deeplotx 0.4.10__tar.gz → 0.4.12b0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {deeplotx-0.4.10 → deeplotx-0.4.12b0}/PKG-INFO +1 -1
- {deeplotx-0.4.10 → deeplotx-0.4.12b0}/deeplotx/encoder/bert_encoder.py +2 -1
- {deeplotx-0.4.10 → deeplotx-0.4.12b0}/deeplotx/encoder/long_text_encoder.py +3 -3
- {deeplotx-0.4.10 → deeplotx-0.4.12b0}/deeplotx/encoder/longformer_encoder.py +2 -1
- {deeplotx-0.4.10 → deeplotx-0.4.12b0}/deeplotx/trainer/text_binary_classification_trainer.py +4 -2
- {deeplotx-0.4.10 → deeplotx-0.4.12b0}/deeplotx.egg-info/PKG-INFO +1 -1
- {deeplotx-0.4.10 → deeplotx-0.4.12b0}/deeplotx.egg-info/SOURCES.txt +2 -1
- {deeplotx-0.4.10 → deeplotx-0.4.12b0}/pyproject.toml +1 -1
- deeplotx-0.4.12b0/test/test.py +21 -0
- {deeplotx-0.4.10 → deeplotx-0.4.12b0}/LICENSE +0 -0
- {deeplotx-0.4.10 → deeplotx-0.4.12b0}/README.md +0 -0
- {deeplotx-0.4.10 → deeplotx-0.4.12b0}/deeplotx/__init__.py +0 -0
- {deeplotx-0.4.10 → deeplotx-0.4.12b0}/deeplotx/encoder/__init__.py +0 -0
- {deeplotx-0.4.10 → deeplotx-0.4.12b0}/deeplotx/nn/__init__.py +0 -0
- {deeplotx-0.4.10 → deeplotx-0.4.12b0}/deeplotx/nn/auto_regression.py +0 -0
- {deeplotx-0.4.10 → deeplotx-0.4.12b0}/deeplotx/nn/base_neural_network.py +0 -0
- {deeplotx-0.4.10 → deeplotx-0.4.12b0}/deeplotx/nn/linear_regression.py +0 -0
- {deeplotx-0.4.10 → deeplotx-0.4.12b0}/deeplotx/nn/logistic_regression.py +0 -0
- {deeplotx-0.4.10 → deeplotx-0.4.12b0}/deeplotx/nn/recursive_sequential.py +0 -0
- {deeplotx-0.4.10 → deeplotx-0.4.12b0}/deeplotx/nn/softmax_regression.py +0 -0
- {deeplotx-0.4.10 → deeplotx-0.4.12b0}/deeplotx/similarity/__init__.py +0 -0
- {deeplotx-0.4.10 → deeplotx-0.4.12b0}/deeplotx/similarity/distribution.py +0 -0
- {deeplotx-0.4.10 → deeplotx-0.4.12b0}/deeplotx/similarity/set.py +0 -0
- {deeplotx-0.4.10 → deeplotx-0.4.12b0}/deeplotx/similarity/vector.py +0 -0
- {deeplotx-0.4.10 → deeplotx-0.4.12b0}/deeplotx/trainer/__init__.py +0 -0
- {deeplotx-0.4.10 → deeplotx-0.4.12b0}/deeplotx/trainer/base_trainer.py +0 -0
- {deeplotx-0.4.10 → deeplotx-0.4.12b0}/deeplotx/util/__init__.py +0 -0
- {deeplotx-0.4.10 → deeplotx-0.4.12b0}/deeplotx/util/hash.py +0 -0
- {deeplotx-0.4.10 → deeplotx-0.4.12b0}/deeplotx/util/read_file.py +0 -0
- {deeplotx-0.4.10 → deeplotx-0.4.12b0}/deeplotx.egg-info/dependency_links.txt +0 -0
- {deeplotx-0.4.10 → deeplotx-0.4.12b0}/deeplotx.egg-info/requires.txt +0 -0
- {deeplotx-0.4.10 → deeplotx-0.4.12b0}/deeplotx.egg-info/top_level.txt +0 -0
- {deeplotx-0.4.10 → deeplotx-0.4.12b0}/setup.cfg +0 -0
@@ -16,7 +16,8 @@ logger = logging.getLogger('deeplotx.embedding')
|
|
16
16
|
class BertEncoder(nn.Module):
|
17
17
|
def __init__(self, model_name_or_path: str = DEFAULT_BERT, device: str | None = None):
|
18
18
|
super().__init__()
|
19
|
-
self.device = device if device is not None
|
19
|
+
self.device = torch.device(device) if device is not None \
|
20
|
+
else torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
20
21
|
self.tokenizer = BertTokenizer.from_pretrained(pretrained_model_name_or_path=model_name_or_path,
|
21
22
|
cache_dir=CACHE_PATH, _from_auto=True)
|
22
23
|
self.bert = BertModel.from_pretrained(pretrained_model_name_or_path=model_name_or_path,
|
@@ -28,7 +28,7 @@ class LongTextEncoder(BertEncoder):
|
|
28
28
|
def postprocess(tensors: list[torch.Tensor], _flatten: bool) -> torch.Tensor:
|
29
29
|
if not _flatten:
|
30
30
|
return torch.stack(tensors, dim=0).squeeze()
|
31
|
-
_fin_emb_tensor = torch.tensor([], dtype=tensors[0].dtype)
|
31
|
+
_fin_emb_tensor = torch.tensor([], dtype=tensors[0].dtype, device=self.device)
|
32
32
|
for _emb in tensors:
|
33
33
|
_fin_emb_tensor = torch.cat((_fin_emb_tensor.detach().clone(), _emb.detach().clone()), dim=-1)
|
34
34
|
return _fin_emb_tensor.squeeze()
|
@@ -55,8 +55,8 @@ class LongTextEncoder(BertEncoder):
|
|
55
55
|
for i in range(num_chunks):
|
56
56
|
_tmp_left = max(i * self._chunk_size - self._overlapping, 0)
|
57
57
|
_tmp_right = (i + 1) * self._chunk_size + self._overlapping
|
58
|
-
chunks.append((i, torch.tensor([_text_to_input_ids[_tmp_left: _tmp_right]], dtype=torch.int),
|
59
|
-
torch.tensor([_text_to_input_ids_att_mask[_tmp_left: _tmp_right]], dtype=torch.int)))
|
58
|
+
chunks.append((i, torch.tensor([_text_to_input_ids[_tmp_left: _tmp_right]], dtype=torch.int, device=self.device),
|
59
|
+
torch.tensor([_text_to_input_ids_att_mask[_tmp_left: _tmp_right]], dtype=torch.int, device=self.device)))
|
60
60
|
with ThreadPoolExecutor(max_workers=min(num_chunks + 1, 3)) as executor:
|
61
61
|
embeddings = list(executor.map(self.__chunk_embedding, chunks))
|
62
62
|
embeddings.sort(key=lambda x: x[0])
|
@@ -15,7 +15,8 @@ logger = logging.getLogger('deeplotx.embedding')
|
|
15
15
|
class LongformerEncoder(nn.Module):
|
16
16
|
def __init__(self, model_name_or_path: str = DEFAULT_LONGFORMER, device: str | None = None):
|
17
17
|
super().__init__()
|
18
|
-
self.device = device if device is not None
|
18
|
+
self.device = torch.device(device) if device is not None \
|
19
|
+
else torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
19
20
|
self.tokenizer = LongformerTokenizer.from_pretrained(pretrained_model_name_or_path=model_name_or_path,
|
20
21
|
cache_dir=CACHE_PATH, _from_auto=True)
|
21
22
|
self.bert = LongformerModel.from_pretrained(pretrained_model_name_or_path=model_name_or_path,
|
{deeplotx-0.4.10 → deeplotx-0.4.12b0}/deeplotx/trainer/text_binary_classification_trainer.py
RENAMED
@@ -16,6 +16,7 @@ class TextBinaryClassifierTrainer(BaseTrainer):
|
|
16
16
|
def __init__(self, long_text_encoder: LongTextEncoder, batch_size: int = 2, train_ratio: float = 0.8):
|
17
17
|
super().__init__(batch_size=batch_size, train_ratio=train_ratio)
|
18
18
|
self._long_text_encoder = long_text_encoder
|
19
|
+
self.device = self._long_text_encoder.device
|
19
20
|
|
20
21
|
@override
|
21
22
|
def train(self, positive_texts: list[str], negative_texts: list[str],
|
@@ -27,8 +28,8 @@ class TextBinaryClassifierTrainer(BaseTrainer):
|
|
27
28
|
positive_texts = positive_texts[:min_length]
|
28
29
|
negative_texts = negative_texts[:min_length]
|
29
30
|
all_texts = positive_texts + negative_texts
|
30
|
-
labels = ([torch.tensor([1.0], dtype=torch.float32) for _ in range(len(positive_texts))]
|
31
|
-
+ [torch.tensor([0.0], dtype=torch.float32) for _ in range(len(negative_texts))])
|
31
|
+
labels = ([torch.tensor([1.0], dtype=torch.float32, device=self.device) for _ in range(len(positive_texts))]
|
32
|
+
+ [torch.tensor([0.0], dtype=torch.float32, device=self.device) for _ in range(len(negative_texts))])
|
32
33
|
text_embeddings = [self._long_text_encoder.encode(x) for x in all_texts]
|
33
34
|
feature_dim = text_embeddings[0].shape[-1]
|
34
35
|
inputs = torch.stack(text_embeddings)
|
@@ -44,6 +45,7 @@ class TextBinaryClassifierTrainer(BaseTrainer):
|
|
44
45
|
self.model = None
|
45
46
|
if self.model is None:
|
46
47
|
self.model = LogisticRegression(input_dim=feature_dim, output_dim=1)
|
48
|
+
self.model.to(self.device)
|
47
49
|
loss_function = nn.BCELoss()
|
48
50
|
optimizer = optim.Adamax(self.model.parameters(), lr=learning_rate)
|
49
51
|
for epoch in range(num_epochs):
|
@@ -0,0 +1,21 @@
|
|
1
|
+
from deeplotx import TextBinaryClassifierTrainer, LongTextEncoder
|
2
|
+
from deeplotx.util import get_files, read_file
|
3
|
+
|
4
|
+
long_text_encoder = LongTextEncoder(
|
5
|
+
max_length=2048,
|
6
|
+
chunk_size=512,
|
7
|
+
overlapping=128
|
8
|
+
)
|
9
|
+
|
10
|
+
trainer = TextBinaryClassifierTrainer(
|
11
|
+
long_text_encoder=long_text_encoder,
|
12
|
+
batch_size=4,
|
13
|
+
train_ratio=0.9
|
14
|
+
)
|
15
|
+
|
16
|
+
pos_data_path = './data/pos'
|
17
|
+
neg_data_path = './data/neg'
|
18
|
+
pos_data = [read_file(x) for x in get_files(pos_data_path)]
|
19
|
+
neg_data = [read_file(x) for x in get_files(neg_data_path)]
|
20
|
+
model = trainer.train(pos_data, neg_data, num_epochs=20, learning_rate=2e-5, train_loss_threshold=1)
|
21
|
+
model.predict(long_text_encoder.encode('这是一个测试文本.').squeeze())
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|