devicer.py 0.1.5__tar.gz → 0.2.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: devicer.py
3
- Version: 0.1.5
3
+ Version: 0.2.0
4
4
  Summary: Open-Source Python Middleware for Digital Fingerprinting
5
5
  Author: One anonymous contributor
6
6
  Author-email: Samuel Roux <sam.roux.com@gmail.com>, Stephen Perso <stephenrperso@gmail.com>
@@ -6,7 +6,7 @@ requires = [
6
6
  build-backend = "setuptools.build_meta"
7
7
  [project]
8
8
  name = "devicer.py"
9
- version = "0.1.5"
9
+ version = "0.2.0"
10
10
  authors = [
11
11
  {name = "Samuel Roux", email = "sam.roux.com@gmail.com"},
12
12
  {name = "Stephen Perso", email = "stephenrperso@gmail.com"},
@@ -0,0 +1,99 @@
1
+ from .hashing import get_tlsh_hash, get_hash_difference
2
+ import math
3
+
4
+ def compare_lists(data1: list, data2: list, max_depth: int = 5) -> tuple[int, int]:
5
+ """
6
+ Compare two lists and return the count of matching elements and total elements.
7
+
8
+ Args:
9
+ data1 (list): First list containing data.
10
+ data2 (list): Second list containing data.
11
+ max_depth (int): Maximum depth to compare nested lists. Default is 5.
12
+
13
+ Returns:
14
+ tuple: A tuple containing the count of matching elements and total elements compared.
15
+ """
16
+ fields = 0
17
+ matches = 0
18
+
19
+ if max_depth <= 0:
20
+ return matches, fields
21
+
22
+ sorted_data1 = sorted(data1, key=lambda x: str(x) if isinstance(x, (dict, list)) else x)
23
+ sorted_data2 = sorted(data2, key=lambda x: str(x) if isinstance(x, (dict, list)) else x)
24
+
25
+ max_length = min(len(data1), len(data2))
26
+ for i in range(max_length):
27
+ if sorted_data1[i] and sorted_data2[i]:
28
+ fields += 1
29
+ if isinstance(sorted_data1[i], list) and isinstance(sorted_data2[i], list):
30
+ sub_matches, sub_fields = compare_lists(sorted_data1[i], sorted_data2[i], max_depth - 1)
31
+ fields += sub_fields - 1
32
+ matches += sub_matches
33
+ elif isinstance(sorted_data1[i], dict) and isinstance(sorted_data2[i], dict):
34
+ sub_matches, sub_fields = compare_dictionaries(sorted_data1[i], sorted_data2[i], max_depth - 1)
35
+ fields += sub_fields - 1
36
+ matches += sub_matches
37
+ if sorted_data1[i] in sorted_data2:
38
+ matches += 1
39
+ return matches, fields
40
+
41
+ def compare_dictionaries(data1: dict, data2: dict, max_depth: int = 5) -> tuple[int, int]:
42
+ """
43
+ Compare two dictionaries and return the count of matching fields and total fields.
44
+
45
+ Args:
46
+ data1 (dict): First dictionary containing data.
47
+ data2 (dict): Second dictionary containing data.
48
+ max_depth (int): Maximum depth to compare nested dictionaries. Default is 5.
49
+
50
+ Returns:
51
+ tuple: A tuple containing the count of matching fields and total fields compared.
52
+ """
53
+ fields = 0
54
+ matches = 0
55
+
56
+ if max_depth <= 0:
57
+ return matches, fields
58
+
59
+ for key in data1:
60
+ if key in data2:
61
+ fields += 1
62
+ if isinstance(data1[key], dict) and isinstance(data2[key], dict):
63
+ sub_matches, sub_fields = compare_dictionaries(data1[key], data2[key], max_depth - 1)
64
+ fields += sub_fields - 1
65
+ matches += sub_matches
66
+ elif isinstance(data1[key], list) and isinstance(data2[key], list):
67
+ sub_matches, sub_fields = compare_lists(data1[key], data2[key], max_depth - 1)
68
+ fields += sub_fields - 1
69
+ matches += sub_matches
70
+ if data1[key] == data2[key]:
71
+ matches += 1
72
+ return matches, fields
73
+
74
+ def calculate_confidence(data1: dict, data2: dict) -> float:
75
+ """
76
+ Calculate the confidence score based on two dictionaries of data.
77
+
78
+ Args:
79
+ data1 (dict): First dictionary containing data.
80
+ data2 (dict): Second dictionary containing data.
81
+
82
+ Returns:
83
+ float: Confidence score calculated as the ratio of the sum of values in data1 to the sum of values in data2.
84
+ """
85
+ matches, fields = compare_dictionaries(data1, data2)
86
+
87
+ if fields == 0 or matches == 0:
88
+ return 0
89
+
90
+ hash1 = get_tlsh_hash(str(data1).encode('utf-8'))
91
+ hash2 = get_tlsh_hash(str(data2).encode('utf-8'))
92
+ difference_score = get_hash_difference(hash1, hash2)
93
+
94
+ inverse_match_score = 1 - (matches / fields)
95
+ x = 1.3 * difference_score * inverse_match_score
96
+ if (inverse_match_score == 0 or difference_score == 0):
97
+ return 100
98
+ confidence_score = 100 / (1 + math.e ** (-4.5 + (0.3 * x)))
99
+ return confidence_score
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: devicer.py
3
- Version: 0.1.5
3
+ Version: 0.2.0
4
4
  Summary: Open-Source Python Middleware for Digital Fingerprinting
5
5
  Author: One anonymous contributor
6
6
  Author-email: Samuel Roux <sam.roux.com@gmail.com>, Stephen Perso <stephenrperso@gmail.com>
@@ -1,53 +0,0 @@
1
- from .hashing import get_tlsh_hash, get_hash_difference
2
- import math
3
-
4
- def compare_dictionaries(data1: dict, data2: dict) -> tuple[int, int]:
5
- """
6
- Compare two dictionaries and return the count of matching fields and total fields.
7
-
8
- Args:
9
- data1 (dict): First dictionary containing data.
10
- data2 (dict): Second dictionary containing data.
11
-
12
- Returns:
13
- tuple: A tuple containing the count of matching fields and total fields compared.
14
- """
15
- fields = 0
16
- matches = 0
17
- for key in data1:
18
- if key in data2:
19
- fields += 1
20
- if isinstance(data1[key], dict) and isinstance(data2[key], dict):
21
- sub_matches, sub_fields = compare_dictionaries(data1[key], data2[key])
22
- matches += sub_matches
23
- fields += sub_fields - 1 # Subtract 1 to avoid double counting the key
24
- elif data1[key] == data2[key]:
25
- matches += 1
26
- return matches, fields
27
-
28
- def calculate_confidence(data1: dict, data2: dict) -> float:
29
- """
30
- Calculate the confidence score based on two dictionaries of data.
31
-
32
- Args:
33
- data1 (dict): First dictionary containing data.
34
- data2 (dict): Second dictionary containing data.
35
-
36
- Returns:
37
- float: Confidence score calculated as the ratio of the sum of values in data1 to the sum of values in data2.
38
- """
39
- matches, fields = compare_dictionaries(data1, data2)
40
-
41
- if fields == 0 or matches == 0:
42
- return 0
43
-
44
- hash1 = get_tlsh_hash(str(data1).encode('utf-8'))
45
- hash2 = get_tlsh_hash(str(data2).encode('utf-8'))
46
- difference_score = get_hash_difference(hash1, hash2)
47
-
48
- inverse_match_score = 1 - (matches / fields)
49
- x = difference_score * inverse_match_score
50
- if (inverse_match_score == 0 or difference_score == 0):
51
- return 100
52
- confidence_score = 100 / (1 + math.e ** (-4.5 + (0.25 * x)))
53
- return confidence_score
File without changes
File without changes
File without changes