deepagents 0.2.1rc2__tar.gz → 0.2.2__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {deepagents-0.2.1rc2/src/deepagents.egg-info → deepagents-0.2.2}/PKG-INFO +1 -1
- {deepagents-0.2.1rc2 → deepagents-0.2.2}/pyproject.toml +6 -1
- {deepagents-0.2.1rc2 → deepagents-0.2.2}/src/deepagents/graph.py +2 -2
- deepagents-0.2.2/src/deepagents/middleware/__init__.py +13 -0
- deepagents-0.2.2/src/deepagents/middleware/agent_memory.py +222 -0
- {deepagents-0.2.1rc2 → deepagents-0.2.2}/src/deepagents/middleware/filesystem.py +7 -3
- deepagents-0.2.2/src/deepagents/middleware/resumable_shell.py +85 -0
- {deepagents-0.2.1rc2 → deepagents-0.2.2/src/deepagents.egg-info}/PKG-INFO +1 -1
- {deepagents-0.2.1rc2 → deepagents-0.2.2}/src/deepagents.egg-info/SOURCES.txt +2 -0
- deepagents-0.2.1rc2/src/deepagents/middleware/__init__.py +0 -6
- {deepagents-0.2.1rc2 → deepagents-0.2.2}/LICENSE +0 -0
- {deepagents-0.2.1rc2 → deepagents-0.2.2}/README.md +0 -0
- {deepagents-0.2.1rc2 → deepagents-0.2.2}/setup.cfg +0 -0
- {deepagents-0.2.1rc2 → deepagents-0.2.2}/src/deepagents/__init__.py +0 -0
- {deepagents-0.2.1rc2 → deepagents-0.2.2}/src/deepagents/backends/__init__.py +0 -0
- {deepagents-0.2.1rc2 → deepagents-0.2.2}/src/deepagents/backends/composite.py +0 -0
- {deepagents-0.2.1rc2 → deepagents-0.2.2}/src/deepagents/backends/filesystem.py +0 -0
- {deepagents-0.2.1rc2 → deepagents-0.2.2}/src/deepagents/backends/protocol.py +0 -0
- {deepagents-0.2.1rc2 → deepagents-0.2.2}/src/deepagents/backends/state.py +0 -0
- {deepagents-0.2.1rc2 → deepagents-0.2.2}/src/deepagents/backends/store.py +0 -0
- {deepagents-0.2.1rc2 → deepagents-0.2.2}/src/deepagents/backends/utils.py +0 -0
- {deepagents-0.2.1rc2 → deepagents-0.2.2}/src/deepagents/middleware/patch_tool_calls.py +0 -0
- {deepagents-0.2.1rc2 → deepagents-0.2.2}/src/deepagents/middleware/subagents.py +0 -0
- {deepagents-0.2.1rc2 → deepagents-0.2.2}/src/deepagents.egg-info/dependency_links.txt +0 -0
- {deepagents-0.2.1rc2 → deepagents-0.2.2}/src/deepagents.egg-info/requires.txt +0 -0
- {deepagents-0.2.1rc2 → deepagents-0.2.2}/src/deepagents.egg-info/top_level.txt +0 -0
- {deepagents-0.2.1rc2 → deepagents-0.2.2}/tests/test_middleware.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
[project]
|
|
2
2
|
name = "deepagents"
|
|
3
|
-
version = "0.2.
|
|
3
|
+
version = "0.2.2"
|
|
4
4
|
description = "General purpose 'deep agent' with sub-agent spawning, todo list capabilities, and mock file system. Built on LangGraph."
|
|
5
5
|
readme = "README.md"
|
|
6
6
|
license = { text = "MIT" }
|
|
@@ -93,3 +93,8 @@ enable_error_code = ["deprecated"]
|
|
|
93
93
|
# Optional: reduce strictness if needed
|
|
94
94
|
disallow_any_generics = false
|
|
95
95
|
warn_return_any = false
|
|
96
|
+
|
|
97
|
+
[tool.uv.workspace]
|
|
98
|
+
members = [
|
|
99
|
+
"libs/deepagents-cli",
|
|
100
|
+
]
|
|
@@ -123,10 +123,10 @@ def create_deep_agent(
|
|
|
123
123
|
AnthropicPromptCachingMiddleware(unsupported_model_behavior="ignore"),
|
|
124
124
|
PatchToolCallsMiddleware(),
|
|
125
125
|
]
|
|
126
|
+
if middleware:
|
|
127
|
+
deepagent_middleware.extend(middleware)
|
|
126
128
|
if interrupt_on is not None:
|
|
127
129
|
deepagent_middleware.append(HumanInTheLoopMiddleware(interrupt_on=interrupt_on))
|
|
128
|
-
if middleware is not None:
|
|
129
|
-
deepagent_middleware.extend(middleware)
|
|
130
130
|
|
|
131
131
|
return create_agent(
|
|
132
132
|
model,
|
|
@@ -0,0 +1,13 @@
|
|
|
1
|
+
"""Middleware for the DeepAgent."""
|
|
2
|
+
|
|
3
|
+
from deepagents.middleware.filesystem import FilesystemMiddleware
|
|
4
|
+
from deepagents.middleware.resumable_shell import ResumableShellToolMiddleware
|
|
5
|
+
from deepagents.middleware.subagents import CompiledSubAgent, SubAgent, SubAgentMiddleware
|
|
6
|
+
|
|
7
|
+
__all__ = [
|
|
8
|
+
"CompiledSubAgent",
|
|
9
|
+
"FilesystemMiddleware",
|
|
10
|
+
"ResumableShellToolMiddleware",
|
|
11
|
+
"SubAgent",
|
|
12
|
+
"SubAgentMiddleware",
|
|
13
|
+
]
|
|
@@ -0,0 +1,222 @@
|
|
|
1
|
+
"""Middleware for loading agent-specific long-term memory into the system prompt."""
|
|
2
|
+
|
|
3
|
+
from collections.abc import Awaitable, Callable
|
|
4
|
+
from typing import TYPE_CHECKING, Any
|
|
5
|
+
|
|
6
|
+
if TYPE_CHECKING:
|
|
7
|
+
from langgraph.runtime import Runtime
|
|
8
|
+
|
|
9
|
+
from langchain.agents.middleware.types import (
|
|
10
|
+
AgentMiddleware,
|
|
11
|
+
AgentState,
|
|
12
|
+
ModelRequest,
|
|
13
|
+
ModelResponse,
|
|
14
|
+
)
|
|
15
|
+
from typing_extensions import NotRequired, TypedDict
|
|
16
|
+
|
|
17
|
+
from deepagents.backends.protocol import BackendProtocol
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
class AgentMemoryState(AgentState):
|
|
21
|
+
"""State for the agent memory middleware."""
|
|
22
|
+
|
|
23
|
+
agent_memory: NotRequired[str | None]
|
|
24
|
+
"""Long-term memory content for the agent."""
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
AGENT_MEMORY_FILE_PATH = "/agent.md"
|
|
28
|
+
|
|
29
|
+
# Long-term Memory Documentation
|
|
30
|
+
LONGTERM_MEMORY_SYSTEM_PROMPT = """
|
|
31
|
+
|
|
32
|
+
## Long-term Memory
|
|
33
|
+
|
|
34
|
+
You have access to a long-term memory system using the {memory_path} path prefix.
|
|
35
|
+
Files stored in {memory_path} persist across sessions and conversations.
|
|
36
|
+
|
|
37
|
+
Your system prompt is loaded from {memory_path}agent.md at startup. You can update your own instructions by editing this file.
|
|
38
|
+
|
|
39
|
+
**When to CHECK/READ memories (CRITICAL - do this FIRST):**
|
|
40
|
+
- **At the start of ANY new session**: Run `ls {memory_path}` to see what you know
|
|
41
|
+
- **BEFORE answering questions**: If asked "what do you know about X?" or "how do I do Y?", check `ls {memory_path}` for relevant files FIRST
|
|
42
|
+
- **When user asks you to do something**: Check if you have guides, examples, or patterns in {memory_path} before proceeding
|
|
43
|
+
- **When user references past work or conversations**: Search {memory_path} for related content
|
|
44
|
+
- **If you're unsure**: Check your memories rather than guessing or using only general knowledge
|
|
45
|
+
|
|
46
|
+
**Memory-first response pattern:**
|
|
47
|
+
1. User asks a question → Run `ls {memory_path}` to check for relevant files
|
|
48
|
+
2. If relevant files exist → Read them with `read_file {memory_path}[filename]`
|
|
49
|
+
3. Base your answer on saved knowledge (from memories) supplemented by general knowledge
|
|
50
|
+
4. If no relevant memories exist → Use general knowledge, then consider if this is worth saving
|
|
51
|
+
|
|
52
|
+
**When to update memories:**
|
|
53
|
+
- **IMMEDIATELY when the user describes your role or how you should behave** (e.g., "you are a web researcher", "you are an expert in X")
|
|
54
|
+
- **IMMEDIATELY when the user gives feedback on your work** - Before continuing, update memories to capture what was wrong and how to do it better
|
|
55
|
+
- When the user explicitly asks you to remember something
|
|
56
|
+
- When patterns or preferences emerge (coding styles, conventions, workflows)
|
|
57
|
+
- After significant work where context would help in future sessions
|
|
58
|
+
|
|
59
|
+
**Learning from feedback:**
|
|
60
|
+
- When user says something is better/worse, capture WHY and encode it as a pattern
|
|
61
|
+
- Each correction is a chance to improve permanently - don't just fix the immediate issue, update your instructions
|
|
62
|
+
- When user says "you should remember X" or "be careful about Y", treat this as HIGH PRIORITY - update memories IMMEDIATELY
|
|
63
|
+
- Look for the underlying principle behind corrections, not just the specific mistake
|
|
64
|
+
- If it's something you "should have remembered", identify where that instruction should live permanently
|
|
65
|
+
|
|
66
|
+
**What to store where:**
|
|
67
|
+
- **{memory_path}agent.md**: Update this to modify your core instructions and behavioral patterns
|
|
68
|
+
- **Other {memory_path} files**: Use for project-specific context, reference information, or structured notes
|
|
69
|
+
- If you create additional memory files, add references to them in {memory_path}agent.md so you remember to consult them
|
|
70
|
+
|
|
71
|
+
The portion of your system prompt that comes from {memory_path}agent.md is marked with `<agent_memory>` tags so you can identify what instructions come from your persistent memory.
|
|
72
|
+
|
|
73
|
+
Example: `ls {memory_path}` to see what memories you have
|
|
74
|
+
Example: `read_file '{memory_path}deep-agents-guide.md'` to recall saved knowledge
|
|
75
|
+
Example: `edit_file('{memory_path}agent.md', ...)` to update your instructions
|
|
76
|
+
Example: `write_file('{memory_path}project_context.md', ...)` for project-specific notes, then reference it in agent.md
|
|
77
|
+
|
|
78
|
+
Remember: To interact with the longterm filesystem, you must prefix the filename with the {memory_path} path."""
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
DEFAULT_MEMORY_SNIPPET = """<agent_memory>
|
|
82
|
+
{agent_memory}
|
|
83
|
+
</agent_memory>
|
|
84
|
+
"""
|
|
85
|
+
|
|
86
|
+
class AgentMemoryMiddleware(AgentMiddleware):
|
|
87
|
+
"""Middleware for loading agent-specific long-term memory.
|
|
88
|
+
|
|
89
|
+
This middleware loads the agent's long-term memory from a file (agent.md)
|
|
90
|
+
and injects it into the system prompt. The memory is loaded once at the
|
|
91
|
+
start of the conversation and stored in state.
|
|
92
|
+
|
|
93
|
+
Args:
|
|
94
|
+
backend: Backend to use for loading the agent memory file.
|
|
95
|
+
system_prompt_template: Optional custom template for how to inject
|
|
96
|
+
the agent memory into the system prompt. Use {agent_memory} as
|
|
97
|
+
a placeholder. Defaults to a simple section header.
|
|
98
|
+
|
|
99
|
+
Example:
|
|
100
|
+
```python
|
|
101
|
+
from deepagents.middleware.agent_memory import AgentMemoryMiddleware
|
|
102
|
+
from deepagents.memory.backends import FilesystemBackend
|
|
103
|
+
from pathlib import Path
|
|
104
|
+
|
|
105
|
+
# Set up backend pointing to agent's directory
|
|
106
|
+
agent_dir = Path.home() / ".deepagents" / "my-agent"
|
|
107
|
+
backend = FilesystemBackend(root_dir=agent_dir)
|
|
108
|
+
|
|
109
|
+
# Create middleware
|
|
110
|
+
middleware = AgentMemoryMiddleware(backend=backend)
|
|
111
|
+
```
|
|
112
|
+
"""
|
|
113
|
+
|
|
114
|
+
state_schema = AgentMemoryState
|
|
115
|
+
|
|
116
|
+
def __init__(
|
|
117
|
+
self,
|
|
118
|
+
*,
|
|
119
|
+
backend: BackendProtocol,
|
|
120
|
+
memory_path: str,
|
|
121
|
+
system_prompt_template: str | None = None,
|
|
122
|
+
) -> None:
|
|
123
|
+
"""Initialize the agent memory middleware.
|
|
124
|
+
|
|
125
|
+
Args:
|
|
126
|
+
backend: Backend to use for loading the agent memory file.
|
|
127
|
+
system_prompt_template: Optional custom template for injecting
|
|
128
|
+
agent memory into system prompt.
|
|
129
|
+
"""
|
|
130
|
+
self.backend = backend
|
|
131
|
+
self.memory_path = memory_path
|
|
132
|
+
self.system_prompt_template = system_prompt_template or DEFAULT_MEMORY_SNIPPET
|
|
133
|
+
|
|
134
|
+
def before_agent(
|
|
135
|
+
self,
|
|
136
|
+
state: AgentMemoryState,
|
|
137
|
+
runtime,
|
|
138
|
+
) -> AgentMemoryState:
|
|
139
|
+
"""Load agent memory from file before agent execution.
|
|
140
|
+
|
|
141
|
+
Args:
|
|
142
|
+
state: Current agent state.
|
|
143
|
+
handler: Handler function to call after loading memory.
|
|
144
|
+
|
|
145
|
+
Returns:
|
|
146
|
+
Updated state with agent_memory populated.
|
|
147
|
+
"""
|
|
148
|
+
# Only load memory if it hasn't been loaded yet
|
|
149
|
+
if "agent_memory" not in state or state.get("agent_memory") is None:
|
|
150
|
+
file_data = self.backend.read(AGENT_MEMORY_FILE_PATH)
|
|
151
|
+
return {"agent_memory": file_data}
|
|
152
|
+
|
|
153
|
+
async def abefore_agent(
|
|
154
|
+
self,
|
|
155
|
+
state: AgentMemoryState,
|
|
156
|
+
runtime,
|
|
157
|
+
) -> AgentMemoryState:
|
|
158
|
+
"""(async) Load agent memory from file before agent execution.
|
|
159
|
+
|
|
160
|
+
Args:
|
|
161
|
+
state: Current agent state.
|
|
162
|
+
handler: Handler function to call after loading memory.
|
|
163
|
+
|
|
164
|
+
Returns:
|
|
165
|
+
Updated state with agent_memory populated.
|
|
166
|
+
"""
|
|
167
|
+
# Only load memory if it hasn't been loaded yet
|
|
168
|
+
if "agent_memory" not in state or state.get("agent_memory") is None:
|
|
169
|
+
file_data = self.backend.read(AGENT_MEMORY_FILE_PATH)
|
|
170
|
+
return {"agent_memory": file_data}
|
|
171
|
+
|
|
172
|
+
def wrap_model_call(
|
|
173
|
+
self,
|
|
174
|
+
request: ModelRequest,
|
|
175
|
+
handler: Callable[[ModelRequest], ModelResponse],
|
|
176
|
+
) -> ModelResponse:
|
|
177
|
+
"""Inject agent memory into the system prompt.
|
|
178
|
+
|
|
179
|
+
Args:
|
|
180
|
+
request: The model request being processed.
|
|
181
|
+
handler: The handler function to call with the modified request.
|
|
182
|
+
|
|
183
|
+
Returns:
|
|
184
|
+
The model response from the handler.
|
|
185
|
+
"""
|
|
186
|
+
# Get agent memory from state
|
|
187
|
+
agent_memory = request.state.get("agent_memory", "")
|
|
188
|
+
|
|
189
|
+
memory_section = self.system_prompt_template.format(agent_memory=agent_memory)
|
|
190
|
+
if request.system_prompt:
|
|
191
|
+
request.system_prompt = memory_section + "\n\n" + request.system_prompt
|
|
192
|
+
else:
|
|
193
|
+
request.system_prompt = memory_section
|
|
194
|
+
request.system_prompt = request.system_prompt + "\n\n" + LONGTERM_MEMORY_SYSTEM_PROMPT.format(memory_path=self.memory_path)
|
|
195
|
+
|
|
196
|
+
return handler(request)
|
|
197
|
+
|
|
198
|
+
async def awrap_model_call(
|
|
199
|
+
self,
|
|
200
|
+
request: ModelRequest,
|
|
201
|
+
handler: Callable[[ModelRequest], Awaitable[ModelResponse]],
|
|
202
|
+
) -> ModelResponse:
|
|
203
|
+
"""(async) Inject agent memory into the system prompt.
|
|
204
|
+
|
|
205
|
+
Args:
|
|
206
|
+
request: The model request being processed.
|
|
207
|
+
handler: The handler function to call with the modified request.
|
|
208
|
+
|
|
209
|
+
Returns:
|
|
210
|
+
The model response from the handler.
|
|
211
|
+
"""
|
|
212
|
+
# Get agent memory from state
|
|
213
|
+
agent_memory = request.state.get("agent_memory", "")
|
|
214
|
+
|
|
215
|
+
memory_section = self.system_prompt_template.format(agent_memory=agent_memory)
|
|
216
|
+
if request.system_prompt:
|
|
217
|
+
request.system_prompt = memory_section + "\n\n" + request.system_prompt
|
|
218
|
+
else:
|
|
219
|
+
request.system_prompt = memory_section
|
|
220
|
+
request.system_prompt = request.system_prompt + "\n\n" + LONGTERM_MEMORY_SYSTEM_PROMPT.format(memory_path=self.memory_path)
|
|
221
|
+
|
|
222
|
+
return await handler(request)
|
|
@@ -35,7 +35,7 @@ EMPTY_CONTENT_WARNING = "System reminder: File exists but has empty contents"
|
|
|
35
35
|
MAX_LINE_LENGTH = 2000
|
|
36
36
|
LINE_NUMBER_WIDTH = 6
|
|
37
37
|
DEFAULT_READ_OFFSET = 0
|
|
38
|
-
DEFAULT_READ_LIMIT =
|
|
38
|
+
DEFAULT_READ_LIMIT = 500
|
|
39
39
|
BACKEND_TYPES = (
|
|
40
40
|
BackendProtocol
|
|
41
41
|
| BackendFactory
|
|
@@ -155,8 +155,12 @@ Assume this tool is able to read all files on the machine. If the User provides
|
|
|
155
155
|
|
|
156
156
|
Usage:
|
|
157
157
|
- The file_path parameter must be an absolute path, not a relative path
|
|
158
|
-
- By default, it reads up to
|
|
159
|
-
-
|
|
158
|
+
- By default, it reads up to 500 lines starting from the beginning of the file
|
|
159
|
+
- **IMPORTANT for large files and codebase exploration**: Use pagination with offset and limit parameters to avoid context overflow
|
|
160
|
+
- First scan: read_file(path, limit=100) to see file structure
|
|
161
|
+
- Read more sections: read_file(path, offset=100, limit=200) for next 200 lines
|
|
162
|
+
- Only omit limit (read full file) when necessary for editing
|
|
163
|
+
- Specify offset and limit: read_file(path, offset=0, limit=100) reads first 100 lines
|
|
160
164
|
- Any lines longer than 2000 characters will be truncated
|
|
161
165
|
- Results are returned using cat -n format, with line numbers starting at 1
|
|
162
166
|
- You have the capability to call multiple tools in a single response. It is always better to speculatively read multiple files as a batch that are potentially useful.
|
|
@@ -0,0 +1,85 @@
|
|
|
1
|
+
"""Shell tool middleware that survives HITL pauses."""
|
|
2
|
+
|
|
3
|
+
from __future__ import annotations
|
|
4
|
+
|
|
5
|
+
from typing import Any, Awaitable, Callable, cast
|
|
6
|
+
|
|
7
|
+
from langchain.agents.middleware.shell_tool import (
|
|
8
|
+
ShellToolMiddleware,
|
|
9
|
+
_PersistentShellTool,
|
|
10
|
+
_SessionResources,
|
|
11
|
+
ShellToolState,
|
|
12
|
+
)
|
|
13
|
+
from langchain.agents.middleware.types import AgentState
|
|
14
|
+
from langchain_core.messages import ToolMessage
|
|
15
|
+
from langchain.tools.tool_node import ToolCallRequest
|
|
16
|
+
from langgraph.types import Command
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class ResumableShellToolMiddleware(ShellToolMiddleware):
|
|
20
|
+
"""Shell middleware that recreates session resources after human interrupts.
|
|
21
|
+
|
|
22
|
+
``ShellToolMiddleware`` stores its session handle in middleware state using an
|
|
23
|
+
``UntrackedValue``. When a run pauses for human approval, that attribute is not
|
|
24
|
+
checkpointed. Upon resuming, LangGraph restores the state without the shell
|
|
25
|
+
resources, so the next tool execution fails with
|
|
26
|
+
``Shell session resources are unavailable``.
|
|
27
|
+
|
|
28
|
+
This subclass lazily recreates the shell session the first time a resumed run
|
|
29
|
+
touches the shell tool again and only performs shutdown when a session is
|
|
30
|
+
actually active. This keeps behaviour identical for uninterrupted runs while
|
|
31
|
+
allowing HITL pauses to succeed.
|
|
32
|
+
"""
|
|
33
|
+
|
|
34
|
+
def wrap_tool_call(
|
|
35
|
+
self,
|
|
36
|
+
request: ToolCallRequest,
|
|
37
|
+
handler: Callable[[ToolCallRequest], ToolMessage | Command],
|
|
38
|
+
) -> ToolMessage | Command:
|
|
39
|
+
if isinstance(request.tool, _PersistentShellTool):
|
|
40
|
+
resources = self._get_or_create_resources(request.state)
|
|
41
|
+
return self._run_shell_tool(
|
|
42
|
+
resources,
|
|
43
|
+
request.tool_call["args"],
|
|
44
|
+
tool_call_id=request.tool_call.get("id"),
|
|
45
|
+
)
|
|
46
|
+
return super().wrap_tool_call(request, handler)
|
|
47
|
+
|
|
48
|
+
async def awrap_tool_call(
|
|
49
|
+
self,
|
|
50
|
+
request: ToolCallRequest,
|
|
51
|
+
handler: Callable[[ToolCallRequest], Awaitable[ToolMessage | Command]],
|
|
52
|
+
) -> ToolMessage | Command:
|
|
53
|
+
if isinstance(request.tool, _PersistentShellTool):
|
|
54
|
+
resources = self._get_or_create_resources(request.state)
|
|
55
|
+
return self._run_shell_tool(
|
|
56
|
+
resources,
|
|
57
|
+
request.tool_call["args"],
|
|
58
|
+
tool_call_id=request.tool_call.get("id"),
|
|
59
|
+
)
|
|
60
|
+
return await super().awrap_tool_call(request, handler)
|
|
61
|
+
|
|
62
|
+
def after_agent(self, state: ShellToolState, runtime) -> None: # type: ignore[override]
|
|
63
|
+
if self._has_resources(state):
|
|
64
|
+
super().after_agent(state, runtime)
|
|
65
|
+
|
|
66
|
+
async def aafter_agent(self, state: ShellToolState, runtime) -> None: # type: ignore[override]
|
|
67
|
+
if self._has_resources(state):
|
|
68
|
+
await super().aafter_agent(state, runtime)
|
|
69
|
+
|
|
70
|
+
@staticmethod
|
|
71
|
+
def _has_resources(state: AgentState) -> bool:
|
|
72
|
+
resources = state.get("shell_session_resources")
|
|
73
|
+
return isinstance(resources, _SessionResources)
|
|
74
|
+
|
|
75
|
+
def _get_or_create_resources(self, state: AgentState) -> _SessionResources:
|
|
76
|
+
resources = state.get("shell_session_resources")
|
|
77
|
+
if isinstance(resources, _SessionResources):
|
|
78
|
+
return resources
|
|
79
|
+
|
|
80
|
+
new_resources = self._create_resources()
|
|
81
|
+
cast(dict[str, Any], state)["shell_session_resources"] = new_resources
|
|
82
|
+
return new_resources
|
|
83
|
+
|
|
84
|
+
|
|
85
|
+
__all__ = ["ResumableShellToolMiddleware"]
|
|
@@ -16,7 +16,9 @@ src/deepagents/backends/state.py
|
|
|
16
16
|
src/deepagents/backends/store.py
|
|
17
17
|
src/deepagents/backends/utils.py
|
|
18
18
|
src/deepagents/middleware/__init__.py
|
|
19
|
+
src/deepagents/middleware/agent_memory.py
|
|
19
20
|
src/deepagents/middleware/filesystem.py
|
|
20
21
|
src/deepagents/middleware/patch_tool_calls.py
|
|
22
|
+
src/deepagents/middleware/resumable_shell.py
|
|
21
23
|
src/deepagents/middleware/subagents.py
|
|
22
24
|
tests/test_middleware.py
|
|
@@ -1,6 +0,0 @@
|
|
|
1
|
-
"""Middleware for the DeepAgent."""
|
|
2
|
-
|
|
3
|
-
from deepagents.middleware.filesystem import FilesystemMiddleware
|
|
4
|
-
from deepagents.middleware.subagents import CompiledSubAgent, SubAgent, SubAgentMiddleware
|
|
5
|
-
|
|
6
|
-
__all__ = ["CompiledSubAgent", "FilesystemMiddleware", "SubAgent", "SubAgentMiddleware"]
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|