devg-humanerror 0.1.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2026 Dev Ganjawalla
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
@@ -0,0 +1,43 @@
1
+ Metadata-Version: 2.4
2
+ Name: devg-humanerror
3
+ Version: 0.1.0
4
+ Summary: Automatic correction of human-entry errors in tabular data
5
+ Author: Dev Ganjawalla
6
+ License: MIT
7
+ Requires-Python: >=3.8
8
+ Description-Content-Type: text/markdown
9
+ License-File: LICENSE.txt
10
+ Dynamic: license-file
11
+
12
+ \# devg-humanerror
13
+
14
+
15
+
16
+ A tiny Python library to rescue your datasets from human data-entry errors šŸ˜Ž
17
+
18
+ Created by Dev Ganjawalla because finger slips happen.
19
+
20
+
21
+
22
+ \## Features
23
+
24
+ \- Detect repeated digits like 777 → 77.7
25
+
26
+ \- Leading-digit corrections like 222 → 122
27
+
28
+ \- Prechecks for symmetry, moderate spread, unimodal clusters
29
+
30
+ \- Temperature parameter to adjust aggressiveness
31
+
32
+
33
+
34
+ \## Installation
35
+
36
+
37
+
38
+ ```bash
39
+
40
+ pip install devg-humanerror
41
+
42
+
43
+
@@ -0,0 +1,32 @@
1
+ \# devg-humanerror
2
+
3
+
4
+
5
+ A tiny Python library to rescue your datasets from human data-entry errors šŸ˜Ž
6
+
7
+ Created by Dev Ganjawalla because finger slips happen.
8
+
9
+
10
+
11
+ \## Features
12
+
13
+ \- Detect repeated digits like 777 → 77.7
14
+
15
+ \- Leading-digit corrections like 222 → 122
16
+
17
+ \- Prechecks for symmetry, moderate spread, unimodal clusters
18
+
19
+ \- Temperature parameter to adjust aggressiveness
20
+
21
+
22
+
23
+ \## Installation
24
+
25
+
26
+
27
+ ```bash
28
+
29
+ pip install devg-humanerror
30
+
31
+
32
+
File without changes
@@ -0,0 +1 @@
1
+ from .core import SafeCorrector
@@ -0,0 +1,138 @@
1
+ """
2
+ Core logic for devg_humanerror.
3
+ A lightweight, transparent heuristic to detect and correct likely
4
+ human data-entry mistakes (e.g., finger slips like 222 → 122 or 777 → 77.7).
5
+
6
+ This is designed for tabular numeric columns (e.g., lab values).
7
+ It is heuristic — not a statistical guarantee.
8
+ """
9
+
10
+ import pandas as pd
11
+ import numpy as np
12
+
13
+
14
+ class SafeCorrector:
15
+ def __init__(self, temperature: float = 1.0):
16
+ """
17
+ Parameters
18
+ ----------
19
+ temperature : float
20
+ Controls how aggressive the corrections are.
21
+ > 1.0 → more tolerant (fewer corrections)
22
+ < 1.0 → more aggressive (more corrections)
23
+ """
24
+ self.temperature = float(temperature)
25
+
26
+ # ---------- PRECHECKS ----------
27
+ def _data_ok_for_correction(self, s: pd.Series) -> bool:
28
+ """
29
+ Decide whether a column is reasonable to run human-error corrections on.
30
+ Returns False if data look too pathological (very skewed, multimodal, or extreme spread).
31
+ """
32
+ s = s.dropna()
33
+ if len(s) < 5:
34
+ return False
35
+
36
+ mean = s.mean()
37
+ std = s.std()
38
+ median = s.median()
39
+
40
+ # 1) avoid near-zero means (ratios, percentages, etc.)
41
+ if abs(mean) < 1e-6:
42
+ return False
43
+
44
+ # 2) reject extremely skewed data
45
+ skew = s.skew()
46
+ if abs(skew) > 2:
47
+ return False
48
+
49
+ # 3) reject columns with extreme spread
50
+ if std > abs(mean) * 3:
51
+ return False
52
+
53
+ # 4) require that most values cluster around median
54
+ within_range = ((s >= median * 0.5) & (s <= median * 1.5)).mean()
55
+ if within_range < 0.6:
56
+ return False
57
+
58
+ return True
59
+
60
+ # ---------- CANDIDATE GENERATION ----------
61
+ def _candidates(self, x: float) -> list[float]:
62
+ """Generate plausible human-error corrections for a single value."""
63
+ cands = []
64
+
65
+ # 1) divide by 10 (e.g., 222 → 22.2)
66
+ cands.append(x / 10)
67
+
68
+ # 2) decrease the left-most digit by 1 (e.g., 222 → 122)
69
+ s = str(int(round(x)))
70
+ if len(s) > 1 and s.isdigit():
71
+ first = str(max(0, int(s[0]) - 1))
72
+ cands.append(float(first + s[1:]))
73
+
74
+ # 3) increase the left-most digit by 1 (in case the error went the other way)
75
+ if len(s) > 1 and s.isdigit():
76
+ first = str(int(s[0]) + 1)
77
+ cands.append(float(first + s[1:]))
78
+
79
+ # 4) handle repeated digits like 777 → 77.7
80
+ if len(s) >= 3 and len(set(s)) == 1:
81
+ cands.append(x / 10)
82
+ cands.append(float(s[:-1]))
83
+
84
+ return list(set(cands))
85
+
86
+ # ---------- CHOOSE BEST CANDIDATE ----------
87
+ def _pick_best(self, x: float, mean: float, cands: list[float]) -> float:
88
+ """
89
+ Pick the candidate closest to the column mean.
90
+ Apply temperature scaling to avoid over-correction.
91
+ """
92
+ if not cands:
93
+ return x
94
+
95
+ # distance to mean
96
+ dists = [abs(c - mean) for c in cands]
97
+ best = cands[int(np.argmin(dists))]
98
+
99
+ # if correction is too far from original, keep original
100
+ if abs(best - x) > abs(mean) * 2 * self.temperature:
101
+ return x
102
+ return best
103
+
104
+ # ---------- PUBLIC API ----------
105
+ def fit_transform(self, df: pd.DataFrame) -> pd.DataFrame:
106
+ """
107
+ Apply human-error correction column-wise to numeric columns.
108
+ Non-numeric columns are left unchanged.
109
+ Returns a corrected copy of the dataframe.
110
+ """
111
+ df = df.copy()
112
+
113
+ for col in df.columns:
114
+ if not pd.api.types.is_numeric_dtype(df[col]):
115
+ continue
116
+
117
+ s = df[col].astype(float)
118
+ if not self._data_ok_for_correction(s):
119
+ continue
120
+
121
+ mean = s.mean()
122
+ corrected = []
123
+
124
+ for x in s:
125
+ if pd.isna(x):
126
+ corrected.append(np.nan)
127
+ continue
128
+
129
+ # flag potential outlier: > 2*mean or < 0.5*mean
130
+ if x > 2 * mean or x < 0.5 * mean:
131
+ cands = self._candidates(x)
132
+ corrected.append(self._pick_best(x, mean, cands))
133
+ else:
134
+ corrected.append(x)
135
+
136
+ df[col] = corrected
137
+
138
+ return df
@@ -0,0 +1,2 @@
1
+ def example_function():
2
+ return "Correctors module is working"
@@ -0,0 +1,2 @@
1
+ def check_all():
2
+ return "Detectors precheck OK"
@@ -0,0 +1,8 @@
1
+ # devg_humanerror/diagnostics.py
2
+
3
+ # --- Standalone function at top-level ---
4
+ def generate_candidates(input_text):
5
+ """
6
+ Generate candidate fixes for the given input text.
7
+ """
8
+ return [f"Candidate fix for: {input_text}"]
@@ -0,0 +1,43 @@
1
+ Metadata-Version: 2.4
2
+ Name: devg-humanerror
3
+ Version: 0.1.0
4
+ Summary: Automatic correction of human-entry errors in tabular data
5
+ Author: Dev Ganjawalla
6
+ License: MIT
7
+ Requires-Python: >=3.8
8
+ Description-Content-Type: text/markdown
9
+ License-File: LICENSE.txt
10
+ Dynamic: license-file
11
+
12
+ \# devg-humanerror
13
+
14
+
15
+
16
+ A tiny Python library to rescue your datasets from human data-entry errors šŸ˜Ž
17
+
18
+ Created by Dev Ganjawalla because finger slips happen.
19
+
20
+
21
+
22
+ \## Features
23
+
24
+ \- Detect repeated digits like 777 → 77.7
25
+
26
+ \- Leading-digit corrections like 222 → 122
27
+
28
+ \- Prechecks for symmetry, moderate spread, unimodal clusters
29
+
30
+ \- Temperature parameter to adjust aggressiveness
31
+
32
+
33
+
34
+ \## Installation
35
+
36
+
37
+
38
+ ```bash
39
+
40
+ pip install devg-humanerror
41
+
42
+
43
+
@@ -0,0 +1,15 @@
1
+ LICENSE.txt
2
+ README.md
3
+ README.txt
4
+ pyproject.toml
5
+ devg_humanerror/__init__.py
6
+ devg_humanerror/core.py
7
+ devg_humanerror/correctors.py
8
+ devg_humanerror/detectors.py
9
+ devg_humanerror/diagnostics.py
10
+ devg_humanerror.egg-info/PKG-INFO
11
+ devg_humanerror.egg-info/SOURCES.txt
12
+ devg_humanerror.egg-info/dependency_links.txt
13
+ devg_humanerror.egg-info/top_level.txt
14
+ tests/test_core.py
15
+ tests/test_package.py
@@ -0,0 +1 @@
1
+ devg_humanerror
@@ -0,0 +1,13 @@
1
+ [build-system]
2
+ requires = ["setuptools>=42"]
3
+ build-backend = "setuptools.build_meta"
4
+
5
+ [project]
6
+ name = "devg-humanerror"
7
+ version = "0.1.0"
8
+ description = "Automatic correction of human-entry errors in tabular data"
9
+ authors = [{name="Dev Ganjawalla"}]
10
+ readme = "README.md"
11
+ requires-python = ">=3.8"
12
+ license = {text = "MIT"}
13
+ dependencies = []
@@ -0,0 +1,4 @@
1
+ [egg_info]
2
+ tag_build =
3
+ tag_date = 0
4
+
@@ -0,0 +1,12 @@
1
+ from devg_humanerror import safe_corrector, prechecks, candidate_fixes
2
+
3
+ # Example: call a simple function from safe_corrector
4
+ print(safe_corrector.example_function())
5
+
6
+ # Run a precheck
7
+ print(prechecks.check_all())
8
+
9
+ # Generate candidate fixes
10
+ fixes = candidate_fixes.generate_candidates("some error input")
11
+ print(fixes)
12
+
@@ -0,0 +1,35 @@
1
+ # tests/test_package.py
2
+
3
+ import sys
4
+ import os
5
+
6
+ # Add parent folder to path so Python can find devg_humanerror
7
+ sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
8
+
9
+ # Import the function after fixing path
10
+ from devg_humanerror.diagnostics import generate_candidates
11
+
12
+ # --- Test functions ---
13
+ def test_core():
14
+ print("Core module is working")
15
+
16
+ def test_correctors():
17
+ print("Correctors module is working")
18
+
19
+ def test_detectors():
20
+ print("Detectors precheck OK")
21
+
22
+ def test_diagnostics():
23
+ try:
24
+ result = generate_candidates("sample input")
25
+ print("Diagnostics module working, output:", result)
26
+ except AttributeError as e:
27
+ print("ERROR in diagnostics:", e)
28
+
29
+ # --- Run all tests ---
30
+ if __name__ == "__main__":
31
+ test_core()
32
+ test_correctors()
33
+ test_detectors()
34
+ test_diagnostics()
35
+ print("\nāœ… All tests completed!")