deeplotx 0.4.13__tar.gz → 0.4.15__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (32) hide show
  1. {deeplotx-0.4.13 → deeplotx-0.4.15}/PKG-INFO +21 -19
  2. {deeplotx-0.4.13 → deeplotx-0.4.15}/README.md +20 -18
  3. {deeplotx-0.4.13 → deeplotx-0.4.15}/deeplotx/nn/base_neural_network.py +1 -1
  4. {deeplotx-0.4.13 → deeplotx-0.4.15}/deeplotx.egg-info/PKG-INFO +21 -19
  5. {deeplotx-0.4.13 → deeplotx-0.4.15}/pyproject.toml +1 -1
  6. {deeplotx-0.4.13 → deeplotx-0.4.15}/LICENSE +0 -0
  7. {deeplotx-0.4.13 → deeplotx-0.4.15}/deeplotx/__init__.py +0 -0
  8. {deeplotx-0.4.13 → deeplotx-0.4.15}/deeplotx/encoder/__init__.py +0 -0
  9. {deeplotx-0.4.13 → deeplotx-0.4.15}/deeplotx/encoder/bert_encoder.py +0 -0
  10. {deeplotx-0.4.13 → deeplotx-0.4.15}/deeplotx/encoder/long_text_encoder.py +0 -0
  11. {deeplotx-0.4.13 → deeplotx-0.4.15}/deeplotx/encoder/longformer_encoder.py +0 -0
  12. {deeplotx-0.4.13 → deeplotx-0.4.15}/deeplotx/nn/__init__.py +0 -0
  13. {deeplotx-0.4.13 → deeplotx-0.4.15}/deeplotx/nn/auto_regression.py +0 -0
  14. {deeplotx-0.4.13 → deeplotx-0.4.15}/deeplotx/nn/linear_regression.py +0 -0
  15. {deeplotx-0.4.13 → deeplotx-0.4.15}/deeplotx/nn/logistic_regression.py +0 -0
  16. {deeplotx-0.4.13 → deeplotx-0.4.15}/deeplotx/nn/recursive_sequential.py +0 -0
  17. {deeplotx-0.4.13 → deeplotx-0.4.15}/deeplotx/nn/softmax_regression.py +0 -0
  18. {deeplotx-0.4.13 → deeplotx-0.4.15}/deeplotx/similarity/__init__.py +0 -0
  19. {deeplotx-0.4.13 → deeplotx-0.4.15}/deeplotx/similarity/distribution.py +0 -0
  20. {deeplotx-0.4.13 → deeplotx-0.4.15}/deeplotx/similarity/set.py +0 -0
  21. {deeplotx-0.4.13 → deeplotx-0.4.15}/deeplotx/similarity/vector.py +0 -0
  22. {deeplotx-0.4.13 → deeplotx-0.4.15}/deeplotx/trainer/__init__.py +0 -0
  23. {deeplotx-0.4.13 → deeplotx-0.4.15}/deeplotx/trainer/base_trainer.py +0 -0
  24. {deeplotx-0.4.13 → deeplotx-0.4.15}/deeplotx/trainer/text_binary_classification_trainer.py +0 -0
  25. {deeplotx-0.4.13 → deeplotx-0.4.15}/deeplotx/util/__init__.py +0 -0
  26. {deeplotx-0.4.13 → deeplotx-0.4.15}/deeplotx/util/hash.py +0 -0
  27. {deeplotx-0.4.13 → deeplotx-0.4.15}/deeplotx/util/read_file.py +0 -0
  28. {deeplotx-0.4.13 → deeplotx-0.4.15}/deeplotx.egg-info/SOURCES.txt +0 -0
  29. {deeplotx-0.4.13 → deeplotx-0.4.15}/deeplotx.egg-info/dependency_links.txt +0 -0
  30. {deeplotx-0.4.13 → deeplotx-0.4.15}/deeplotx.egg-info/requires.txt +0 -0
  31. {deeplotx-0.4.13 → deeplotx-0.4.15}/deeplotx.egg-info/top_level.txt +0 -0
  32. {deeplotx-0.4.13 → deeplotx-0.4.15}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: deeplotx
3
- Version: 0.4.13
3
+ Version: 0.4.15
4
4
  Summary: Easy-2-use long text NLP toolkit.
5
5
  Requires-Python: >=3.10
6
6
  Description-Content-Type: text/markdown
@@ -177,31 +177,33 @@ Dynamic: license-file
177
177
 
178
178
  import torch
179
179
  from torch import nn
180
-
180
+
181
181
  from deeplotx.nn.base_neural_network import BaseNeuralNetwork
182
-
183
-
182
+
183
+
184
184
  class LinearRegression(BaseNeuralNetwork):
185
- def __init__(self, input_dim: int, output_dim: int, model_name: str | None = None):
186
- super().__init__(model_name=model_name)
187
- self.fc1 = nn.Linear(input_dim, 1024)
188
- self.fc1_to_fc4_res = nn.Linear(1024, 64)
189
- self.fc2 = nn.Linear(1024, 768)
190
- self.fc3 = nn.Linear(768, 128)
191
- self.fc4 = nn.Linear(128, 64)
192
- self.fc5 = nn.Linear(64, output_dim)
193
- self.parametric_relu_1 = nn.PReLU(num_parameters=1, init=5e-3)
194
- self.parametric_relu_2 = nn.PReLU(num_parameters=1, init=5e-3)
195
- self.parametric_relu_3 = nn.PReLU(num_parameters=1, init=5e-3)
196
- self.parametric_relu_4 = nn.PReLU(num_parameters=1, init=5e-3)
197
-
185
+ def __init__(self, input_dim: int, output_dim: int, model_name: str | None = None,
186
+ device: str | None = None, dtype: torch.dtype | None = None):
187
+ super().__init__(model_name=model_name, device=device, dtype=dtype)
188
+ self.fc1 = nn.Linear(input_dim, 1024, device=self.device, dtype=self.dtype)
189
+ self.fc1_to_fc4_res = nn.Linear(1024, 64, device=self.device, dtype=self.dtype)
190
+ self.fc2 = nn.Linear(1024, 768, device=self.device, dtype=self.dtype)
191
+ self.fc3 = nn.Linear(768, 128, device=self.device, dtype=self.dtype)
192
+ self.fc4 = nn.Linear(128, 64, device=self.device, dtype=self.dtype)
193
+ self.fc5 = nn.Linear(64, output_dim, device=self.device, dtype=self.dtype)
194
+ self.parametric_relu_1 = nn.PReLU(num_parameters=1, init=5e-3, device=self.device, dtype=self.dtype)
195
+ self.parametric_relu_2 = nn.PReLU(num_parameters=1, init=5e-3, device=self.device, dtype=self.dtype)
196
+ self.parametric_relu_3 = nn.PReLU(num_parameters=1, init=5e-3, device=self.device, dtype=self.dtype)
197
+ self.parametric_relu_4 = nn.PReLU(num_parameters=1, init=5e-3, device=self.device, dtype=self.dtype)
198
+
198
199
  @override
199
200
  def forward(self, x) -> torch.Tensor:
201
+ x = self.ensure_device_and_dtype(x, device=self.device, dtype=self.dtype)
200
202
  fc1_out = self.parametric_relu_1(self.fc1(x))
201
- x = nn.LayerNorm(normalized_shape=1024, eps=1e-9)(fc1_out)
203
+ x = nn.LayerNorm(normalized_shape=1024, eps=1e-9, device=self.device, dtype=self.dtype)(fc1_out)
202
204
  x = torch.dropout(x, p=0.2, train=self.training)
203
205
  x = self.parametric_relu_2(self.fc2(x))
204
- x = nn.LayerNorm(normalized_shape=768, eps=1e-9)(x)
206
+ x = nn.LayerNorm(normalized_shape=768, eps=1e-9, device=self.device, dtype=self.dtype)(x)
205
207
  x = torch.dropout(x, p=0.2, train=self.training)
206
208
  x = self.parametric_relu_3(self.fc3(x))
207
209
  x = torch.dropout(x, p=0.2, train=self.training)
@@ -160,31 +160,33 @@
160
160
 
161
161
  import torch
162
162
  from torch import nn
163
-
163
+
164
164
  from deeplotx.nn.base_neural_network import BaseNeuralNetwork
165
-
166
-
165
+
166
+
167
167
  class LinearRegression(BaseNeuralNetwork):
168
- def __init__(self, input_dim: int, output_dim: int, model_name: str | None = None):
169
- super().__init__(model_name=model_name)
170
- self.fc1 = nn.Linear(input_dim, 1024)
171
- self.fc1_to_fc4_res = nn.Linear(1024, 64)
172
- self.fc2 = nn.Linear(1024, 768)
173
- self.fc3 = nn.Linear(768, 128)
174
- self.fc4 = nn.Linear(128, 64)
175
- self.fc5 = nn.Linear(64, output_dim)
176
- self.parametric_relu_1 = nn.PReLU(num_parameters=1, init=5e-3)
177
- self.parametric_relu_2 = nn.PReLU(num_parameters=1, init=5e-3)
178
- self.parametric_relu_3 = nn.PReLU(num_parameters=1, init=5e-3)
179
- self.parametric_relu_4 = nn.PReLU(num_parameters=1, init=5e-3)
180
-
168
+ def __init__(self, input_dim: int, output_dim: int, model_name: str | None = None,
169
+ device: str | None = None, dtype: torch.dtype | None = None):
170
+ super().__init__(model_name=model_name, device=device, dtype=dtype)
171
+ self.fc1 = nn.Linear(input_dim, 1024, device=self.device, dtype=self.dtype)
172
+ self.fc1_to_fc4_res = nn.Linear(1024, 64, device=self.device, dtype=self.dtype)
173
+ self.fc2 = nn.Linear(1024, 768, device=self.device, dtype=self.dtype)
174
+ self.fc3 = nn.Linear(768, 128, device=self.device, dtype=self.dtype)
175
+ self.fc4 = nn.Linear(128, 64, device=self.device, dtype=self.dtype)
176
+ self.fc5 = nn.Linear(64, output_dim, device=self.device, dtype=self.dtype)
177
+ self.parametric_relu_1 = nn.PReLU(num_parameters=1, init=5e-3, device=self.device, dtype=self.dtype)
178
+ self.parametric_relu_2 = nn.PReLU(num_parameters=1, init=5e-3, device=self.device, dtype=self.dtype)
179
+ self.parametric_relu_3 = nn.PReLU(num_parameters=1, init=5e-3, device=self.device, dtype=self.dtype)
180
+ self.parametric_relu_4 = nn.PReLU(num_parameters=1, init=5e-3, device=self.device, dtype=self.dtype)
181
+
181
182
  @override
182
183
  def forward(self, x) -> torch.Tensor:
184
+ x = self.ensure_device_and_dtype(x, device=self.device, dtype=self.dtype)
183
185
  fc1_out = self.parametric_relu_1(self.fc1(x))
184
- x = nn.LayerNorm(normalized_shape=1024, eps=1e-9)(fc1_out)
186
+ x = nn.LayerNorm(normalized_shape=1024, eps=1e-9, device=self.device, dtype=self.dtype)(fc1_out)
185
187
  x = torch.dropout(x, p=0.2, train=self.training)
186
188
  x = self.parametric_relu_2(self.fc2(x))
187
- x = nn.LayerNorm(normalized_shape=768, eps=1e-9)(x)
189
+ x = nn.LayerNorm(normalized_shape=768, eps=1e-9, device=self.device, dtype=self.dtype)(x)
188
190
  x = torch.dropout(x, p=0.2, train=self.training)
189
191
  x = self.parametric_relu_3(self.fc3(x))
190
192
  x = torch.dropout(x, p=0.2, train=self.training)
@@ -58,5 +58,5 @@ class BaseNeuralNetwork(nn.Module):
58
58
  return self
59
59
 
60
60
  def load(self):
61
- self.load_state_dict(torch.load(f'{self._model_name}.deeplotx'))
61
+ self.load_state_dict(torch.load(f'{self._model_name}.deeplotx', map_location=self.device, weights_only=True))
62
62
  return self
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: deeplotx
3
- Version: 0.4.13
3
+ Version: 0.4.15
4
4
  Summary: Easy-2-use long text NLP toolkit.
5
5
  Requires-Python: >=3.10
6
6
  Description-Content-Type: text/markdown
@@ -177,31 +177,33 @@ Dynamic: license-file
177
177
 
178
178
  import torch
179
179
  from torch import nn
180
-
180
+
181
181
  from deeplotx.nn.base_neural_network import BaseNeuralNetwork
182
-
183
-
182
+
183
+
184
184
  class LinearRegression(BaseNeuralNetwork):
185
- def __init__(self, input_dim: int, output_dim: int, model_name: str | None = None):
186
- super().__init__(model_name=model_name)
187
- self.fc1 = nn.Linear(input_dim, 1024)
188
- self.fc1_to_fc4_res = nn.Linear(1024, 64)
189
- self.fc2 = nn.Linear(1024, 768)
190
- self.fc3 = nn.Linear(768, 128)
191
- self.fc4 = nn.Linear(128, 64)
192
- self.fc5 = nn.Linear(64, output_dim)
193
- self.parametric_relu_1 = nn.PReLU(num_parameters=1, init=5e-3)
194
- self.parametric_relu_2 = nn.PReLU(num_parameters=1, init=5e-3)
195
- self.parametric_relu_3 = nn.PReLU(num_parameters=1, init=5e-3)
196
- self.parametric_relu_4 = nn.PReLU(num_parameters=1, init=5e-3)
197
-
185
+ def __init__(self, input_dim: int, output_dim: int, model_name: str | None = None,
186
+ device: str | None = None, dtype: torch.dtype | None = None):
187
+ super().__init__(model_name=model_name, device=device, dtype=dtype)
188
+ self.fc1 = nn.Linear(input_dim, 1024, device=self.device, dtype=self.dtype)
189
+ self.fc1_to_fc4_res = nn.Linear(1024, 64, device=self.device, dtype=self.dtype)
190
+ self.fc2 = nn.Linear(1024, 768, device=self.device, dtype=self.dtype)
191
+ self.fc3 = nn.Linear(768, 128, device=self.device, dtype=self.dtype)
192
+ self.fc4 = nn.Linear(128, 64, device=self.device, dtype=self.dtype)
193
+ self.fc5 = nn.Linear(64, output_dim, device=self.device, dtype=self.dtype)
194
+ self.parametric_relu_1 = nn.PReLU(num_parameters=1, init=5e-3, device=self.device, dtype=self.dtype)
195
+ self.parametric_relu_2 = nn.PReLU(num_parameters=1, init=5e-3, device=self.device, dtype=self.dtype)
196
+ self.parametric_relu_3 = nn.PReLU(num_parameters=1, init=5e-3, device=self.device, dtype=self.dtype)
197
+ self.parametric_relu_4 = nn.PReLU(num_parameters=1, init=5e-3, device=self.device, dtype=self.dtype)
198
+
198
199
  @override
199
200
  def forward(self, x) -> torch.Tensor:
201
+ x = self.ensure_device_and_dtype(x, device=self.device, dtype=self.dtype)
200
202
  fc1_out = self.parametric_relu_1(self.fc1(x))
201
- x = nn.LayerNorm(normalized_shape=1024, eps=1e-9)(fc1_out)
203
+ x = nn.LayerNorm(normalized_shape=1024, eps=1e-9, device=self.device, dtype=self.dtype)(fc1_out)
202
204
  x = torch.dropout(x, p=0.2, train=self.training)
203
205
  x = self.parametric_relu_2(self.fc2(x))
204
- x = nn.LayerNorm(normalized_shape=768, eps=1e-9)(x)
206
+ x = nn.LayerNorm(normalized_shape=768, eps=1e-9, device=self.device, dtype=self.dtype)(x)
205
207
  x = torch.dropout(x, p=0.2, train=self.training)
206
208
  x = self.parametric_relu_3(self.fc3(x))
207
209
  x = torch.dropout(x, p=0.2, train=self.training)
@@ -1,6 +1,6 @@
1
1
  [project]
2
2
  name = "deeplotx"
3
- version = "0.4.13"
3
+ version = "0.4.15"
4
4
  description = "Easy-2-use long text NLP toolkit."
5
5
  readme = "README.md"
6
6
  requires-python = ">=3.10"
File without changes
File without changes