deepliif 1.1.6__tar.gz → 1.1.7__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (38) hide show
  1. {deepliif-1.1.6/deepliif.egg-info → deepliif-1.1.7}/PKG-INFO +14 -9
  2. {deepliif-1.1.6 → deepliif-1.1.7}/README.md +13 -8
  3. {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/models/__init__.py +1 -1
  4. {deepliif-1.1.6 → deepliif-1.1.7/deepliif.egg-info}/PKG-INFO +14 -9
  5. {deepliif-1.1.6 → deepliif-1.1.7}/setup.cfg +1 -1
  6. {deepliif-1.1.6 → deepliif-1.1.7}/setup.py +1 -1
  7. {deepliif-1.1.6 → deepliif-1.1.7}/LICENSE.md +0 -0
  8. {deepliif-1.1.6 → deepliif-1.1.7}/cli.py +0 -0
  9. {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/__init__.py +0 -0
  10. {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/data/__init__.py +0 -0
  11. {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/data/aligned_dataset.py +0 -0
  12. {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/data/base_dataset.py +0 -0
  13. {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/data/colorization_dataset.py +0 -0
  14. {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/data/image_folder.py +0 -0
  15. {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/data/single_dataset.py +0 -0
  16. {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/data/template_dataset.py +0 -0
  17. {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/data/unaligned_dataset.py +0 -0
  18. {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/models/DeepLIIF_model.py +0 -0
  19. {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/models/base_model.py +0 -0
  20. {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/models/networks.py +0 -0
  21. {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/options/__init__.py +0 -0
  22. {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/options/base_options.py +0 -0
  23. {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/options/processing_options.py +0 -0
  24. {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/options/test_options.py +0 -0
  25. {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/options/train_options.py +0 -0
  26. {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/postprocessing.py +0 -0
  27. {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/train.py +0 -0
  28. {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/util/__init__.py +0 -0
  29. {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/util/get_data.py +0 -0
  30. {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/util/html.py +0 -0
  31. {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/util/image_pool.py +0 -0
  32. {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/util/util.py +0 -0
  33. {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/util/visualizer.py +0 -0
  34. {deepliif-1.1.6 → deepliif-1.1.7}/deepliif.egg-info/SOURCES.txt +0 -0
  35. {deepliif-1.1.6 → deepliif-1.1.7}/deepliif.egg-info/dependency_links.txt +0 -0
  36. {deepliif-1.1.6 → deepliif-1.1.7}/deepliif.egg-info/entry_points.txt +0 -0
  37. {deepliif-1.1.6 → deepliif-1.1.7}/deepliif.egg-info/requires.txt +0 -0
  38. {deepliif-1.1.6 → deepliif-1.1.7}/deepliif.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: deepliif
3
- Version: 1.1.6
3
+ Version: 1.1.7
4
4
  Summary: DeepLIIF: Deep-Learning Inferred Multiplex Immunofluorescence for Immunohistochemical Image Quantification
5
5
  Home-page: https://github.com/nadeemlab/DeepLIIF
6
6
  Author: Parmida93
@@ -16,20 +16,16 @@ License-File: LICENSE.md
16
16
  <img src="./images/DeepLIIF_logo.png" width="50%">
17
17
  <h3 align="center"><strong>Deep-Learning Inferred Multiplex Immunofluorescence for Immunohistochemical Image Quantification</strong></h3>
18
18
  <p align="center">
19
- <a href="https://doi.org/10.1101/2021.05.01.442219">Journal Preprint</a>
19
+ <a href="https://rdcu.be/cKSBz">Nature MI'22 Link</a>
20
20
  |
21
- <a href="https://rdcu.be/cKSBz">Journal Link</a>
21
+ <a href="https://openaccess.thecvf.com/content/CVPR2022/html/Ghahremani_DeepLIIF_An_Online_Platform_for_Quantification_of_Clinical_Pathology_Slides_CVPR_2022_paper.html">CVPR'22 Link</a>
22
22
  |
23
- <a href="https://openaccess.thecvf.com/content/CVPR2022/html/Ghahremani_DeepLIIF_An_Online_Platform_for_Quantification_of_Clinical_Pathology_Slides_CVPR_2022_paper.html">CVPR Link</a>
23
+ <a href="https://arxiv.org/abs/2305.16465">MICCAI'23 link</a>
24
24
  |
25
25
  <a href="https://deepliif.org/">Cloud Deployment</a>
26
26
  |
27
27
  <a href="https://nadeemlab.github.io/DeepLIIF/">Documentation</a>
28
28
  |
29
- <a href="#docker">Docker</a>
30
- |
31
- <a href="https://github.com/nadeemlab/DeepLIIF/tree/main/ImageJ_Plugin">ImageJ Plugin</a>
32
- |
33
29
  <a href="#support">Support</a>
34
30
  </p>
35
31
  </p>
@@ -356,6 +352,9 @@ for the same slide (de novo staining) and would like to contribute that data for
356
352
  co-registration, whole-cell multiplex segmentation via [ImPartial](https://github.com/nadeemlab/ImPartial), train the
357
353
  DeepLIIF model and release back to the community with full credit to the contributors.
358
354
 
355
+ - [x] **Memorial Sloan Kettering Cancer Center** [AI-ready immunohistochemistry and multiplex immunofluorescence dataset](https://zenodo.org/record/4751737#.YKRTS0NKhH4) for breast, lung, and bladder cancers (**Nature Machine Intelligence'22**)
356
+ - [x] **Moffitt Cancer Center** AI-ready multiplex immunofluorescence and multiplex immunohistochemistry dataset for head-and-neck squamous cell carcinoma (**MICCAI'23**)
357
+
359
358
  ## Support
360
359
  Please use the [Image.sc Forum](https://forum.image.sc/tag/deepliif) for discussion and questions related to DeepLIIF.
361
360
 
@@ -369,7 +368,7 @@ and is available for non-commercial academic purposes.
369
368
  * This code is inspired by [CycleGAN and pix2pix in PyTorch](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix).
370
369
 
371
370
  ## Reference
372
- If you find our work useful in your research or if you use parts of this code, please cite our paper:
371
+ If you find our work useful in your research or if you use parts of this code or our released dataset, please cite the following papers:
373
372
  ```
374
373
  @article{ghahremani2022deep,
375
374
  title={Deep learning-inferred multiplex immunofluorescence for immunohistochemical image quantification},
@@ -390,4 +389,10 @@ If you find our work useful in your research or if you use parts of this code, p
390
389
  year={2022}
391
390
  }
392
391
 
392
+ @article{ghahremani2023deepliifdataset,
393
+ title={An AI-Ready Multiplex Staining Dataset for Reproducible and Accurate Characterization of Tumor Immune Microenvironment},
394
+ author={Ghahremani, Parmida and Marino, Joseph and Hernandez-Prera, Juan and V. de la Iglesia, Janis and JC Slebos, Robbert and H. Chung, Christine and Nadeem, Saad},
395
+ journal={International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)},
396
+ year={2023}
397
+ }
393
398
  ```
@@ -5,20 +5,16 @@
5
5
  <img src="./images/DeepLIIF_logo.png" width="50%">
6
6
  <h3 align="center"><strong>Deep-Learning Inferred Multiplex Immunofluorescence for Immunohistochemical Image Quantification</strong></h3>
7
7
  <p align="center">
8
- <a href="https://doi.org/10.1101/2021.05.01.442219">Journal Preprint</a>
8
+ <a href="https://rdcu.be/cKSBz">Nature MI'22 Link</a>
9
9
  |
10
- <a href="https://rdcu.be/cKSBz">Journal Link</a>
10
+ <a href="https://openaccess.thecvf.com/content/CVPR2022/html/Ghahremani_DeepLIIF_An_Online_Platform_for_Quantification_of_Clinical_Pathology_Slides_CVPR_2022_paper.html">CVPR'22 Link</a>
11
11
  |
12
- <a href="https://openaccess.thecvf.com/content/CVPR2022/html/Ghahremani_DeepLIIF_An_Online_Platform_for_Quantification_of_Clinical_Pathology_Slides_CVPR_2022_paper.html">CVPR Link</a>
12
+ <a href="https://arxiv.org/abs/2305.16465">MICCAI'23 link</a>
13
13
  |
14
14
  <a href="https://deepliif.org/">Cloud Deployment</a>
15
15
  |
16
16
  <a href="https://nadeemlab.github.io/DeepLIIF/">Documentation</a>
17
17
  |
18
- <a href="#docker">Docker</a>
19
- |
20
- <a href="https://github.com/nadeemlab/DeepLIIF/tree/main/ImageJ_Plugin">ImageJ Plugin</a>
21
- |
22
18
  <a href="#support">Support</a>
23
19
  </p>
24
20
  </p>
@@ -345,6 +341,9 @@ for the same slide (de novo staining) and would like to contribute that data for
345
341
  co-registration, whole-cell multiplex segmentation via [ImPartial](https://github.com/nadeemlab/ImPartial), train the
346
342
  DeepLIIF model and release back to the community with full credit to the contributors.
347
343
 
344
+ - [x] **Memorial Sloan Kettering Cancer Center** [AI-ready immunohistochemistry and multiplex immunofluorescence dataset](https://zenodo.org/record/4751737#.YKRTS0NKhH4) for breast, lung, and bladder cancers (**Nature Machine Intelligence'22**)
345
+ - [x] **Moffitt Cancer Center** AI-ready multiplex immunofluorescence and multiplex immunohistochemistry dataset for head-and-neck squamous cell carcinoma (**MICCAI'23**)
346
+
348
347
  ## Support
349
348
  Please use the [Image.sc Forum](https://forum.image.sc/tag/deepliif) for discussion and questions related to DeepLIIF.
350
349
 
@@ -358,7 +357,7 @@ and is available for non-commercial academic purposes.
358
357
  * This code is inspired by [CycleGAN and pix2pix in PyTorch](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix).
359
358
 
360
359
  ## Reference
361
- If you find our work useful in your research or if you use parts of this code, please cite our paper:
360
+ If you find our work useful in your research or if you use parts of this code or our released dataset, please cite the following papers:
362
361
  ```
363
362
  @article{ghahremani2022deep,
364
363
  title={Deep learning-inferred multiplex immunofluorescence for immunohistochemical image quantification},
@@ -379,4 +378,10 @@ If you find our work useful in your research or if you use parts of this code, p
379
378
  year={2022}
380
379
  }
381
380
 
381
+ @article{ghahremani2023deepliifdataset,
382
+ title={An AI-Ready Multiplex Staining Dataset for Reproducible and Accurate Characterization of Tumor Immune Microenvironment},
383
+ author={Ghahremani, Parmida and Marino, Joseph and Hernandez-Prera, Juan and V. de la Iglesia, Janis and JC Slebos, Robbert and H. Chung, Christine and Nadeem, Saad},
384
+ journal={International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)},
385
+ year={2023}
386
+ }
382
387
  ```
@@ -323,7 +323,7 @@ def inference(img, tile_size, overlap_size, model_path, use_torchserve=False, ea
323
323
  for i in range(cols):
324
324
  for j in range(rows):
325
325
  tile = extract_tile(rescaled, tile_size, overlap_size, i, j)
326
- res = run_fn(tile, model_path, eager_mode)
326
+ res = run_wrapper(tile, run_fn, model_path, eager_mode)
327
327
 
328
328
  stitch_tile(images['Hema'], res['G1'], tile_size, overlap_size, i, j)
329
329
  stitch_tile(images['DAPI'], res['G2'], tile_size, overlap_size, i, j)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: deepliif
3
- Version: 1.1.6
3
+ Version: 1.1.7
4
4
  Summary: DeepLIIF: Deep-Learning Inferred Multiplex Immunofluorescence for Immunohistochemical Image Quantification
5
5
  Home-page: https://github.com/nadeemlab/DeepLIIF
6
6
  Author: Parmida93
@@ -16,20 +16,16 @@ License-File: LICENSE.md
16
16
  <img src="./images/DeepLIIF_logo.png" width="50%">
17
17
  <h3 align="center"><strong>Deep-Learning Inferred Multiplex Immunofluorescence for Immunohistochemical Image Quantification</strong></h3>
18
18
  <p align="center">
19
- <a href="https://doi.org/10.1101/2021.05.01.442219">Journal Preprint</a>
19
+ <a href="https://rdcu.be/cKSBz">Nature MI'22 Link</a>
20
20
  |
21
- <a href="https://rdcu.be/cKSBz">Journal Link</a>
21
+ <a href="https://openaccess.thecvf.com/content/CVPR2022/html/Ghahremani_DeepLIIF_An_Online_Platform_for_Quantification_of_Clinical_Pathology_Slides_CVPR_2022_paper.html">CVPR'22 Link</a>
22
22
  |
23
- <a href="https://openaccess.thecvf.com/content/CVPR2022/html/Ghahremani_DeepLIIF_An_Online_Platform_for_Quantification_of_Clinical_Pathology_Slides_CVPR_2022_paper.html">CVPR Link</a>
23
+ <a href="https://arxiv.org/abs/2305.16465">MICCAI'23 link</a>
24
24
  |
25
25
  <a href="https://deepliif.org/">Cloud Deployment</a>
26
26
  |
27
27
  <a href="https://nadeemlab.github.io/DeepLIIF/">Documentation</a>
28
28
  |
29
- <a href="#docker">Docker</a>
30
- |
31
- <a href="https://github.com/nadeemlab/DeepLIIF/tree/main/ImageJ_Plugin">ImageJ Plugin</a>
32
- |
33
29
  <a href="#support">Support</a>
34
30
  </p>
35
31
  </p>
@@ -356,6 +352,9 @@ for the same slide (de novo staining) and would like to contribute that data for
356
352
  co-registration, whole-cell multiplex segmentation via [ImPartial](https://github.com/nadeemlab/ImPartial), train the
357
353
  DeepLIIF model and release back to the community with full credit to the contributors.
358
354
 
355
+ - [x] **Memorial Sloan Kettering Cancer Center** [AI-ready immunohistochemistry and multiplex immunofluorescence dataset](https://zenodo.org/record/4751737#.YKRTS0NKhH4) for breast, lung, and bladder cancers (**Nature Machine Intelligence'22**)
356
+ - [x] **Moffitt Cancer Center** AI-ready multiplex immunofluorescence and multiplex immunohistochemistry dataset for head-and-neck squamous cell carcinoma (**MICCAI'23**)
357
+
359
358
  ## Support
360
359
  Please use the [Image.sc Forum](https://forum.image.sc/tag/deepliif) for discussion and questions related to DeepLIIF.
361
360
 
@@ -369,7 +368,7 @@ and is available for non-commercial academic purposes.
369
368
  * This code is inspired by [CycleGAN and pix2pix in PyTorch](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix).
370
369
 
371
370
  ## Reference
372
- If you find our work useful in your research or if you use parts of this code, please cite our paper:
371
+ If you find our work useful in your research or if you use parts of this code or our released dataset, please cite the following papers:
373
372
  ```
374
373
  @article{ghahremani2022deep,
375
374
  title={Deep learning-inferred multiplex immunofluorescence for immunohistochemical image quantification},
@@ -390,4 +389,10 @@ If you find our work useful in your research or if you use parts of this code, p
390
389
  year={2022}
391
390
  }
392
391
 
392
+ @article{ghahremani2023deepliifdataset,
393
+ title={An AI-Ready Multiplex Staining Dataset for Reproducible and Accurate Characterization of Tumor Immune Microenvironment},
394
+ author={Ghahremani, Parmida and Marino, Joseph and Hernandez-Prera, Juan and V. de la Iglesia, Janis and JC Slebos, Robbert and H. Chung, Christine and Nadeem, Saad},
395
+ journal={International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)},
396
+ year={2023}
397
+ }
393
398
  ```
@@ -3,7 +3,7 @@ name = deepliif
3
3
  description_file = README.md
4
4
  author = Parmida93
5
5
  author_email = ghahremani.parmida@gmail.com
6
- version = 1.1.6
6
+ version = 1.1.7
7
7
  url = https://github.com/nadeemlab/DeepLIIF
8
8
 
9
9
  [egg_info]
@@ -6,7 +6,7 @@ README = (HERE / "README.md").read_text()
6
6
 
7
7
  setup(
8
8
  name='deepliif',
9
- version='1.1.6',
9
+ version='1.1.7',
10
10
  packages=['deepliif', 'deepliif.data', 'deepliif.models', 'deepliif.util', 'deepliif.options'],
11
11
 
12
12
  description='DeepLIIF: Deep-Learning Inferred Multiplex Immunofluorescence for Immunohistochemical Image Quantification',
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes