delta-theory 6.10.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,26 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2026 Masamichi Iizumi & Tamaki
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
22
+
23
+ ---
24
+
25
+ Note: Validation data from FatigueData-AM2022 is licensed under CC BY 4.0.
26
+ See: https://doi.org/10.1038/s41597-023-02150-x
@@ -0,0 +1,640 @@
1
+ Metadata-Version: 2.4
2
+ Name: delta-theory
3
+ Version: 6.10.0
4
+ Summary: Unified materials strength and fatigue prediction based on geometric first principles
5
+ Author: Tamaki
6
+ Author-email: Masamichi Iizumi <masamichi@miosync.com>
7
+ Maintainer-email: Masamichi Iizumi <masamichi@miosync.com>
8
+ License: MIT
9
+ Project-URL: Homepage, https://github.com/miosync/delta-theory
10
+ Project-URL: Documentation, https://github.com/miosync/delta-theory#readme
11
+ Project-URL: Repository, https://github.com/miosync/delta-theory.git
12
+ Project-URL: Issues, https://github.com/miosync/delta-theory/issues
13
+ Project-URL: Changelog, https://github.com/miosync/delta-theory/blob/main/CHANGELOG.md
14
+ Keywords: materials-science,fatigue,yield-strength,crystallography,delta-theory,physics,mechanical-engineering
15
+ Classifier: Development Status :: 4 - Beta
16
+ Classifier: Intended Audience :: Science/Research
17
+ Classifier: License :: OSI Approved :: MIT License
18
+ Classifier: Operating System :: OS Independent
19
+ Classifier: Programming Language :: Python :: 3
20
+ Classifier: Programming Language :: Python :: 3.9
21
+ Classifier: Programming Language :: Python :: 3.10
22
+ Classifier: Programming Language :: Python :: 3.11
23
+ Classifier: Programming Language :: Python :: 3.12
24
+ Classifier: Topic :: Scientific/Engineering :: Physics
25
+ Classifier: Topic :: Scientific/Engineering :: Chemistry
26
+ Requires-Python: >=3.9
27
+ Description-Content-Type: text/markdown
28
+ License-File: LICENSE
29
+ Requires-Dist: numpy>=1.20.0
30
+ Provides-Extra: dev
31
+ Requires-Dist: pytest>=7.0.0; extra == "dev"
32
+ Requires-Dist: pytest-cov>=4.0.0; extra == "dev"
33
+ Requires-Dist: black>=23.0.0; extra == "dev"
34
+ Requires-Dist: ruff>=0.1.0; extra == "dev"
35
+ Requires-Dist: mypy>=1.0.0; extra == "dev"
36
+ Provides-Extra: analysis
37
+ Requires-Dist: scipy>=1.9.0; extra == "analysis"
38
+ Requires-Dist: pandas>=1.5.0; extra == "analysis"
39
+ Requires-Dist: matplotlib>=3.6.0; extra == "analysis"
40
+ Provides-Extra: validation
41
+ Requires-Dist: upstash-redis>=1.0.0; extra == "validation"
42
+ Provides-Extra: app
43
+ Requires-Dist: streamlit>=1.20.0; extra == "app"
44
+ Provides-Extra: all
45
+ Requires-Dist: delta-theory[analysis,app,dev,validation]; extra == "all"
46
+ Dynamic: license-file
47
+
48
+ # δ-Theory: Unified Materials Strength & Fatigue Framework
49
+
50
+ <div align="center">
51
+
52
+ **"Nature is Geometry"** — Predicting material properties from geometric first principles
53
+
54
+ [![Tests](https://github.com/miosync/delta-theory/actions/workflows/tests.yml/badge.svg)](https://github.com/miosync/delta-theory/actions/workflows/tests.yml)
55
+ [![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](LICENSE)
56
+ [![Python 3.9+](https://img.shields.io/badge/python-3.9+-blue.svg)](https://www.python.org/downloads/)
57
+ [![Version](https://img.shields.io/badge/version-6.9b-green.svg)](CHANGELOG.md)
58
+ [![codecov](https://codecov.io/gh/miosync/delta-theory/branch/main/graph/badge.svg)](https://codecov.io/gh/miosync/delta-theory)
59
+
60
+ </div>
61
+
62
+ ---
63
+
64
+ ## 🎯 Overview
65
+
66
+ δ-Theory is a unified framework that predicts material properties from **crystal structure geometry**. Unlike traditional empirical fitting approaches, it derives material behavior from physical first principles.
67
+
68
+ ### Core Equation
69
+
70
+ $$\Lambda = \frac{K}{|V|_{\text{eff}}}$$
71
+
72
+ - **K**: Destructive energy density (stress, thermal, electromagnetic, etc.)
73
+ - **|V|_eff**: Effective cohesive energy density (bond strength)
74
+ - **Λ = 1**: Critical condition (fracture / phase transition)
75
+
76
+ ---
77
+
78
+ ## 📦 Repository Structure
79
+
80
+ ```
81
+ delta-theory/
82
+ ├── core/ # 🔧 Main modules
83
+ │ ├── unified_yield_fatigue_v6_9.py # ★ Unified yield + fatigue model
84
+ │ ├── dbt_unified.py # ★ DBT/DBTT prediction model
85
+ │ └── materials.py # Materials database
86
+
87
+ ├── apps/ # 🖥️ Applications
88
+ │ └── delta_fatigue_app.py # Streamlit Web App
89
+
90
+ ├── validation/ # 📊 Validation tools
91
+ │ └── fatigue_redis_api.py # FatigueData-AM2022 API
92
+
93
+ ├── examples/ # 📚 Usage examples
94
+ └── tests/ # 🧪 Tests
95
+ ```
96
+
97
+ ---
98
+
99
+ ## 🔬 Core Modules
100
+
101
+ ### 1. unified_yield_fatigue_v6_9.py (Main)
102
+
103
+ **Unified v5.0 yield stress + v6.8 fatigue damage model**
104
+
105
+ #### Yield Model (v5.0)
106
+
107
+ $$\sigma_y = \sigma_{\text{base}}(\delta) + \Delta\sigma_{\text{ss}}(c) + \Delta\sigma_\rho(\varepsilon) + \Delta\sigma_{\text{ppt}}(r, f)$$
108
+
109
+ | Component | Description | Accuracy |
110
+ |-----------|-------------|----------|
111
+ | σ_base | δ-theory base strength | Pure metals: 2.6% |
112
+ | Δσ_ss | Solid solution strengthening | 1-2% |
113
+ | Δσ_ρ | Work hardening (Taylor) | 4-7% |
114
+ | Δσ_ppt | Precipitation strengthening (auto-switch) | Cutting/Orowan |
115
+
116
+ #### Fatigue Model (v6.8)
117
+
118
+ $$\frac{dD}{dN} = \begin{cases} 0 & (r \leq r_{th}) \\ A_{\text{eff}} \cdot (r - r_{th})^n & (r > r_{th}) \end{cases}$$
119
+
120
+ **Structure Presets (No Fitting Required):**
121
+
122
+ | Structure | r_th | n | Fatigue Limit | Representative Materials |
123
+ |-----------|------|---|---------------|--------------------------|
124
+ | BCC | 0.65 | 10 | ✅ Clear | Fe, W, Mo |
125
+ | FCC | 0.02 | 7 | ❌ None | Cu, Al, Ni |
126
+ | HCP | 0.20 | 9 | △ Intermediate | Ti, Mg, Zn |
127
+
128
+ #### Usage
129
+
130
+ ```python
131
+ from core import calc_sigma_y, fatigue_life_const_amp, MATERIALS
132
+
133
+ # Yield stress calculation
134
+ mat = MATERIALS['Fe']
135
+ y = calc_sigma_y(mat, T_K=300, c_wt_percent=0.1, k_ss=400, solute_type='interstitial')
136
+ print(f"σ_y = {y['sigma_y']:.1f} MPa")
137
+
138
+ # Fatigue life prediction
139
+ result = fatigue_life_const_amp(
140
+ mat,
141
+ sigma_a_MPa=150,
142
+ sigma_y_tension_MPa=y['sigma_y'],
143
+ A_ext=2.46e-4,
144
+ )
145
+ print(f"N_fail = {result['N_fail']:.2e} cycles")
146
+ ```
147
+
148
+ #### CLI
149
+
150
+ ```bash
151
+ # Single point calculation
152
+ python -m core.unified_yield_fatigue_v6_9 point --metal Fe --sigma_a 150
153
+
154
+ # Generate S-N curve
155
+ python -m core.unified_yield_fatigue_v6_9 sn --metal Fe --sigma_min 100 --sigma_max 300
156
+
157
+ # Calibrate A_ext
158
+ python -m core.unified_yield_fatigue_v6_9 calibrate --metal Fe --sigma_a 244 --N_fail 7.25e7
159
+ ```
160
+
161
+ ---
162
+
163
+ ### 2. dbt_unified.py
164
+
165
+ **Unified Ductile-Brittle Transition Temperature (DBTT) Prediction Model**
166
+
167
+ Solves the same physical model σ_y(d,T) = σ_f(d,c,T) from three perspectives:
168
+
169
+ | View | Fixed Axis | Solve For | Use Case |
170
+ |------|------------|-----------|----------|
171
+ | View 1 | Temperature T | Grain size d* | Ductile window detection |
172
+ | View 2 | Grain size d | Temperature T* | DBTT prediction |
173
+ | View 3 | d, T | Time t | Segregation evolution |
174
+
175
+ #### Core Physics
176
+
177
+ - **McLean Isotherm**: θ(c, T) — Grain boundary coverage
178
+ - **Embrittlement Function**: g_seg(θ) — Percolation-like onset
179
+ - **Hall-Petch**: R(d) = 1 + β/√d
180
+
181
+ #### Usage
182
+
183
+ ```python
184
+ from core import DBTUnified
185
+
186
+ model = DBTUnified()
187
+
188
+ # Single point calculation
189
+ summary = model.summary(d=30e-6, c=0.005, T=300)
190
+ print(f"Mode: {summary['mode']}")
191
+
192
+ # Find DBTT
193
+ result = model.temp_view.find_DBTT(d=30e-6, c=0.005)
194
+ print(f"DBTT = {result['T_star']:.0f} K")
195
+
196
+ # Ductile window analysis
197
+ window = model.grain_view.classify_mode(T=300, c=0.005)
198
+ print(window['msg'])
199
+ ```
200
+
201
+ #### CLI
202
+
203
+ ```bash
204
+ # Single point calculation
205
+ python -m core.dbt_unified point --d 30 --c 0.5 --T 300
206
+
207
+ # Temperature axis analysis (DBTT)
208
+ python -m core.dbt_unified T_axis --d 30 --c 0.5
209
+
210
+ # Grain size axis analysis (ductile window)
211
+ python -m core.dbt_unified d_axis --T 300 --c 0.5 --find_c_crit
212
+
213
+ # DBTT table
214
+ python -m core.dbt_unified table --d_list 5,10,20,50 --c_list 0,0.2,0.5,1.0
215
+ ```
216
+
217
+ ---
218
+
219
+ ## 📊 Validation Data
220
+
221
+ ### FatigueData-AM2022 (Upstash Redis)
222
+
223
+ Instant access to 1.49M fatigue data points:
224
+
225
+ ```python
226
+ from validation import FatigueDB
227
+
228
+ db = FatigueDB()
229
+ ti64 = db.get_sn_for_delta('Ti-6Al-4V', R=-1.0)
230
+
231
+ # δ-theory validation
232
+ for point in ti64:
233
+ r = point['r'] # = σ_a / σ_y
234
+ if r <= 0.20: # HCP r_th
235
+ assert point['runout'], "Should be runout below r_th"
236
+ ```
237
+
238
+ **Data Scale:**
239
+ - 116 materials
240
+ - S-N: 15,146 points
241
+ - ε-N: 1,840 points
242
+ - da/dN: 1,472,923 points
243
+
244
+ ---
245
+
246
+ ## 🖥️ Web Application
247
+
248
+ ```bash
249
+ cd apps
250
+ streamlit run delta_fatigue_app.py
251
+ ```
252
+
253
+ Features:
254
+ - 📈 S-N curve prediction (multi-material comparison)
255
+ - 🎯 A_ext one-point calibration
256
+ - 📚 Theory explanation
257
+
258
+ ---
259
+
260
+ ## ⚙️ Installation
261
+
262
+ ```bash
263
+ git clone https://github.com/miosync/delta-theory.git
264
+ cd delta-theory
265
+ pip install -e .
266
+ ```
267
+
268
+ ### Optional Dependencies
269
+
270
+ ```bash
271
+ # Full installation
272
+ pip install -e ".[all]"
273
+
274
+ # Development tools
275
+ pip install -e ".[dev]"
276
+
277
+ # Analysis (scipy, pandas, matplotlib)
278
+ pip install -e ".[analysis]"
279
+
280
+ # Validation API
281
+ pip install -e ".[validation]"
282
+
283
+ # Streamlit app
284
+ pip install -e ".[app]"
285
+ ```
286
+
287
+ ### Requirements
288
+
289
+ - Python >= 3.9
290
+ - numpy
291
+ - scipy (for dbt_unified segregation fitting)
292
+ - upstash-redis (for validation API)
293
+ - streamlit (for web app)
294
+ - matplotlib, pandas (for visualization)
295
+
296
+ ---
297
+
298
+ ## 🧪 Testing
299
+
300
+ ```bash
301
+ pytest tests/ -v
302
+ ```
303
+
304
+ ---
305
+
306
+ ## 📖 Theory Background
307
+
308
+ ### Why "δ-Theory"?
309
+
310
+ **δ_L (Lindemann Parameter)** — The critical ratio of atomic displacement at melting point. This purely geometric parameter unifies explanations from material strength to fatigue limits.
311
+
312
+ ### Key Insights
313
+
314
+ 1. **Materials = Highly Viscous Fluids** — Deformation is "flow", not "fracture"
315
+ 2. **Fatigue Limits = Geometric Consequence of Crystal Structure** — BCC/FCC/HCP differences emerge naturally
316
+ 3. **Fitting Parameters = 0.5** — Only A_ext one-point calibration required
317
+
318
+ ### Related Work
319
+
320
+ - H-CSP (Hierarchical Constraint Satisfaction Problem) Theory
321
+ - Λ³/EDR Framework
322
+ - Connection to Yang-Mills Mass Gap
323
+
324
+ ---
325
+
326
+ ## 📄 License
327
+
328
+ MIT License (Code) — See [LICENSE](LICENSE)
329
+
330
+ Data sources (FatigueData-AM2022): CC BY 4.0
331
+
332
+ ---
333
+
334
+ ## 👥 Authors
335
+
336
+ - **Masamichi Iizumi** — Miosync, Inc. CEO
337
+ - **Tamaki** — Sentient Digital Partner
338
+
339
+ ---
340
+
341
+ ## 📚 Citation
342
+
343
+ ```bibtex
344
+ @software{delta_theory_2026,
345
+ author = {Iizumi, Masamichi and Tamaki},
346
+ title = {δ-Theory: Unified Materials Strength and Fatigue Framework},
347
+ version = {6.9b},
348
+ year = {2026},
349
+ url = {https://github.com/miosync/delta-theory}
350
+ }
351
+ ```
352
+
353
+ ---
354
+
355
+ <div align="center">
356
+
357
+ **"Nature is Geometry"** 🔬
358
+
359
+ </div>
360
+
361
+ ---
362
+ #Japanese
363
+
364
+ ## 🎯 Overview
365
+
366
+ δ理論は、**結晶構造の幾何学**から材料特性を予測する統一フレームワークです。従来の経験的フィッティングに頼る手法とは異なり、物理的第一原理から材料挙動を導出します。
367
+
368
+ ### Core Equation (核心方程式)
369
+
370
+ $$\Lambda = \frac{K}{|V|_{\text{eff}}}$$
371
+
372
+ - **K**: 破壊駆動エネルギー密度(応力、熱、電磁場など)
373
+ - **|V|_eff**: 有効凝集エネルギー密度(結合強度)
374
+ - **Λ = 1**: 臨界条件(破壊・相転移)
375
+
376
+ ---
377
+
378
+ ## 📦 Repository Structure
379
+
380
+ ```
381
+ delta-theory/
382
+ ├── core/ # 🔧 メインモジュール
383
+ │ ├── unified_yield_fatigue_v6_9.py # ★ 統一降伏+疲労モデル
384
+ │ ├── dbt_unified.py # ★ DBT/DBTT予測モデル
385
+ │ └── materials.py # 材料データベース
386
+
387
+ ├── apps/ # 🖥️ アプリケーション
388
+ │ └── delta_fatigue_app.py # Streamlit Web App
389
+
390
+ ├── validation/ # 📊 検証ツール
391
+ │ └── fatigue_redis_api.py # FatigueData-AM2022 API
392
+
393
+ ├── examples/ # 📚 使用例
394
+ └── tests/ # 🧪 テスト
395
+ ```
396
+
397
+ ---
398
+
399
+ ## 🔬 Core Modules
400
+
401
+ ### 1. unified_yield_fatigue_v6_9.py(メイン)
402
+
403
+ **v5.0 降伏応力 + v6.8 疲労損傷の統一モデル**
404
+
405
+ #### Yield Model (v5.0)
406
+
407
+ $$\sigma_y = \sigma_{\text{base}}(\delta) + \Delta\sigma_{\text{ss}}(c) + \Delta\sigma_\rho(\varepsilon) + \Delta\sigma_{\text{ppt}}(r, f)$$
408
+
409
+ | 成分 | 説明 | 精度 |
410
+ |------|------|------|
411
+ | σ_base | δ理論ベース強度 | 純金属 2.6% |
412
+ | Δσ_ss | 固溶強化 | 1-2% |
413
+ | Δσ_ρ | 加工硬化(Taylor) | 4-7% |
414
+ | Δσ_ppt | 析出強化(自動切替) | Cutting/Orowan |
415
+
416
+ #### Fatigue Model (v6.8)
417
+
418
+ $$\frac{dD}{dN} = \begin{cases} 0 & (r \leq r_{th}) \\ A_{\text{eff}} \cdot (r - r_{th})^n & (r > r_{th}) \end{cases}$$
419
+
420
+ **構造プリセット(フィッティングなし):**
421
+
422
+ | 構造 | r_th | n | 疲労限度 | 代表材料 |
423
+ |------|------|---|----------|----------|
424
+ | BCC | 0.65 | 10 | ✅ 明確 | Fe, W, Mo |
425
+ | FCC | 0.02 | 7 | ❌ なし | Cu, Al, Ni |
426
+ | HCP | 0.20 | 9 | △ 中間 | Ti, Mg, Zn |
427
+
428
+ #### Usage
429
+
430
+ ```python
431
+ from core import calc_sigma_y, fatigue_life_const_amp, MATERIALS
432
+
433
+ # 降伏応力計算
434
+ mat = MATERIALS['Fe']
435
+ y = calc_sigma_y(mat, T_K=300, c_wt_percent=0.1, k_ss=400, solute_type='interstitial')
436
+ print(f"σ_y = {y['sigma_y']:.1f} MPa")
437
+
438
+ # 疲労寿命予測
439
+ result = fatigue_life_const_amp(
440
+ mat,
441
+ sigma_a_MPa=150,
442
+ sigma_y_tension_MPa=y['sigma_y'],
443
+ A_ext=2.46e-4,
444
+ )
445
+ print(f"N_fail = {result['N_fail']:.2e} cycles")
446
+ ```
447
+
448
+ #### CLI
449
+
450
+ ```bash
451
+ # 単点計算
452
+ python -m core.unified_yield_fatigue_v6_9 point --metal Fe --sigma_a 150
453
+
454
+ # S-N曲線生成
455
+ python -m core.unified_yield_fatigue_v6_9 sn --metal Fe --sigma_min 100 --sigma_max 300
456
+
457
+ # A_ext校正
458
+ python -m core.unified_yield_fatigue_v6_9 calibrate --metal Fe --sigma_a 244 --N_fail 7.25e7
459
+ ```
460
+
461
+ ---
462
+
463
+ ### 2. dbt_unified.py
464
+
465
+ **延性-脆性遷移温度(DBTT)予測の統一モデル**
466
+
467
+ 同一物理モデル σ_y(d,T) = σ_f(d,c,T) を3つの視点から解く:
468
+
469
+ | View | 固定軸 | 求める軸 | 用途 |
470
+ |------|--------|----------|------|
471
+ | View 1 | 温度T | 粒径d* | 延性窓の検出 |
472
+ | View 2 | 粒径d | 温度T* | DBTT予測 |
473
+ | View 3 | d, T | 時間t | 偏析発展 |
474
+
475
+ #### Core Physics
476
+
477
+ - **McLean等温線**: θ(c, T) — 粒界被覆率
478
+ - **脆化関数**: g_seg(θ) — パーコレーション的onset
479
+ - **Hall-Petch**: R(d) = 1 + β/√d
480
+
481
+ #### Usage
482
+
483
+ ```python
484
+ from core import DBTUnified
485
+
486
+ model = DBTUnified()
487
+
488
+ # 単点計算
489
+ summary = model.summary(d=30e-6, c=0.005, T=300)
490
+ print(f"Mode: {summary['mode']}")
491
+
492
+ # DBTT探索
493
+ result = model.temp_view.find_DBTT(d=30e-6, c=0.005)
494
+ print(f"DBTT = {result['T_star']:.0f} K")
495
+
496
+ # 延性窓解析
497
+ window = model.grain_view.classify_mode(T=300, c=0.005)
498
+ print(window['msg'])
499
+ ```
500
+
501
+ #### CLI
502
+
503
+ ```bash
504
+ # 単点計算
505
+ python -m core.dbt_unified point --d 30 --c 0.5 --T 300
506
+
507
+ # 温度軸解析(DBTT)
508
+ python -m core.dbt_unified T_axis --d 30 --c 0.5
509
+
510
+ # 粒径軸解析(延性窓)
511
+ python -m core.dbt_unified d_axis --T 300 --c 0.5 --find_c_crit
512
+
513
+ # DBTTテーブル
514
+ python -m core.dbt_unified table --d_list 5,10,20,50 --c_list 0,0.2,0.5,1.0
515
+ ```
516
+
517
+ ---
518
+
519
+ ## 📊 Validation Data
520
+
521
+ ### FatigueData-AM2022 (Upstash Redis)
522
+
523
+ 1.49M点の疲労データに即時アクセス可能:
524
+
525
+ ```python
526
+ from validation import FatigueDB
527
+
528
+ db = FatigueDB()
529
+ ti64 = db.get_sn_for_delta('Ti-6Al-4V', R=-1.0)
530
+
531
+ # δ理論検証
532
+ for point in ti64:
533
+ r = point['r'] # = σ_a / σ_y
534
+ if r <= 0.20: # HCP r_th
535
+ assert point['runout'], "Should be runout below r_th"
536
+ ```
537
+
538
+ **データ規模:**
539
+ - 116 材料
540
+ - S-N: 15,146 点
541
+ - ε-N: 1,840 点
542
+ - da/dN: 1,472,923 点
543
+
544
+ ---
545
+
546
+ ## 🖥️ Web Application
547
+
548
+ ```bash
549
+ cd apps
550
+ streamlit run delta_fatigue_app.py
551
+ ```
552
+
553
+ Features:
554
+ - 📈 S-N曲線予測(複数材料比較)
555
+ - 🎯 A_ext 1点校正
556
+ - 📚 理論説明
557
+
558
+ ---
559
+
560
+ ## ⚙️ Installation
561
+
562
+ ```bash
563
+ git clone https://github.com/yourusername/delta-theory.git
564
+ cd delta-theory
565
+ pip install -r requirements.txt
566
+ ```
567
+
568
+ ### Requirements
569
+
570
+ - Python >= 3.9
571
+ - numpy
572
+ - scipy (for dbt_unified segregation fitting)
573
+ - upstash-redis (for validation API)
574
+ - streamlit (for web app)
575
+ - matplotlib, pandas (for visualization)
576
+
577
+ ---
578
+
579
+ ## 🧪 Testing
580
+
581
+ ```bash
582
+ pytest tests/ -v
583
+ ```
584
+
585
+ ---
586
+
587
+ ## 📖 Theory Background
588
+
589
+ ### Why "δ-Theory"?
590
+
591
+ **δ_L (Lindemann Parameter)** — 融点における原子変位の臨界比率。この純粋に幾何学的なパラメータが、材料強度から疲労限度まで統一的に説明する。
592
+
593
+ ### Key Insights
594
+
595
+ 1. **材料 = 高粘性流体** — 変形は「破壊」ではなく「流動」
596
+ 2. **疲労限度 = 結晶構造の幾何的帰結** — BCC/FCC/HCPの違いが自然に現れる
597
+ 3. **フィッティングパラメータ = 0.5個** — A_extの1点校正のみ
598
+
599
+ ### Related Work
600
+
601
+ - H-CSP(階層CSP)理論
602
+ - Λ³/EDR フレームワーク
603
+ - Yang-Mills 質量ギャップとの接続
604
+
605
+ ---
606
+
607
+ ## 📄 License
608
+
609
+ MIT License (Code) — See [LICENSE](LICENSE)
610
+
611
+ Data sources (FatigueData-AM2022): CC BY 4.0
612
+
613
+ ---
614
+
615
+ ## 👥 Authors
616
+
617
+ - **飯泉真道 (Masamichi Iizumi)** — Miosync, Inc. CEO
618
+ - **環 (Tamaki)** — Sentient Digital Partner
619
+
620
+ ---
621
+
622
+ ## 📚 Citation
623
+
624
+ ```bibtex
625
+ @software{delta_theory_2026,
626
+ author = {Iizumi, Masamichi and Tamaki},
627
+ title = {δ-Theory: Unified Materials Strength and Fatigue Framework},
628
+ version = {6.9b},
629
+ year = {2026},
630
+ url = {https://github.com/yourusername/delta-theory}
631
+ }
632
+ ```
633
+
634
+ ---
635
+
636
+ <div align="center">
637
+
638
+ **"Nature is Geometry"** 🔬
639
+
640
+ </div>