deepagents 0.0.6rc2__tar.gz → 0.0.7__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {deepagents-0.0.6rc2 → deepagents-0.0.7}/PKG-INFO +30 -57
- {deepagents-0.0.6rc2 → deepagents-0.0.7}/README.md +26 -54
- {deepagents-0.0.6rc2 → deepagents-0.0.7}/deepagents.egg-info/PKG-INFO +30 -57
- {deepagents-0.0.6rc2 → deepagents-0.0.7}/deepagents.egg-info/SOURCES.txt +7 -4
- deepagents-0.0.7/deepagents.egg-info/requires.txt +4 -0
- {deepagents-0.0.6rc2 → deepagents-0.0.7}/deepagents.egg-info/top_level.txt +1 -0
- {deepagents-0.0.6rc2 → deepagents-0.0.7}/pyproject.toml +6 -4
- deepagents-0.0.7/src/deepagents/__init__.py +5 -0
- deepagents-0.0.7/src/deepagents/graph.py +146 -0
- deepagents-0.0.7/src/deepagents/middleware.py +198 -0
- {deepagents-0.0.6rc2 → deepagents-0.0.7}/src/deepagents/prompts.py +14 -13
- {deepagents-0.0.6rc2 → deepagents-0.0.7}/src/deepagents/state.py +9 -1
- {deepagents-0.0.6rc2 → deepagents-0.0.7}/src/deepagents/tools.py +7 -8
- deepagents-0.0.7/src/deepagents/types.py +21 -0
- deepagents-0.0.7/tests/test_deepagents.py +136 -0
- deepagents-0.0.7/tests/test_hitl.py +51 -0
- deepagents-0.0.7/tests/test_middleware.py +57 -0
- deepagents-0.0.7/tests/utils.py +81 -0
- deepagents-0.0.6rc2/deepagents.egg-info/requires.txt +0 -3
- deepagents-0.0.6rc2/src/deepagents/__init__.py +0 -9
- deepagents-0.0.6rc2/src/deepagents/builder.py +0 -84
- deepagents-0.0.6rc2/src/deepagents/graph.py +0 -219
- deepagents-0.0.6rc2/src/deepagents/interrupt.py +0 -122
- deepagents-0.0.6rc2/src/deepagents/sub_agent.py +0 -169
- {deepagents-0.0.6rc2 → deepagents-0.0.7}/LICENSE +0 -0
- {deepagents-0.0.6rc2 → deepagents-0.0.7}/deepagents.egg-info/dependency_links.txt +0 -0
- {deepagents-0.0.6rc2 → deepagents-0.0.7}/setup.cfg +0 -0
- {deepagents-0.0.6rc2 → deepagents-0.0.7}/src/deepagents/model.py +0 -0
|
@@ -1,14 +1,15 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: deepagents
|
|
3
|
-
Version: 0.0.
|
|
3
|
+
Version: 0.0.7
|
|
4
4
|
Summary: General purpose 'deep agent' with sub-agent spawning, todo list capabilities, and mock file system. Built on LangGraph.
|
|
5
5
|
License: MIT
|
|
6
6
|
Requires-Python: <4.0,>=3.11
|
|
7
7
|
Description-Content-Type: text/markdown
|
|
8
8
|
License-File: LICENSE
|
|
9
|
-
Requires-Dist: langgraph>=0.
|
|
9
|
+
Requires-Dist: langgraph>=1.0.0a3
|
|
10
10
|
Requires-Dist: langchain-anthropic>=0.1.23
|
|
11
|
-
Requires-Dist: langchain>=0.
|
|
11
|
+
Requires-Dist: langchain>=1.0.0a8
|
|
12
|
+
Requires-Dist: langgraph-prebuilt>=0.7.0a2
|
|
12
13
|
Dynamic: license-file
|
|
13
14
|
|
|
14
15
|
# 🧠🤖Deep Agents
|
|
@@ -37,7 +38,6 @@ pip install deepagents
|
|
|
37
38
|
```python
|
|
38
39
|
import os
|
|
39
40
|
from typing import Literal
|
|
40
|
-
|
|
41
41
|
from tavily import TavilyClient
|
|
42
42
|
from deepagents import create_deep_agent
|
|
43
43
|
|
|
@@ -86,7 +86,7 @@ in the same way you would any LangGraph agent.
|
|
|
86
86
|
|
|
87
87
|
## Creating a custom deep agent
|
|
88
88
|
|
|
89
|
-
There are
|
|
89
|
+
There are several parameters you can pass to `create_deep_agent` to create your own custom deep agent.
|
|
90
90
|
|
|
91
91
|
### `tools` (Required)
|
|
92
92
|
|
|
@@ -98,7 +98,7 @@ The agent (and any subagents) will have access to these tools.
|
|
|
98
98
|
|
|
99
99
|
The second argument to `create_deep_agent` is `instructions`.
|
|
100
100
|
This will serve as part of the prompt of the deep agent.
|
|
101
|
-
Note that
|
|
101
|
+
Note that our deep agent middleware appends further instructions to the deep agent regarding to-do list, filesystem, and subagent usage, so this is not the *entire* prompt the agent will see.
|
|
102
102
|
|
|
103
103
|
### `subagents` (Optional)
|
|
104
104
|
|
|
@@ -114,7 +114,8 @@ class SubAgent(TypedDict):
|
|
|
114
114
|
description: str
|
|
115
115
|
prompt: str
|
|
116
116
|
tools: NotRequired[list[str]]
|
|
117
|
-
|
|
117
|
+
model: NotRequired[Union[LanguageModelLike, dict[str, Any]]]
|
|
118
|
+
middleware: NotRequired[list[AgentMiddleware]]
|
|
118
119
|
|
|
119
120
|
class CustomSubAgent(TypedDict):
|
|
120
121
|
name: str
|
|
@@ -127,7 +128,8 @@ class CustomSubAgent(TypedDict):
|
|
|
127
128
|
- **description**: This is the description of the subagent that is shown to the main agent
|
|
128
129
|
- **prompt**: This is the prompt used for the subagent
|
|
129
130
|
- **tools**: This is the list of tools that the subagent has access to. By default will have access to all tools passed in, as well as all built-in tools.
|
|
130
|
-
- **
|
|
131
|
+
- **model**: Optional model instance OR dictionary for per-subagent model configuration (inherits the main model when omitted).
|
|
132
|
+
- **middleware** Additional middleware to attach to the subagent. See [here](https://docs.langchain.com/oss/python/langchain/middleware) for an introduction into middleware and how it works with create_agent.
|
|
131
133
|
|
|
132
134
|
**CustomSubAgent fields:**
|
|
133
135
|
- **name**: This is the name of the subagent, and how the main agent will call the subagent
|
|
@@ -141,6 +143,7 @@ research_subagent = {
|
|
|
141
143
|
"name": "research-agent",
|
|
142
144
|
"description": "Used to research more in depth questions",
|
|
143
145
|
"prompt": sub_research_prompt,
|
|
146
|
+
"tools": [internet_search]
|
|
144
147
|
}
|
|
145
148
|
subagents = [research_subagent]
|
|
146
149
|
agent = create_deep_agent(
|
|
@@ -183,18 +186,6 @@ agent = create_deep_agent(
|
|
|
183
186
|
|
|
184
187
|
By default, `deepagents` uses `"claude-sonnet-4-20250514"`. You can customize this by passing any [LangChain model object](https://python.langchain.com/docs/integrations/chat/).
|
|
185
188
|
|
|
186
|
-
### `builtin_tools` (Optional)
|
|
187
|
-
|
|
188
|
-
By default, a deep agent will have access to a number of [built-in tools](#builtintools--optional-).
|
|
189
|
-
You can change this by specifying the tools (by name) that the agent should have access to with this parameter.
|
|
190
|
-
|
|
191
|
-
Example:
|
|
192
|
-
```python
|
|
193
|
-
# Only give agent access to todo tool, none of the filesystem tools
|
|
194
|
-
builtin_tools = ["write_todos"]
|
|
195
|
-
agent = create_deep_agent(..., builtin_tools=builtin_tools, ...)
|
|
196
|
-
```
|
|
197
|
-
|
|
198
189
|
#### Example: Using a Custom Model
|
|
199
190
|
|
|
200
191
|
Here's how to use a custom model (like OpenAI's `gpt-oss` model via Ollama):
|
|
@@ -243,6 +234,15 @@ agent = create_deep_agent(
|
|
|
243
234
|
)
|
|
244
235
|
```
|
|
245
236
|
|
|
237
|
+
|
|
238
|
+
### `middleware` (Optional)
|
|
239
|
+
Both the main agent and sub-agents can take additional custom AgentMiddleware. Middleware is the best supported approach for extending the state_schema, adding additional tools, and adding pre / post model hooks. See this [doc](https://docs.langchain.com/oss/python/langchain/middleware) to learn more about Middleware and how you can use it!
|
|
240
|
+
|
|
241
|
+
### `tool_configs` (Optional)
|
|
242
|
+
Tool configs are used to specify how to handle Human In The Loop interactions on certain tools that require additional human oversight.
|
|
243
|
+
|
|
244
|
+
These tool_configs are passed to our prebuilt [HITL middleware](https://docs.langchain.com/oss/python/langchain/middleware#human-in-the-loop) so that the agent pauses execution and waits for feedback from the user before executing configured tools.
|
|
245
|
+
|
|
246
246
|
## Deep Agent Details
|
|
247
247
|
|
|
248
248
|
The below components are built into `deepagents` and helps make it work for deep tasks off-the-shelf.
|
|
@@ -304,25 +304,20 @@ By default, deep agents come with five built-in tools:
|
|
|
304
304
|
- `ls`: Tool for listing files in the virtual filesystem
|
|
305
305
|
- `edit_file`: Tool for editing a file in the virtual filesystem
|
|
306
306
|
|
|
307
|
-
|
|
307
|
+
If you want to omit some deepagents functionality, use specific middleware components directly!
|
|
308
308
|
|
|
309
309
|
### Human-in-the-Loop
|
|
310
310
|
|
|
311
|
-
`deepagents` supports human-in-the-loop approval for tool execution. You can configure specific tools to require human approval before execution using the `
|
|
311
|
+
`deepagents` supports human-in-the-loop approval for tool execution. You can configure specific tools to require human approval before execution using the `tool_configs` parameter, which maps tool names to a `HumanInTheLoopConfig`.
|
|
312
312
|
|
|
313
|
-
`
|
|
313
|
+
`HumanInTheLoopConfig` is how you specify what type of human in the loop patterns are supported.
|
|
314
314
|
It is a dictionary with four specific keys:
|
|
315
315
|
|
|
316
|
-
- `
|
|
317
|
-
- `allow_respond`: Whether the
|
|
318
|
-
- `allow_edit`: Whether the
|
|
319
|
-
- `allow_accept`: Whether the user can accept the tool call
|
|
320
|
-
|
|
321
|
-
Currently, `deepagents` does NOT support `allow_ignore`
|
|
316
|
+
- `allow_accept`: Whether the human can approve the current action without changes
|
|
317
|
+
- `allow_respond`: Whether the human can reject the current action with feedback
|
|
318
|
+
- `allow_edit`: Whether the human can approve the current action with edited content
|
|
322
319
|
|
|
323
|
-
|
|
324
|
-
|
|
325
|
-
Instead of specifying a `HumanInterruptConfig` for a tool, you can also just set `True`. This will set `allow_ignore`, `allow_respond`, `allow_edit`, and `allow_accept` to be `True`.
|
|
320
|
+
Instead of specifying a `HumanInTheLoopConfig` for a tool, you can also just set `True`. This will set `allow_ignore`, `allow_respond`, `allow_edit`, and `allow_accept` to be `True`.
|
|
326
321
|
|
|
327
322
|
In order to use human in the loop, you need to have a checkpointer attached.
|
|
328
323
|
Note: if you are using LangGraph Platform, this is automatically attached.
|
|
@@ -337,10 +332,9 @@ from langgraph.checkpoint.memory import InMemorySaver
|
|
|
337
332
|
agent = create_deep_agent(
|
|
338
333
|
tools=[your_tools],
|
|
339
334
|
instructions="Your instructions here",
|
|
340
|
-
|
|
335
|
+
tool_configs={
|
|
341
336
|
# You can specify a dictionary for fine grained control over what interrupt options exist
|
|
342
337
|
"tool_1": {
|
|
343
|
-
"allow_ignore": False,
|
|
344
338
|
"allow_respond": True,
|
|
345
339
|
"allow_edit": True,
|
|
346
340
|
"allow_accept":True,
|
|
@@ -413,12 +407,12 @@ for s in agent.stream(Command(resume=[{"type": "response", "args": "..."}]), con
|
|
|
413
407
|
```
|
|
414
408
|
## Async
|
|
415
409
|
|
|
416
|
-
If you are passing async tools to your agent, you will want to `from deepagents import async_create_deep_agent`
|
|
410
|
+
If you are passing async tools to your agent, you will want to use `from deepagents import async_create_deep_agent`
|
|
417
411
|
## MCP
|
|
418
412
|
|
|
419
413
|
The `deepagents` library can be ran with MCP tools. This can be achieved by using the [Langchain MCP Adapter library](https://github.com/langchain-ai/langchain-mcp-adapters).
|
|
420
414
|
|
|
421
|
-
**NOTE:** will want to use `from deepagents import async_create_deep_agent` to use the async version of `deepagents`, since MCP tools are async
|
|
415
|
+
**NOTE:** You will want to use `from deepagents import async_create_deep_agent` to use the async version of `deepagents`, since MCP tools are async
|
|
422
416
|
|
|
423
417
|
(To run the example below, will need to `pip install langchain-mcp-adapters`)
|
|
424
418
|
|
|
@@ -446,27 +440,6 @@ async def main():
|
|
|
446
440
|
asyncio.run(main())
|
|
447
441
|
```
|
|
448
442
|
|
|
449
|
-
## Configurable Agent
|
|
450
|
-
|
|
451
|
-
Configurable agents allow you to control the agent via a config passed in.
|
|
452
|
-
|
|
453
|
-
```python
|
|
454
|
-
from deepagents import create_configurable_agent
|
|
455
|
-
|
|
456
|
-
agent_config = {"instructions": "foo", "subagents": []}
|
|
457
|
-
|
|
458
|
-
build_agent = create_configurable_agent(
|
|
459
|
-
agent_config['instructions'],
|
|
460
|
-
agent_config['subagents'],
|
|
461
|
-
[],
|
|
462
|
-
agent_config={"recursion_limit": 1000}
|
|
463
|
-
)
|
|
464
|
-
```
|
|
465
|
-
You can now use `build_agent` in your `langgraph.json` and deploy it with `langgraph dev`
|
|
466
|
-
|
|
467
|
-
For async tools, you can use `from deepagents import async_create_configurable_agent`
|
|
468
|
-
|
|
469
|
-
|
|
470
443
|
## Roadmap
|
|
471
444
|
- [ ] Allow users to customize full system prompt
|
|
472
445
|
- [ ] Code cleanliness (type hinting, docstrings, formating)
|
|
@@ -24,7 +24,6 @@ pip install deepagents
|
|
|
24
24
|
```python
|
|
25
25
|
import os
|
|
26
26
|
from typing import Literal
|
|
27
|
-
|
|
28
27
|
from tavily import TavilyClient
|
|
29
28
|
from deepagents import create_deep_agent
|
|
30
29
|
|
|
@@ -73,7 +72,7 @@ in the same way you would any LangGraph agent.
|
|
|
73
72
|
|
|
74
73
|
## Creating a custom deep agent
|
|
75
74
|
|
|
76
|
-
There are
|
|
75
|
+
There are several parameters you can pass to `create_deep_agent` to create your own custom deep agent.
|
|
77
76
|
|
|
78
77
|
### `tools` (Required)
|
|
79
78
|
|
|
@@ -85,7 +84,7 @@ The agent (and any subagents) will have access to these tools.
|
|
|
85
84
|
|
|
86
85
|
The second argument to `create_deep_agent` is `instructions`.
|
|
87
86
|
This will serve as part of the prompt of the deep agent.
|
|
88
|
-
Note that
|
|
87
|
+
Note that our deep agent middleware appends further instructions to the deep agent regarding to-do list, filesystem, and subagent usage, so this is not the *entire* prompt the agent will see.
|
|
89
88
|
|
|
90
89
|
### `subagents` (Optional)
|
|
91
90
|
|
|
@@ -101,7 +100,8 @@ class SubAgent(TypedDict):
|
|
|
101
100
|
description: str
|
|
102
101
|
prompt: str
|
|
103
102
|
tools: NotRequired[list[str]]
|
|
104
|
-
|
|
103
|
+
model: NotRequired[Union[LanguageModelLike, dict[str, Any]]]
|
|
104
|
+
middleware: NotRequired[list[AgentMiddleware]]
|
|
105
105
|
|
|
106
106
|
class CustomSubAgent(TypedDict):
|
|
107
107
|
name: str
|
|
@@ -114,7 +114,8 @@ class CustomSubAgent(TypedDict):
|
|
|
114
114
|
- **description**: This is the description of the subagent that is shown to the main agent
|
|
115
115
|
- **prompt**: This is the prompt used for the subagent
|
|
116
116
|
- **tools**: This is the list of tools that the subagent has access to. By default will have access to all tools passed in, as well as all built-in tools.
|
|
117
|
-
- **
|
|
117
|
+
- **model**: Optional model instance OR dictionary for per-subagent model configuration (inherits the main model when omitted).
|
|
118
|
+
- **middleware** Additional middleware to attach to the subagent. See [here](https://docs.langchain.com/oss/python/langchain/middleware) for an introduction into middleware and how it works with create_agent.
|
|
118
119
|
|
|
119
120
|
**CustomSubAgent fields:**
|
|
120
121
|
- **name**: This is the name of the subagent, and how the main agent will call the subagent
|
|
@@ -128,6 +129,7 @@ research_subagent = {
|
|
|
128
129
|
"name": "research-agent",
|
|
129
130
|
"description": "Used to research more in depth questions",
|
|
130
131
|
"prompt": sub_research_prompt,
|
|
132
|
+
"tools": [internet_search]
|
|
131
133
|
}
|
|
132
134
|
subagents = [research_subagent]
|
|
133
135
|
agent = create_deep_agent(
|
|
@@ -170,18 +172,6 @@ agent = create_deep_agent(
|
|
|
170
172
|
|
|
171
173
|
By default, `deepagents` uses `"claude-sonnet-4-20250514"`. You can customize this by passing any [LangChain model object](https://python.langchain.com/docs/integrations/chat/).
|
|
172
174
|
|
|
173
|
-
### `builtin_tools` (Optional)
|
|
174
|
-
|
|
175
|
-
By default, a deep agent will have access to a number of [built-in tools](#builtintools--optional-).
|
|
176
|
-
You can change this by specifying the tools (by name) that the agent should have access to with this parameter.
|
|
177
|
-
|
|
178
|
-
Example:
|
|
179
|
-
```python
|
|
180
|
-
# Only give agent access to todo tool, none of the filesystem tools
|
|
181
|
-
builtin_tools = ["write_todos"]
|
|
182
|
-
agent = create_deep_agent(..., builtin_tools=builtin_tools, ...)
|
|
183
|
-
```
|
|
184
|
-
|
|
185
175
|
#### Example: Using a Custom Model
|
|
186
176
|
|
|
187
177
|
Here's how to use a custom model (like OpenAI's `gpt-oss` model via Ollama):
|
|
@@ -230,6 +220,15 @@ agent = create_deep_agent(
|
|
|
230
220
|
)
|
|
231
221
|
```
|
|
232
222
|
|
|
223
|
+
|
|
224
|
+
### `middleware` (Optional)
|
|
225
|
+
Both the main agent and sub-agents can take additional custom AgentMiddleware. Middleware is the best supported approach for extending the state_schema, adding additional tools, and adding pre / post model hooks. See this [doc](https://docs.langchain.com/oss/python/langchain/middleware) to learn more about Middleware and how you can use it!
|
|
226
|
+
|
|
227
|
+
### `tool_configs` (Optional)
|
|
228
|
+
Tool configs are used to specify how to handle Human In The Loop interactions on certain tools that require additional human oversight.
|
|
229
|
+
|
|
230
|
+
These tool_configs are passed to our prebuilt [HITL middleware](https://docs.langchain.com/oss/python/langchain/middleware#human-in-the-loop) so that the agent pauses execution and waits for feedback from the user before executing configured tools.
|
|
231
|
+
|
|
233
232
|
## Deep Agent Details
|
|
234
233
|
|
|
235
234
|
The below components are built into `deepagents` and helps make it work for deep tasks off-the-shelf.
|
|
@@ -291,25 +290,20 @@ By default, deep agents come with five built-in tools:
|
|
|
291
290
|
- `ls`: Tool for listing files in the virtual filesystem
|
|
292
291
|
- `edit_file`: Tool for editing a file in the virtual filesystem
|
|
293
292
|
|
|
294
|
-
|
|
293
|
+
If you want to omit some deepagents functionality, use specific middleware components directly!
|
|
295
294
|
|
|
296
295
|
### Human-in-the-Loop
|
|
297
296
|
|
|
298
|
-
`deepagents` supports human-in-the-loop approval for tool execution. You can configure specific tools to require human approval before execution using the `
|
|
297
|
+
`deepagents` supports human-in-the-loop approval for tool execution. You can configure specific tools to require human approval before execution using the `tool_configs` parameter, which maps tool names to a `HumanInTheLoopConfig`.
|
|
299
298
|
|
|
300
|
-
`
|
|
299
|
+
`HumanInTheLoopConfig` is how you specify what type of human in the loop patterns are supported.
|
|
301
300
|
It is a dictionary with four specific keys:
|
|
302
301
|
|
|
303
|
-
- `
|
|
304
|
-
- `allow_respond`: Whether the
|
|
305
|
-
- `allow_edit`: Whether the
|
|
306
|
-
- `allow_accept`: Whether the user can accept the tool call
|
|
307
|
-
|
|
308
|
-
Currently, `deepagents` does NOT support `allow_ignore`
|
|
302
|
+
- `allow_accept`: Whether the human can approve the current action without changes
|
|
303
|
+
- `allow_respond`: Whether the human can reject the current action with feedback
|
|
304
|
+
- `allow_edit`: Whether the human can approve the current action with edited content
|
|
309
305
|
|
|
310
|
-
|
|
311
|
-
|
|
312
|
-
Instead of specifying a `HumanInterruptConfig` for a tool, you can also just set `True`. This will set `allow_ignore`, `allow_respond`, `allow_edit`, and `allow_accept` to be `True`.
|
|
306
|
+
Instead of specifying a `HumanInTheLoopConfig` for a tool, you can also just set `True`. This will set `allow_ignore`, `allow_respond`, `allow_edit`, and `allow_accept` to be `True`.
|
|
313
307
|
|
|
314
308
|
In order to use human in the loop, you need to have a checkpointer attached.
|
|
315
309
|
Note: if you are using LangGraph Platform, this is automatically attached.
|
|
@@ -324,10 +318,9 @@ from langgraph.checkpoint.memory import InMemorySaver
|
|
|
324
318
|
agent = create_deep_agent(
|
|
325
319
|
tools=[your_tools],
|
|
326
320
|
instructions="Your instructions here",
|
|
327
|
-
|
|
321
|
+
tool_configs={
|
|
328
322
|
# You can specify a dictionary for fine grained control over what interrupt options exist
|
|
329
323
|
"tool_1": {
|
|
330
|
-
"allow_ignore": False,
|
|
331
324
|
"allow_respond": True,
|
|
332
325
|
"allow_edit": True,
|
|
333
326
|
"allow_accept":True,
|
|
@@ -400,12 +393,12 @@ for s in agent.stream(Command(resume=[{"type": "response", "args": "..."}]), con
|
|
|
400
393
|
```
|
|
401
394
|
## Async
|
|
402
395
|
|
|
403
|
-
If you are passing async tools to your agent, you will want to `from deepagents import async_create_deep_agent`
|
|
396
|
+
If you are passing async tools to your agent, you will want to use `from deepagents import async_create_deep_agent`
|
|
404
397
|
## MCP
|
|
405
398
|
|
|
406
399
|
The `deepagents` library can be ran with MCP tools. This can be achieved by using the [Langchain MCP Adapter library](https://github.com/langchain-ai/langchain-mcp-adapters).
|
|
407
400
|
|
|
408
|
-
**NOTE:** will want to use `from deepagents import async_create_deep_agent` to use the async version of `deepagents`, since MCP tools are async
|
|
401
|
+
**NOTE:** You will want to use `from deepagents import async_create_deep_agent` to use the async version of `deepagents`, since MCP tools are async
|
|
409
402
|
|
|
410
403
|
(To run the example below, will need to `pip install langchain-mcp-adapters`)
|
|
411
404
|
|
|
@@ -433,27 +426,6 @@ async def main():
|
|
|
433
426
|
asyncio.run(main())
|
|
434
427
|
```
|
|
435
428
|
|
|
436
|
-
## Configurable Agent
|
|
437
|
-
|
|
438
|
-
Configurable agents allow you to control the agent via a config passed in.
|
|
439
|
-
|
|
440
|
-
```python
|
|
441
|
-
from deepagents import create_configurable_agent
|
|
442
|
-
|
|
443
|
-
agent_config = {"instructions": "foo", "subagents": []}
|
|
444
|
-
|
|
445
|
-
build_agent = create_configurable_agent(
|
|
446
|
-
agent_config['instructions'],
|
|
447
|
-
agent_config['subagents'],
|
|
448
|
-
[],
|
|
449
|
-
agent_config={"recursion_limit": 1000}
|
|
450
|
-
)
|
|
451
|
-
```
|
|
452
|
-
You can now use `build_agent` in your `langgraph.json` and deploy it with `langgraph dev`
|
|
453
|
-
|
|
454
|
-
For async tools, you can use `from deepagents import async_create_configurable_agent`
|
|
455
|
-
|
|
456
|
-
|
|
457
429
|
## Roadmap
|
|
458
430
|
- [ ] Allow users to customize full system prompt
|
|
459
431
|
- [ ] Code cleanliness (type hinting, docstrings, formating)
|
|
@@ -1,14 +1,15 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: deepagents
|
|
3
|
-
Version: 0.0.
|
|
3
|
+
Version: 0.0.7
|
|
4
4
|
Summary: General purpose 'deep agent' with sub-agent spawning, todo list capabilities, and mock file system. Built on LangGraph.
|
|
5
5
|
License: MIT
|
|
6
6
|
Requires-Python: <4.0,>=3.11
|
|
7
7
|
Description-Content-Type: text/markdown
|
|
8
8
|
License-File: LICENSE
|
|
9
|
-
Requires-Dist: langgraph>=0.
|
|
9
|
+
Requires-Dist: langgraph>=1.0.0a3
|
|
10
10
|
Requires-Dist: langchain-anthropic>=0.1.23
|
|
11
|
-
Requires-Dist: langchain>=0.
|
|
11
|
+
Requires-Dist: langchain>=1.0.0a8
|
|
12
|
+
Requires-Dist: langgraph-prebuilt>=0.7.0a2
|
|
12
13
|
Dynamic: license-file
|
|
13
14
|
|
|
14
15
|
# 🧠🤖Deep Agents
|
|
@@ -37,7 +38,6 @@ pip install deepagents
|
|
|
37
38
|
```python
|
|
38
39
|
import os
|
|
39
40
|
from typing import Literal
|
|
40
|
-
|
|
41
41
|
from tavily import TavilyClient
|
|
42
42
|
from deepagents import create_deep_agent
|
|
43
43
|
|
|
@@ -86,7 +86,7 @@ in the same way you would any LangGraph agent.
|
|
|
86
86
|
|
|
87
87
|
## Creating a custom deep agent
|
|
88
88
|
|
|
89
|
-
There are
|
|
89
|
+
There are several parameters you can pass to `create_deep_agent` to create your own custom deep agent.
|
|
90
90
|
|
|
91
91
|
### `tools` (Required)
|
|
92
92
|
|
|
@@ -98,7 +98,7 @@ The agent (and any subagents) will have access to these tools.
|
|
|
98
98
|
|
|
99
99
|
The second argument to `create_deep_agent` is `instructions`.
|
|
100
100
|
This will serve as part of the prompt of the deep agent.
|
|
101
|
-
Note that
|
|
101
|
+
Note that our deep agent middleware appends further instructions to the deep agent regarding to-do list, filesystem, and subagent usage, so this is not the *entire* prompt the agent will see.
|
|
102
102
|
|
|
103
103
|
### `subagents` (Optional)
|
|
104
104
|
|
|
@@ -114,7 +114,8 @@ class SubAgent(TypedDict):
|
|
|
114
114
|
description: str
|
|
115
115
|
prompt: str
|
|
116
116
|
tools: NotRequired[list[str]]
|
|
117
|
-
|
|
117
|
+
model: NotRequired[Union[LanguageModelLike, dict[str, Any]]]
|
|
118
|
+
middleware: NotRequired[list[AgentMiddleware]]
|
|
118
119
|
|
|
119
120
|
class CustomSubAgent(TypedDict):
|
|
120
121
|
name: str
|
|
@@ -127,7 +128,8 @@ class CustomSubAgent(TypedDict):
|
|
|
127
128
|
- **description**: This is the description of the subagent that is shown to the main agent
|
|
128
129
|
- **prompt**: This is the prompt used for the subagent
|
|
129
130
|
- **tools**: This is the list of tools that the subagent has access to. By default will have access to all tools passed in, as well as all built-in tools.
|
|
130
|
-
- **
|
|
131
|
+
- **model**: Optional model instance OR dictionary for per-subagent model configuration (inherits the main model when omitted).
|
|
132
|
+
- **middleware** Additional middleware to attach to the subagent. See [here](https://docs.langchain.com/oss/python/langchain/middleware) for an introduction into middleware and how it works with create_agent.
|
|
131
133
|
|
|
132
134
|
**CustomSubAgent fields:**
|
|
133
135
|
- **name**: This is the name of the subagent, and how the main agent will call the subagent
|
|
@@ -141,6 +143,7 @@ research_subagent = {
|
|
|
141
143
|
"name": "research-agent",
|
|
142
144
|
"description": "Used to research more in depth questions",
|
|
143
145
|
"prompt": sub_research_prompt,
|
|
146
|
+
"tools": [internet_search]
|
|
144
147
|
}
|
|
145
148
|
subagents = [research_subagent]
|
|
146
149
|
agent = create_deep_agent(
|
|
@@ -183,18 +186,6 @@ agent = create_deep_agent(
|
|
|
183
186
|
|
|
184
187
|
By default, `deepagents` uses `"claude-sonnet-4-20250514"`. You can customize this by passing any [LangChain model object](https://python.langchain.com/docs/integrations/chat/).
|
|
185
188
|
|
|
186
|
-
### `builtin_tools` (Optional)
|
|
187
|
-
|
|
188
|
-
By default, a deep agent will have access to a number of [built-in tools](#builtintools--optional-).
|
|
189
|
-
You can change this by specifying the tools (by name) that the agent should have access to with this parameter.
|
|
190
|
-
|
|
191
|
-
Example:
|
|
192
|
-
```python
|
|
193
|
-
# Only give agent access to todo tool, none of the filesystem tools
|
|
194
|
-
builtin_tools = ["write_todos"]
|
|
195
|
-
agent = create_deep_agent(..., builtin_tools=builtin_tools, ...)
|
|
196
|
-
```
|
|
197
|
-
|
|
198
189
|
#### Example: Using a Custom Model
|
|
199
190
|
|
|
200
191
|
Here's how to use a custom model (like OpenAI's `gpt-oss` model via Ollama):
|
|
@@ -243,6 +234,15 @@ agent = create_deep_agent(
|
|
|
243
234
|
)
|
|
244
235
|
```
|
|
245
236
|
|
|
237
|
+
|
|
238
|
+
### `middleware` (Optional)
|
|
239
|
+
Both the main agent and sub-agents can take additional custom AgentMiddleware. Middleware is the best supported approach for extending the state_schema, adding additional tools, and adding pre / post model hooks. See this [doc](https://docs.langchain.com/oss/python/langchain/middleware) to learn more about Middleware and how you can use it!
|
|
240
|
+
|
|
241
|
+
### `tool_configs` (Optional)
|
|
242
|
+
Tool configs are used to specify how to handle Human In The Loop interactions on certain tools that require additional human oversight.
|
|
243
|
+
|
|
244
|
+
These tool_configs are passed to our prebuilt [HITL middleware](https://docs.langchain.com/oss/python/langchain/middleware#human-in-the-loop) so that the agent pauses execution and waits for feedback from the user before executing configured tools.
|
|
245
|
+
|
|
246
246
|
## Deep Agent Details
|
|
247
247
|
|
|
248
248
|
The below components are built into `deepagents` and helps make it work for deep tasks off-the-shelf.
|
|
@@ -304,25 +304,20 @@ By default, deep agents come with five built-in tools:
|
|
|
304
304
|
- `ls`: Tool for listing files in the virtual filesystem
|
|
305
305
|
- `edit_file`: Tool for editing a file in the virtual filesystem
|
|
306
306
|
|
|
307
|
-
|
|
307
|
+
If you want to omit some deepagents functionality, use specific middleware components directly!
|
|
308
308
|
|
|
309
309
|
### Human-in-the-Loop
|
|
310
310
|
|
|
311
|
-
`deepagents` supports human-in-the-loop approval for tool execution. You can configure specific tools to require human approval before execution using the `
|
|
311
|
+
`deepagents` supports human-in-the-loop approval for tool execution. You can configure specific tools to require human approval before execution using the `tool_configs` parameter, which maps tool names to a `HumanInTheLoopConfig`.
|
|
312
312
|
|
|
313
|
-
`
|
|
313
|
+
`HumanInTheLoopConfig` is how you specify what type of human in the loop patterns are supported.
|
|
314
314
|
It is a dictionary with four specific keys:
|
|
315
315
|
|
|
316
|
-
- `
|
|
317
|
-
- `allow_respond`: Whether the
|
|
318
|
-
- `allow_edit`: Whether the
|
|
319
|
-
- `allow_accept`: Whether the user can accept the tool call
|
|
320
|
-
|
|
321
|
-
Currently, `deepagents` does NOT support `allow_ignore`
|
|
316
|
+
- `allow_accept`: Whether the human can approve the current action without changes
|
|
317
|
+
- `allow_respond`: Whether the human can reject the current action with feedback
|
|
318
|
+
- `allow_edit`: Whether the human can approve the current action with edited content
|
|
322
319
|
|
|
323
|
-
|
|
324
|
-
|
|
325
|
-
Instead of specifying a `HumanInterruptConfig` for a tool, you can also just set `True`. This will set `allow_ignore`, `allow_respond`, `allow_edit`, and `allow_accept` to be `True`.
|
|
320
|
+
Instead of specifying a `HumanInTheLoopConfig` for a tool, you can also just set `True`. This will set `allow_ignore`, `allow_respond`, `allow_edit`, and `allow_accept` to be `True`.
|
|
326
321
|
|
|
327
322
|
In order to use human in the loop, you need to have a checkpointer attached.
|
|
328
323
|
Note: if you are using LangGraph Platform, this is automatically attached.
|
|
@@ -337,10 +332,9 @@ from langgraph.checkpoint.memory import InMemorySaver
|
|
|
337
332
|
agent = create_deep_agent(
|
|
338
333
|
tools=[your_tools],
|
|
339
334
|
instructions="Your instructions here",
|
|
340
|
-
|
|
335
|
+
tool_configs={
|
|
341
336
|
# You can specify a dictionary for fine grained control over what interrupt options exist
|
|
342
337
|
"tool_1": {
|
|
343
|
-
"allow_ignore": False,
|
|
344
338
|
"allow_respond": True,
|
|
345
339
|
"allow_edit": True,
|
|
346
340
|
"allow_accept":True,
|
|
@@ -413,12 +407,12 @@ for s in agent.stream(Command(resume=[{"type": "response", "args": "..."}]), con
|
|
|
413
407
|
```
|
|
414
408
|
## Async
|
|
415
409
|
|
|
416
|
-
If you are passing async tools to your agent, you will want to `from deepagents import async_create_deep_agent`
|
|
410
|
+
If you are passing async tools to your agent, you will want to use `from deepagents import async_create_deep_agent`
|
|
417
411
|
## MCP
|
|
418
412
|
|
|
419
413
|
The `deepagents` library can be ran with MCP tools. This can be achieved by using the [Langchain MCP Adapter library](https://github.com/langchain-ai/langchain-mcp-adapters).
|
|
420
414
|
|
|
421
|
-
**NOTE:** will want to use `from deepagents import async_create_deep_agent` to use the async version of `deepagents`, since MCP tools are async
|
|
415
|
+
**NOTE:** You will want to use `from deepagents import async_create_deep_agent` to use the async version of `deepagents`, since MCP tools are async
|
|
422
416
|
|
|
423
417
|
(To run the example below, will need to `pip install langchain-mcp-adapters`)
|
|
424
418
|
|
|
@@ -446,27 +440,6 @@ async def main():
|
|
|
446
440
|
asyncio.run(main())
|
|
447
441
|
```
|
|
448
442
|
|
|
449
|
-
## Configurable Agent
|
|
450
|
-
|
|
451
|
-
Configurable agents allow you to control the agent via a config passed in.
|
|
452
|
-
|
|
453
|
-
```python
|
|
454
|
-
from deepagents import create_configurable_agent
|
|
455
|
-
|
|
456
|
-
agent_config = {"instructions": "foo", "subagents": []}
|
|
457
|
-
|
|
458
|
-
build_agent = create_configurable_agent(
|
|
459
|
-
agent_config['instructions'],
|
|
460
|
-
agent_config['subagents'],
|
|
461
|
-
[],
|
|
462
|
-
agent_config={"recursion_limit": 1000}
|
|
463
|
-
)
|
|
464
|
-
```
|
|
465
|
-
You can now use `build_agent` in your `langgraph.json` and deploy it with `langgraph dev`
|
|
466
|
-
|
|
467
|
-
For async tools, you can use `from deepagents import async_create_configurable_agent`
|
|
468
|
-
|
|
469
|
-
|
|
470
443
|
## Roadmap
|
|
471
444
|
- [ ] Allow users to customize full system prompt
|
|
472
445
|
- [ ] Code cleanliness (type hinting, docstrings, formating)
|
|
@@ -7,11 +7,14 @@ deepagents.egg-info/dependency_links.txt
|
|
|
7
7
|
deepagents.egg-info/requires.txt
|
|
8
8
|
deepagents.egg-info/top_level.txt
|
|
9
9
|
src/deepagents/__init__.py
|
|
10
|
-
src/deepagents/builder.py
|
|
11
10
|
src/deepagents/graph.py
|
|
12
|
-
src/deepagents/
|
|
11
|
+
src/deepagents/middleware.py
|
|
13
12
|
src/deepagents/model.py
|
|
14
13
|
src/deepagents/prompts.py
|
|
15
14
|
src/deepagents/state.py
|
|
16
|
-
src/deepagents/
|
|
17
|
-
src/deepagents/
|
|
15
|
+
src/deepagents/tools.py
|
|
16
|
+
src/deepagents/types.py
|
|
17
|
+
tests/test_deepagents.py
|
|
18
|
+
tests/test_hitl.py
|
|
19
|
+
tests/test_middleware.py
|
|
20
|
+
tests/utils.py
|
|
@@ -1,14 +1,15 @@
|
|
|
1
1
|
[project]
|
|
2
2
|
name = "deepagents"
|
|
3
|
-
version = "0.0.
|
|
3
|
+
version = "0.0.7"
|
|
4
4
|
description = "General purpose 'deep agent' with sub-agent spawning, todo list capabilities, and mock file system. Built on LangGraph."
|
|
5
5
|
readme = "README.md"
|
|
6
6
|
license = { text = "MIT" }
|
|
7
7
|
requires-python = ">=3.11,<4.0"
|
|
8
8
|
dependencies = [
|
|
9
|
-
"langgraph>=0.
|
|
9
|
+
"langgraph>=1.0.0a3",
|
|
10
10
|
"langchain-anthropic>=0.1.23",
|
|
11
|
-
"langchain>=0.
|
|
11
|
+
"langchain>=1.0.0a8",
|
|
12
|
+
"langgraph-prebuilt>=0.7.0a2",
|
|
12
13
|
]
|
|
13
14
|
|
|
14
15
|
|
|
@@ -17,9 +18,10 @@ requires = ["setuptools>=73.0.0", "wheel"]
|
|
|
17
18
|
build-backend = "setuptools.build_meta"
|
|
18
19
|
|
|
19
20
|
[tool.setuptools]
|
|
20
|
-
packages = ["deepagents"]
|
|
21
|
+
packages = ["deepagents", "tests"]
|
|
21
22
|
[tool.setuptools.package-dir]
|
|
22
23
|
"deepagents" = "src/deepagents"
|
|
24
|
+
"tests" = "tests"
|
|
23
25
|
|
|
24
26
|
[tool.setuptools.package-data]
|
|
25
27
|
"*" = ["py.typed"]
|
|
@@ -0,0 +1,5 @@
|
|
|
1
|
+
from deepagents.graph import create_deep_agent, async_create_deep_agent
|
|
2
|
+
from deepagents.middleware import PlanningMiddleware, FilesystemMiddleware, SubAgentMiddleware
|
|
3
|
+
from deepagents.state import DeepAgentState
|
|
4
|
+
from deepagents.types import SubAgent, CustomSubAgent
|
|
5
|
+
from deepagents.model import get_default_model
|