deepliif 1.1.6__tar.gz → 1.1.7__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {deepliif-1.1.6/deepliif.egg-info → deepliif-1.1.7}/PKG-INFO +14 -9
- {deepliif-1.1.6 → deepliif-1.1.7}/README.md +13 -8
- {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/models/__init__.py +1 -1
- {deepliif-1.1.6 → deepliif-1.1.7/deepliif.egg-info}/PKG-INFO +14 -9
- {deepliif-1.1.6 → deepliif-1.1.7}/setup.cfg +1 -1
- {deepliif-1.1.6 → deepliif-1.1.7}/setup.py +1 -1
- {deepliif-1.1.6 → deepliif-1.1.7}/LICENSE.md +0 -0
- {deepliif-1.1.6 → deepliif-1.1.7}/cli.py +0 -0
- {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/__init__.py +0 -0
- {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/data/__init__.py +0 -0
- {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/data/aligned_dataset.py +0 -0
- {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/data/base_dataset.py +0 -0
- {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/data/colorization_dataset.py +0 -0
- {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/data/image_folder.py +0 -0
- {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/data/single_dataset.py +0 -0
- {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/data/template_dataset.py +0 -0
- {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/data/unaligned_dataset.py +0 -0
- {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/models/DeepLIIF_model.py +0 -0
- {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/models/base_model.py +0 -0
- {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/models/networks.py +0 -0
- {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/options/__init__.py +0 -0
- {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/options/base_options.py +0 -0
- {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/options/processing_options.py +0 -0
- {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/options/test_options.py +0 -0
- {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/options/train_options.py +0 -0
- {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/postprocessing.py +0 -0
- {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/train.py +0 -0
- {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/util/__init__.py +0 -0
- {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/util/get_data.py +0 -0
- {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/util/html.py +0 -0
- {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/util/image_pool.py +0 -0
- {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/util/util.py +0 -0
- {deepliif-1.1.6 → deepliif-1.1.7}/deepliif/util/visualizer.py +0 -0
- {deepliif-1.1.6 → deepliif-1.1.7}/deepliif.egg-info/SOURCES.txt +0 -0
- {deepliif-1.1.6 → deepliif-1.1.7}/deepliif.egg-info/dependency_links.txt +0 -0
- {deepliif-1.1.6 → deepliif-1.1.7}/deepliif.egg-info/entry_points.txt +0 -0
- {deepliif-1.1.6 → deepliif-1.1.7}/deepliif.egg-info/requires.txt +0 -0
- {deepliif-1.1.6 → deepliif-1.1.7}/deepliif.egg-info/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: deepliif
|
|
3
|
-
Version: 1.1.
|
|
3
|
+
Version: 1.1.7
|
|
4
4
|
Summary: DeepLIIF: Deep-Learning Inferred Multiplex Immunofluorescence for Immunohistochemical Image Quantification
|
|
5
5
|
Home-page: https://github.com/nadeemlab/DeepLIIF
|
|
6
6
|
Author: Parmida93
|
|
@@ -16,20 +16,16 @@ License-File: LICENSE.md
|
|
|
16
16
|
<img src="./images/DeepLIIF_logo.png" width="50%">
|
|
17
17
|
<h3 align="center"><strong>Deep-Learning Inferred Multiplex Immunofluorescence for Immunohistochemical Image Quantification</strong></h3>
|
|
18
18
|
<p align="center">
|
|
19
|
-
<a href="https://
|
|
19
|
+
<a href="https://rdcu.be/cKSBz">Nature MI'22 Link</a>
|
|
20
20
|
|
|
|
21
|
-
<a href="https://
|
|
21
|
+
<a href="https://openaccess.thecvf.com/content/CVPR2022/html/Ghahremani_DeepLIIF_An_Online_Platform_for_Quantification_of_Clinical_Pathology_Slides_CVPR_2022_paper.html">CVPR'22 Link</a>
|
|
22
22
|
|
|
|
23
|
-
<a href="https://
|
|
23
|
+
<a href="https://arxiv.org/abs/2305.16465">MICCAI'23 link</a>
|
|
24
24
|
|
|
|
25
25
|
<a href="https://deepliif.org/">Cloud Deployment</a>
|
|
26
26
|
|
|
|
27
27
|
<a href="https://nadeemlab.github.io/DeepLIIF/">Documentation</a>
|
|
28
28
|
|
|
|
29
|
-
<a href="#docker">Docker</a>
|
|
30
|
-
|
|
|
31
|
-
<a href="https://github.com/nadeemlab/DeepLIIF/tree/main/ImageJ_Plugin">ImageJ Plugin</a>
|
|
32
|
-
|
|
|
33
29
|
<a href="#support">Support</a>
|
|
34
30
|
</p>
|
|
35
31
|
</p>
|
|
@@ -356,6 +352,9 @@ for the same slide (de novo staining) and would like to contribute that data for
|
|
|
356
352
|
co-registration, whole-cell multiplex segmentation via [ImPartial](https://github.com/nadeemlab/ImPartial), train the
|
|
357
353
|
DeepLIIF model and release back to the community with full credit to the contributors.
|
|
358
354
|
|
|
355
|
+
- [x] **Memorial Sloan Kettering Cancer Center** [AI-ready immunohistochemistry and multiplex immunofluorescence dataset](https://zenodo.org/record/4751737#.YKRTS0NKhH4) for breast, lung, and bladder cancers (**Nature Machine Intelligence'22**)
|
|
356
|
+
- [x] **Moffitt Cancer Center** AI-ready multiplex immunofluorescence and multiplex immunohistochemistry dataset for head-and-neck squamous cell carcinoma (**MICCAI'23**)
|
|
357
|
+
|
|
359
358
|
## Support
|
|
360
359
|
Please use the [Image.sc Forum](https://forum.image.sc/tag/deepliif) for discussion and questions related to DeepLIIF.
|
|
361
360
|
|
|
@@ -369,7 +368,7 @@ and is available for non-commercial academic purposes.
|
|
|
369
368
|
* This code is inspired by [CycleGAN and pix2pix in PyTorch](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix).
|
|
370
369
|
|
|
371
370
|
## Reference
|
|
372
|
-
If you find our work useful in your research or if you use parts of this code, please cite
|
|
371
|
+
If you find our work useful in your research or if you use parts of this code or our released dataset, please cite the following papers:
|
|
373
372
|
```
|
|
374
373
|
@article{ghahremani2022deep,
|
|
375
374
|
title={Deep learning-inferred multiplex immunofluorescence for immunohistochemical image quantification},
|
|
@@ -390,4 +389,10 @@ If you find our work useful in your research or if you use parts of this code, p
|
|
|
390
389
|
year={2022}
|
|
391
390
|
}
|
|
392
391
|
|
|
392
|
+
@article{ghahremani2023deepliifdataset,
|
|
393
|
+
title={An AI-Ready Multiplex Staining Dataset for Reproducible and Accurate Characterization of Tumor Immune Microenvironment},
|
|
394
|
+
author={Ghahremani, Parmida and Marino, Joseph and Hernandez-Prera, Juan and V. de la Iglesia, Janis and JC Slebos, Robbert and H. Chung, Christine and Nadeem, Saad},
|
|
395
|
+
journal={International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)},
|
|
396
|
+
year={2023}
|
|
397
|
+
}
|
|
393
398
|
```
|
|
@@ -5,20 +5,16 @@
|
|
|
5
5
|
<img src="./images/DeepLIIF_logo.png" width="50%">
|
|
6
6
|
<h3 align="center"><strong>Deep-Learning Inferred Multiplex Immunofluorescence for Immunohistochemical Image Quantification</strong></h3>
|
|
7
7
|
<p align="center">
|
|
8
|
-
<a href="https://
|
|
8
|
+
<a href="https://rdcu.be/cKSBz">Nature MI'22 Link</a>
|
|
9
9
|
|
|
|
10
|
-
<a href="https://
|
|
10
|
+
<a href="https://openaccess.thecvf.com/content/CVPR2022/html/Ghahremani_DeepLIIF_An_Online_Platform_for_Quantification_of_Clinical_Pathology_Slides_CVPR_2022_paper.html">CVPR'22 Link</a>
|
|
11
11
|
|
|
|
12
|
-
<a href="https://
|
|
12
|
+
<a href="https://arxiv.org/abs/2305.16465">MICCAI'23 link</a>
|
|
13
13
|
|
|
|
14
14
|
<a href="https://deepliif.org/">Cloud Deployment</a>
|
|
15
15
|
|
|
|
16
16
|
<a href="https://nadeemlab.github.io/DeepLIIF/">Documentation</a>
|
|
17
17
|
|
|
|
18
|
-
<a href="#docker">Docker</a>
|
|
19
|
-
|
|
|
20
|
-
<a href="https://github.com/nadeemlab/DeepLIIF/tree/main/ImageJ_Plugin">ImageJ Plugin</a>
|
|
21
|
-
|
|
|
22
18
|
<a href="#support">Support</a>
|
|
23
19
|
</p>
|
|
24
20
|
</p>
|
|
@@ -345,6 +341,9 @@ for the same slide (de novo staining) and would like to contribute that data for
|
|
|
345
341
|
co-registration, whole-cell multiplex segmentation via [ImPartial](https://github.com/nadeemlab/ImPartial), train the
|
|
346
342
|
DeepLIIF model and release back to the community with full credit to the contributors.
|
|
347
343
|
|
|
344
|
+
- [x] **Memorial Sloan Kettering Cancer Center** [AI-ready immunohistochemistry and multiplex immunofluorescence dataset](https://zenodo.org/record/4751737#.YKRTS0NKhH4) for breast, lung, and bladder cancers (**Nature Machine Intelligence'22**)
|
|
345
|
+
- [x] **Moffitt Cancer Center** AI-ready multiplex immunofluorescence and multiplex immunohistochemistry dataset for head-and-neck squamous cell carcinoma (**MICCAI'23**)
|
|
346
|
+
|
|
348
347
|
## Support
|
|
349
348
|
Please use the [Image.sc Forum](https://forum.image.sc/tag/deepliif) for discussion and questions related to DeepLIIF.
|
|
350
349
|
|
|
@@ -358,7 +357,7 @@ and is available for non-commercial academic purposes.
|
|
|
358
357
|
* This code is inspired by [CycleGAN and pix2pix in PyTorch](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix).
|
|
359
358
|
|
|
360
359
|
## Reference
|
|
361
|
-
If you find our work useful in your research or if you use parts of this code, please cite
|
|
360
|
+
If you find our work useful in your research or if you use parts of this code or our released dataset, please cite the following papers:
|
|
362
361
|
```
|
|
363
362
|
@article{ghahremani2022deep,
|
|
364
363
|
title={Deep learning-inferred multiplex immunofluorescence for immunohistochemical image quantification},
|
|
@@ -379,4 +378,10 @@ If you find our work useful in your research or if you use parts of this code, p
|
|
|
379
378
|
year={2022}
|
|
380
379
|
}
|
|
381
380
|
|
|
381
|
+
@article{ghahremani2023deepliifdataset,
|
|
382
|
+
title={An AI-Ready Multiplex Staining Dataset for Reproducible and Accurate Characterization of Tumor Immune Microenvironment},
|
|
383
|
+
author={Ghahremani, Parmida and Marino, Joseph and Hernandez-Prera, Juan and V. de la Iglesia, Janis and JC Slebos, Robbert and H. Chung, Christine and Nadeem, Saad},
|
|
384
|
+
journal={International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)},
|
|
385
|
+
year={2023}
|
|
386
|
+
}
|
|
382
387
|
```
|
|
@@ -323,7 +323,7 @@ def inference(img, tile_size, overlap_size, model_path, use_torchserve=False, ea
|
|
|
323
323
|
for i in range(cols):
|
|
324
324
|
for j in range(rows):
|
|
325
325
|
tile = extract_tile(rescaled, tile_size, overlap_size, i, j)
|
|
326
|
-
res =
|
|
326
|
+
res = run_wrapper(tile, run_fn, model_path, eager_mode)
|
|
327
327
|
|
|
328
328
|
stitch_tile(images['Hema'], res['G1'], tile_size, overlap_size, i, j)
|
|
329
329
|
stitch_tile(images['DAPI'], res['G2'], tile_size, overlap_size, i, j)
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: deepliif
|
|
3
|
-
Version: 1.1.
|
|
3
|
+
Version: 1.1.7
|
|
4
4
|
Summary: DeepLIIF: Deep-Learning Inferred Multiplex Immunofluorescence for Immunohistochemical Image Quantification
|
|
5
5
|
Home-page: https://github.com/nadeemlab/DeepLIIF
|
|
6
6
|
Author: Parmida93
|
|
@@ -16,20 +16,16 @@ License-File: LICENSE.md
|
|
|
16
16
|
<img src="./images/DeepLIIF_logo.png" width="50%">
|
|
17
17
|
<h3 align="center"><strong>Deep-Learning Inferred Multiplex Immunofluorescence for Immunohistochemical Image Quantification</strong></h3>
|
|
18
18
|
<p align="center">
|
|
19
|
-
<a href="https://
|
|
19
|
+
<a href="https://rdcu.be/cKSBz">Nature MI'22 Link</a>
|
|
20
20
|
|
|
|
21
|
-
<a href="https://
|
|
21
|
+
<a href="https://openaccess.thecvf.com/content/CVPR2022/html/Ghahremani_DeepLIIF_An_Online_Platform_for_Quantification_of_Clinical_Pathology_Slides_CVPR_2022_paper.html">CVPR'22 Link</a>
|
|
22
22
|
|
|
|
23
|
-
<a href="https://
|
|
23
|
+
<a href="https://arxiv.org/abs/2305.16465">MICCAI'23 link</a>
|
|
24
24
|
|
|
|
25
25
|
<a href="https://deepliif.org/">Cloud Deployment</a>
|
|
26
26
|
|
|
|
27
27
|
<a href="https://nadeemlab.github.io/DeepLIIF/">Documentation</a>
|
|
28
28
|
|
|
|
29
|
-
<a href="#docker">Docker</a>
|
|
30
|
-
|
|
|
31
|
-
<a href="https://github.com/nadeemlab/DeepLIIF/tree/main/ImageJ_Plugin">ImageJ Plugin</a>
|
|
32
|
-
|
|
|
33
29
|
<a href="#support">Support</a>
|
|
34
30
|
</p>
|
|
35
31
|
</p>
|
|
@@ -356,6 +352,9 @@ for the same slide (de novo staining) and would like to contribute that data for
|
|
|
356
352
|
co-registration, whole-cell multiplex segmentation via [ImPartial](https://github.com/nadeemlab/ImPartial), train the
|
|
357
353
|
DeepLIIF model and release back to the community with full credit to the contributors.
|
|
358
354
|
|
|
355
|
+
- [x] **Memorial Sloan Kettering Cancer Center** [AI-ready immunohistochemistry and multiplex immunofluorescence dataset](https://zenodo.org/record/4751737#.YKRTS0NKhH4) for breast, lung, and bladder cancers (**Nature Machine Intelligence'22**)
|
|
356
|
+
- [x] **Moffitt Cancer Center** AI-ready multiplex immunofluorescence and multiplex immunohistochemistry dataset for head-and-neck squamous cell carcinoma (**MICCAI'23**)
|
|
357
|
+
|
|
359
358
|
## Support
|
|
360
359
|
Please use the [Image.sc Forum](https://forum.image.sc/tag/deepliif) for discussion and questions related to DeepLIIF.
|
|
361
360
|
|
|
@@ -369,7 +368,7 @@ and is available for non-commercial academic purposes.
|
|
|
369
368
|
* This code is inspired by [CycleGAN and pix2pix in PyTorch](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix).
|
|
370
369
|
|
|
371
370
|
## Reference
|
|
372
|
-
If you find our work useful in your research or if you use parts of this code, please cite
|
|
371
|
+
If you find our work useful in your research or if you use parts of this code or our released dataset, please cite the following papers:
|
|
373
372
|
```
|
|
374
373
|
@article{ghahremani2022deep,
|
|
375
374
|
title={Deep learning-inferred multiplex immunofluorescence for immunohistochemical image quantification},
|
|
@@ -390,4 +389,10 @@ If you find our work useful in your research or if you use parts of this code, p
|
|
|
390
389
|
year={2022}
|
|
391
390
|
}
|
|
392
391
|
|
|
392
|
+
@article{ghahremani2023deepliifdataset,
|
|
393
|
+
title={An AI-Ready Multiplex Staining Dataset for Reproducible and Accurate Characterization of Tumor Immune Microenvironment},
|
|
394
|
+
author={Ghahremani, Parmida and Marino, Joseph and Hernandez-Prera, Juan and V. de la Iglesia, Janis and JC Slebos, Robbert and H. Chung, Christine and Nadeem, Saad},
|
|
395
|
+
journal={International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)},
|
|
396
|
+
year={2023}
|
|
397
|
+
}
|
|
393
398
|
```
|
|
@@ -6,7 +6,7 @@ README = (HERE / "README.md").read_text()
|
|
|
6
6
|
|
|
7
7
|
setup(
|
|
8
8
|
name='deepliif',
|
|
9
|
-
version='1.1.
|
|
9
|
+
version='1.1.7',
|
|
10
10
|
packages=['deepliif', 'deepliif.data', 'deepliif.models', 'deepliif.util', 'deepliif.options'],
|
|
11
11
|
|
|
12
12
|
description='DeepLIIF: Deep-Learning Inferred Multiplex Immunofluorescence for Immunohistochemical Image Quantification',
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|