.5)
144
+ row = row.at[perm[1]].set(jnp.where(is_avoid_problem, fail, i))
145
+ rest = perm[2:]
146
+ r = jax.random.uniform(k3, (self.n_tokens-2,))
147
+ choice = jax.random.bernoulli(k4, 0.5, (self.n_tokens-2,))
148
+ dest = jnp.where(r <= self.prob_stutter, i, jnp.where(choice, i+1, fail))
149
+ row = row.at[rest].set(dest)
150
+ transitions = transitions.at[i].set(row)
151
+ return (transitions, labels, key)
152
+
153
+ transitions, labels, _ = jax.lax.cond(
154
+ n == 0,
155
+ lambda _: (jnp.tile(jnp.arange(self.max_size).reshape(-1, 1), (1, self.n_tokens)), jnp.zeros(self.max_size, dtype=bool).at[0].set(True), key),
156
+ lambda _: jax.lax.fori_loop(0, n-2, body_fn, (transitions, labels, key)),
157
+ operand=None
158
+ )
159
+ candidate = DFAx(start=0, transitions=transitions, labels=labels).minimize()
160
+
161
+ key, subkey = jax.random.split(key)
162
+ n_mutations = jax.random.choice(subkey, self.max_mutations + 1)
163
+
164
+ def derive(i, carry):
165
+ k, cand = carry
166
+ k, sk = jax.random.split(k)
167
+ new_cand = cand.mutate(sk).sink_accepts().minimize()
168
+ cand = jax.lax.cond(
169
+ new_cand.n_states <= 1,
170
+ lambda _: cand,
171
+ lambda _: new_cand,
172
+ operand=None
173
+ )
174
+ return k, cand
175
+
176
+ _, candidate = jax.lax.fori_loop(0, n_mutations, derive, (key, candidate))
177
+
178
+ return candidate
179
+
@@ -0,0 +1,189 @@
1
+ import jax
2
+ from dfa import DFA
3
+ from dfax import DFAx
4
+ import networkx as nx
5
+ import jax.numpy as jnp
6
+ import matplotlib.pyplot as plt
7
+ import matplotlib.patches as patches
8
+
9
+
10
+ def dfa2dfax(dfa: DFA) -> DFAx:
11
+ states = dfa.states()
12
+ inputs = dfa.inputs
13
+ start = dfa.start
14
+ transitions = jnp.array([[dfa._transition(s, a) for a in inputs] for s in states])
15
+ labels = jnp.array([dfa._label(s) for s in states])
16
+ tmp = DFAx(
17
+ start=start,
18
+ transitions=transitions,
19
+ labels=labels
20
+ )
21
+ return tmp
22
+
23
+
24
+ def dfax2dfa(dfax: DFAx) -> DFA:
25
+ inputs = set(range(dfax.transitions.shape[1]))
26
+
27
+ def transition(s, a):
28
+ return int(dfax.transitions[s, a])
29
+
30
+ def label(s):
31
+ return bool(dfax.labels[s])
32
+
33
+ return DFA(
34
+ start=int(dfax.start),
35
+ inputs=inputs,
36
+ transition=transition,
37
+ label=label,
38
+ )
39
+
40
+
41
+ @jax.jit
42
+ def batch2graph(batch):
43
+ if batch["node_features"].ndim == 2 and batch["edge_features"].ndim == 2 and batch["edge_index"].ndim == 2 and batch["current_state"].ndim == 1:
44
+ return batch
45
+
46
+ batch_size, n_nodes, _ = batch["node_features"].shape
47
+ node_features = jnp.concatenate(batch["node_features"])
48
+ edge_features = jnp.concatenate(batch["edge_features"])
49
+ offset = (jnp.arange(batch_size, dtype=jnp.int32) * n_nodes)
50
+ edge_index = jnp.concatenate(batch["edge_index"] + offset[:, None, None], axis=1)
51
+ current_state = (batch["current_state"].reshape(batch_size, -1) + offset[:, None]).flatten()
52
+ n_states = jnp.concatenate(batch["n_states"])
53
+
54
+ graph = {
55
+ "node_features": node_features,
56
+ "edge_features": edge_features,
57
+ "edge_index": edge_index,
58
+ "current_state": current_state,
59
+ "n_states": n_states
60
+ }
61
+
62
+ return graph
63
+
64
+ @jax.jit
65
+ def list2batch(graphs):
66
+ node_features_batch = jnp.stack([graph["node_features"] for graph in graphs], axis=0)
67
+ node_features_batch = node_features_batch if node_features_batch.ndim == 3 else jnp.concatenate(node_features_batch, axis=0)
68
+
69
+ edge_features_batch = jnp.stack([graph["edge_features"] for graph in graphs], axis=0)
70
+ edge_features_batch = edge_features_batch if edge_features_batch.ndim == 3 else jnp.concatenate(edge_features_batch, axis=0)
71
+
72
+ edge_index_batch = jnp.stack([graph["edge_index"] for graph in graphs], axis=0)
73
+ edge_index_batch = edge_index_batch if edge_index_batch.ndim == 3 else jnp.concatenate(edge_index_batch, axis=0)
74
+
75
+ current_state_batch = jnp.stack([graph["current_state"] for graph in graphs], axis=0)
76
+ current_state_batch = current_state_batch if current_state_batch.ndim == 2 else jnp.concatenate(current_state_batch, axis=0)
77
+
78
+ n_states_batch = jnp.stack(jnp.array([graph["n_states"] for graph in graphs]), axis=0)
79
+ n_states_batch = n_states_batch if n_states_batch.ndim == 2 else jnp.concatenate(n_states_batch, axis=0)
80
+
81
+ batch = {
82
+ "node_features": node_features_batch,
83
+ "edge_features": edge_features_batch,
84
+ "edge_index": edge_index_batch,
85
+ "current_state": current_state_batch,
86
+ "n_states": n_states_batch,
87
+ }
88
+
89
+ return batch
90
+
91
+
92
+ def visualize(dfax, label_states=False, save_path=None):
93
+ n_states, n_tokens = dfax.transitions.shape
94
+
95
+ G = nx.DiGraph()
96
+ for s in range(n_states):
97
+ if dfax.is_reach[s]:
98
+ G.add_node(s, label=str(s))
99
+
100
+ edges = {}
101
+ for s in range(n_states):
102
+ s = int(s)
103
+ for a in range(n_tokens):
104
+ a = int(a)
105
+ t = int(dfax.transitions[s, a])
106
+ if s != t:
107
+ if (s, t) not in edges:
108
+ edges[(s, t)] = [str(a)]
109
+ else:
110
+ edges[(s, t)].append(str(a))
111
+
112
+ for (s, t) in edges:
113
+ G.add_edge(s, t, label=edges[(s, t)])
114
+
115
+ # dummy start node
116
+ dummy_start = ""
117
+ G.add_node(dummy_start)
118
+ G.add_edge(dummy_start, int(dfax.start))
119
+
120
+ pos = nx.shell_layout(G)
121
+ # pos = nx.planar_layout(G)
122
+ start_pos = pos[int(dfax.start)]
123
+ pos[dummy_start] = (start_pos[0] - 0.5, start_pos[1])
124
+
125
+ accept_nodes = [s for s in G.nodes() if s != dummy_start and dfax.labels[s]]
126
+ reject_nodes = [s for s in G.nodes() if s != dummy_start and not dfax.labels[s] and jnp.all(dfax.transitions[s] == s)]
127
+ undecd_nodes = [s for s in G.nodes() if s != dummy_start and not dfax.labels[s]]
128
+
129
+ # draw nodes
130
+ nx.draw_networkx_nodes(G, pos, nodelist=undecd_nodes, node_size=1200,
131
+ node_color="white", edgecolors="black", linewidths=2)
132
+ nx.draw_networkx_nodes(G, pos, nodelist=accept_nodes, node_size=1200,
133
+ node_color="#88E788", edgecolors="black", linewidths=2)
134
+ nx.draw_networkx_nodes(G, pos, nodelist=reject_nodes, node_size=1200,
135
+ node_color="#FF746C", edgecolors="black", linewidths=2)
136
+
137
+ if label_states:
138
+ nx.draw_networkx_labels(G, pos, font_size=20, font_weight="bold")
139
+
140
+ ax = plt.gca()
141
+
142
+ # draw edges
143
+ for (u, v) in G.edges():
144
+ if u == dummy_start:
145
+ nx.draw_networkx_edges(G, pos, edgelist=[(u, v)], arrows=True, arrowsize=20, node_size=1200)
146
+ continue
147
+
148
+ if G.has_edge(v, u):
149
+ rad = 0.25
150
+ else:
151
+ rad = 0.0
152
+
153
+ nx.draw_networkx_edges(G, pos, edgelist=[(u, v)], arrows=True, arrowsize=20,
154
+ connectionstyle=f"arc3,rad={rad}", node_size=1200)
155
+
156
+ # --- draw tokens along the curved edge ---
157
+ x0, y0 = pos[u]
158
+ x1, y1 = pos[v]
159
+ n = len(edges[(u, v)])
160
+ for i, a in enumerate(edges[(u, v)]):
161
+ ratio = (i + 1) / (n + 1)
162
+
163
+ # Compute midpoint along arc3 curve
164
+ if rad != 0:
165
+ # Control point for the quadratic Bezier
166
+ xm_ctrl = (x0 + x1) / 2 + rad * (y1 - y0)
167
+ ym_ctrl = (y0 + y1) / 2 - rad * (x1 - x0)
168
+
169
+ # Quadratic Bezier formula
170
+ xm = (1 - ratio) ** 2 * x0 + 2 * (1 - ratio) * ratio * xm_ctrl + ratio ** 2 * x1
171
+ ym = (1 - ratio) ** 2 * y0 + 2 * (1 - ratio) * ratio * ym_ctrl + ratio ** 2 * y1
172
+ else:
173
+ xm = x0 * (1 - ratio) + x1 * ratio
174
+ ym = y0 * (1 - ratio) + y1 * ratio
175
+
176
+ circle = patches.Circle((xm, ym), 0.08, facecolor="gold", edgecolor="orange", lw=1.5, zorder=5)
177
+ ax.add_patch(circle)
178
+ ax.text(xm, ym, a, ha="center", va="center", fontsize=16, color="black", weight="bold", zorder=6)
179
+
180
+ plt.axis("equal")
181
+ plt.tight_layout()
182
+ plt.axis("off")
183
+
184
+ if save_path:
185
+ plt.savefig(save_path, bbox_inches="tight", dpi=300)
186
+ else:
187
+ plt.show()
188
+ plt.close()
189
+
@@ -0,0 +1,14 @@
1
+ [project]
2
+ name = "dfax"
3
+ version = "0.1.0"
4
+ description = "Python library for modeling DFAs, Moore Machines, and Transition Systems in JAX."
5
+ authors = [
6
+ { name = "Beyazit Yalcinkaya", email = "beyazit@berkeley.edu" }
7
+ ]
8
+ readme = "README.md"
9
+ requires-python = ">=3.10"
10
+ dependencies = []
11
+
12
+ [build-system]
13
+ requires = ["hatchling"]
14
+ build-backend = "hatchling.build"
@@ -0,0 +1,45 @@
1
+ absl-py==2.3.1
2
+ attrs==25.4.0
3
+ bidict==0.23.1
4
+ bitarray==2.9.3
5
+ chex==0.1.90
6
+ contourpy==1.3.2
7
+ cycler==0.12.1
8
+ dfa==4.7.1
9
+ etils==1.13.0
10
+ flax==0.10.4
11
+ fonttools==4.60.1
12
+ fsspec==2025.10.0
13
+ funcy==2.0
14
+ humanize==4.14.0
15
+ importlib-resources==6.5.2
16
+ jax==0.4.38
17
+ jaxlib==0.4.38
18
+ kiwisolver==1.4.9
19
+ markdown-it-py==4.0.0
20
+ matplotlib==3.10.7
21
+ mdurl==0.1.2
22
+ ml-dtypes==0.5.3
23
+ msgpack==1.1.2
24
+ nest-asyncio==1.6.0
25
+ networkx==3.4.2
26
+ numpy==2.2.6
27
+ opt-einsum==3.4.0
28
+ optax==0.2.5
29
+ orbax-checkpoint==0.11.5
30
+ packaging==25.0
31
+ pillow==12.0.0
32
+ protobuf==6.33.0
33
+ pygments==2.19.2
34
+ pyparsing==3.2.5
35
+ python-dateutil==2.9.0.post0
36
+ pyyaml==6.0.3
37
+ rich==14.2.0
38
+ scipy==1.15.3
39
+ simplejson==3.20.2
40
+ six==1.17.0
41
+ tensorstore==0.1.78
42
+ toolz==1.1.0
43
+ treescope==0.1.10
44
+ typing-extensions==4.15.0
45
+ zipp==3.23.0
dfax-0.1.0/test.py ADDED
@@ -0,0 +1,36 @@
1
+ import jax
2
+ import random
3
+ import jax.numpy as jnp
4
+ from dfax import dfa2dfax, dfax2dfa, DFAx
5
+ from dfax.utils import visualize
6
+ from dfax.samplers import ReachSampler, ReachAvoidSampler, RADSampler
7
+
8
+
9
+ key = jax.random.PRNGKey(0)
10
+
11
+ sampler = ReachAvoidSampler(max_size=5, p=None)
12
+ # sampler = ReachSampler()
13
+ # sampler = ReachAvoidSampler()
14
+
15
+ n = 1_000
16
+
17
+ for i in range(n):
18
+ key, subkey = jax.random.split(key)
19
+ dfax = sampler.sample(subkey)
20
+ dfa = dfax2dfa(dfax)
21
+
22
+ inputs = list(dfa.inputs)
23
+
24
+ w = dfa.find_word()
25
+
26
+ for a in w:
27
+ dfa = dfa.advance([a]).minimize()
28
+ dfax = dfax.advance(a).minimize()
29
+ assert dfax == dfa2dfax(dfa).canonicalize()
30
+ assert dfax.reward() == dfa2dfax(dfa).reward()
31
+ assert dfax2dfa(dfax) == dfa
32
+
33
+ print(f"Test completed for {i + 1} samples.", end="\r")
34
+
35
+ print(f"Test completed for {n} samples.")
36
+
dfax-0.1.0/uv.lock ADDED
@@ -0,0 +1,7 @@
1
+ version = 1
2
+ requires-python = ">=3.10"
3
+
4
+ [[package]]
5
+ name = "dfax"
6
+ version = "0.1.0"
7
+ source = { virtual = "." }