ddi-fw 0.0.4__tar.gz → 0.0.6__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {ddi_fw-0.0.4 → ddi_fw-0.0.6}/PKG-INFO +1 -1
- {ddi_fw-0.0.4 → ddi_fw-0.0.6}/ddi_fw/datasets/core.py +1 -1
- ddi_fw-0.0.6/ddi_fw/datasets/custom/__init__.py +1 -0
- ddi_fw-0.0.6/ddi_fw/datasets/custom/base.py +148 -0
- ddi_fw-0.0.6/ddi_fw/datasets/ddi_mdl/base.py +63 -0
- ddi_fw-0.0.6/ddi_fw/datasets/mdf_sa_ddi/__init__.py +3 -0
- ddi_fw-0.0.6/ddi_fw/datasets/mdf_sa_ddi/base.py +138 -0
- {ddi_fw-0.0.4 → ddi_fw-0.0.6}/ddi_fw/drugbank/drugbank_processor.py +1 -1
- {ddi_fw-0.0.4 → ddi_fw-0.0.6}/ddi_fw.egg-info/PKG-INFO +1 -1
- {ddi_fw-0.0.4 → ddi_fw-0.0.6}/ddi_fw.egg-info/SOURCES.txt +5 -0
- {ddi_fw-0.0.4 → ddi_fw-0.0.6}/ddi_fw.egg-info/top_level.txt +3 -0
- ddi_fw-0.0.6/setup.py +17 -0
- ddi_fw-0.0.4/setup.py +0 -16
- {ddi_fw-0.0.4 → ddi_fw-0.0.6}/README.md +0 -0
- {ddi_fw-0.0.4 → ddi_fw-0.0.6}/ddi_fw/datasets/__init__.py +0 -0
- {ddi_fw-0.0.4 → ddi_fw-0.0.6}/ddi_fw/datasets/db_utils.py +0 -0
- {ddi_fw-0.0.4 → ddi_fw-0.0.6}/ddi_fw/datasets/embedding_generator.py +0 -0
- {ddi_fw-0.0.4 → ddi_fw-0.0.6}/ddi_fw/datasets/embedding_generator_new.py +0 -0
- {ddi_fw-0.0.4 → ddi_fw-0.0.6}/ddi_fw/datasets/feature_vector_generation.py +0 -0
- {ddi_fw-0.0.4 → ddi_fw-0.0.6}/ddi_fw/datasets/idf_helper.py +0 -0
- {ddi_fw-0.0.4 → ddi_fw-0.0.6}/ddi_fw/drugbank/__init__.py +0 -0
- {ddi_fw-0.0.4 → ddi_fw-0.0.6}/ddi_fw/drugbank/drugbank_parser.py +0 -0
- {ddi_fw-0.0.4 → ddi_fw-0.0.6}/ddi_fw/drugbank/drugbank_processor_org.py +0 -0
- {ddi_fw-0.0.4 → ddi_fw-0.0.6}/ddi_fw/drugbank/event_extractor.py +0 -0
- {ddi_fw-0.0.4 → ddi_fw-0.0.6}/ddi_fw/experiments/__init__.py +0 -0
- {ddi_fw-0.0.4 → ddi_fw-0.0.6}/ddi_fw/experiments/custom_torch_model.py +0 -0
- {ddi_fw-0.0.4 → ddi_fw-0.0.6}/ddi_fw/experiments/evaluation_helper.py +0 -0
- {ddi_fw-0.0.4 → ddi_fw-0.0.6}/ddi_fw/experiments/tensorflow_helper.py +0 -0
- {ddi_fw-0.0.4 → ddi_fw-0.0.6}/ddi_fw/experiments/test.py +0 -0
- {ddi_fw-0.0.4 → ddi_fw-0.0.6}/ddi_fw/ner/__init__.py +0 -0
- {ddi_fw-0.0.4 → ddi_fw-0.0.6}/ddi_fw/ner/mmlrestclient.py +0 -0
- {ddi_fw-0.0.4 → ddi_fw-0.0.6}/ddi_fw/ner/ner.py +0 -0
- {ddi_fw-0.0.4 → ddi_fw-0.0.6}/ddi_fw/utils/__init__.py +0 -0
- {ddi_fw-0.0.4 → ddi_fw-0.0.6}/ddi_fw/utils/enums.py +0 -0
- {ddi_fw-0.0.4 → ddi_fw-0.0.6}/ddi_fw/utils/utils.py +0 -0
- {ddi_fw-0.0.4 → ddi_fw-0.0.6}/ddi_fw/utils/zip_helper.py +0 -0
- {ddi_fw-0.0.4 → ddi_fw-0.0.6}/ddi_fw.egg-info/dependency_links.txt +0 -0
- {ddi_fw-0.0.4 → ddi_fw-0.0.6}/setup.cfg +0 -0
@@ -9,7 +9,7 @@ from ddi_fw.datasets.idf_helper import IDF
|
|
9
9
|
|
10
10
|
from ddi_fw.utils.zip_helper import ZipHelper
|
11
11
|
from .feature_vector_generation import SimilarityMatrixGenerator, VectorGenerator
|
12
|
-
from ner.ner import CTakesNER
|
12
|
+
from ddi_fw.ner.ner import CTakesNER
|
13
13
|
from ddi_fw.utils import create_folder_if_not_exists
|
14
14
|
from stopwatch import Stopwatch, profile
|
15
15
|
|
@@ -0,0 +1 @@
|
|
1
|
+
from .base import CustomDataset
|
@@ -0,0 +1,148 @@
|
|
1
|
+
import pathlib
|
2
|
+
import numpy as np
|
3
|
+
|
4
|
+
import pandas as pd
|
5
|
+
from ..idf_helper import IDF
|
6
|
+
|
7
|
+
from ddi_fw.utils.zip_helper import ZipHelper
|
8
|
+
from .. import BaseDataset
|
9
|
+
from ..db_utils import create_connection
|
10
|
+
|
11
|
+
HERE = pathlib.Path(__file__).resolve().parent
|
12
|
+
|
13
|
+
'''
|
14
|
+
uses drugbank_db.zip
|
15
|
+
'''
|
16
|
+
|
17
|
+
|
18
|
+
class CustomDataset(BaseDataset):
|
19
|
+
def __init__(self, index_path, chemical_property_columns=['enzyme',
|
20
|
+
'target',
|
21
|
+
'pathway',
|
22
|
+
'smile'],
|
23
|
+
drugbank_ids=[],
|
24
|
+
embedding_columns=['indication'],
|
25
|
+
# ner_columns = ['tui_description','cui_description', 'entities_description'],
|
26
|
+
ner_columns = ['tui','cui', 'entities'],
|
27
|
+
threshold_method='idf',
|
28
|
+
threshold_val=0
|
29
|
+
):
|
30
|
+
super().__init__(chemical_property_columns, embedding_columns, ner_columns, threshold_method, threshold_val)
|
31
|
+
|
32
|
+
# self.embedding_columns = embedding_columns
|
33
|
+
# self.columns = columns
|
34
|
+
|
35
|
+
self.drugbank_ids = drugbank_ids
|
36
|
+
|
37
|
+
zip_helper = ZipHelper()
|
38
|
+
# zip_helper.extract(input_path=str(HERE.joinpath('drugbank_db.zip')), output_path=str(HERE))
|
39
|
+
zip_helper.extract(input_path=str(HERE), output_path=str(HERE))
|
40
|
+
# kwargs = {'index_path': str(HERE.joinpath('indexes'))}
|
41
|
+
|
42
|
+
# db = HERE.joinpath('event.db')
|
43
|
+
db = HERE.joinpath('drugbank.db')
|
44
|
+
conn = create_connection(db)
|
45
|
+
self.drugs_df = self.__select_all_drugs_as_dataframe__(conn)
|
46
|
+
# dataframe'de olan ilaçlar arasındaki etkileşimleri bulmak için
|
47
|
+
# self.drugbank_ids = self.drugs_df['id'].to_list() ???
|
48
|
+
self.ddis_df = self.__select_all_events__(conn)
|
49
|
+
|
50
|
+
# self.index_path = kwargs.get('index_path')
|
51
|
+
self.index_path = index_path
|
52
|
+
|
53
|
+
def __select_all_events__(self, conn):
|
54
|
+
param = tuple(self.drugbank_ids)
|
55
|
+
cur = conn.cursor()
|
56
|
+
query = f'''
|
57
|
+
select
|
58
|
+
_Interactions."index",
|
59
|
+
drug_1_id,
|
60
|
+
drug_1,
|
61
|
+
drug_2_id,
|
62
|
+
drug_2,
|
63
|
+
mechanism_action,
|
64
|
+
interaction,
|
65
|
+
masked_interaction
|
66
|
+
from _Interactions '''
|
67
|
+
if len(self.drugbank_ids) > 0:
|
68
|
+
query = query + \
|
69
|
+
(f''' where drug_1_id in {format(param)} and drug_2_id in {format(param)}''')
|
70
|
+
|
71
|
+
cur.execute(query)
|
72
|
+
|
73
|
+
rows = cur.fetchall()
|
74
|
+
|
75
|
+
headers = ['index', 'id1', 'name1', 'id2', 'name2',
|
76
|
+
'event_category', 'interaction', 'masked_interaction']
|
77
|
+
df = pd.DataFrame(columns=headers, data=rows)
|
78
|
+
return df
|
79
|
+
|
80
|
+
# TODO tuis_description, entities_description, belli bir eşik değeri altında olanı ignore etmek lazım
|
81
|
+
def __select_all_drugs_as_dataframe__(self, conn):
|
82
|
+
param = tuple(self.drugbank_ids)
|
83
|
+
query = f'''
|
84
|
+
select
|
85
|
+
_Drugs."index",
|
86
|
+
drugbank_id,
|
87
|
+
_Drugs.name,
|
88
|
+
description,
|
89
|
+
synthesis_reference,
|
90
|
+
indication,
|
91
|
+
pharmacodynamics,
|
92
|
+
mechanism_of_action,
|
93
|
+
toxicity,
|
94
|
+
metabolism,
|
95
|
+
absorption,
|
96
|
+
half_life,
|
97
|
+
protein_binding,
|
98
|
+
route_of_elimination,
|
99
|
+
volume_of_distribution,
|
100
|
+
clearance,
|
101
|
+
smiles,
|
102
|
+
smiles_morgan_fingerprint,
|
103
|
+
enzymes_polypeptides,
|
104
|
+
targets_polypeptides,
|
105
|
+
pathways,
|
106
|
+
tuis_description,
|
107
|
+
cuis_description,
|
108
|
+
entities_description
|
109
|
+
|
110
|
+
from _Drugs '''
|
111
|
+
|
112
|
+
if len(self.drugbank_ids) > 0:
|
113
|
+
query = query + f'''where
|
114
|
+
drugbank_id in {format(param)} and
|
115
|
+
targets_polypeptides is not null and
|
116
|
+
enzymes_polypeptides is not null and
|
117
|
+
pathways is not null and
|
118
|
+
smiles_morgan_fingerprint is not null'''
|
119
|
+
cur = conn.cursor()
|
120
|
+
cur.execute(query)
|
121
|
+
|
122
|
+
# pathway is absent
|
123
|
+
|
124
|
+
rows = cur.fetchall()
|
125
|
+
headers = ['index', 'id', 'name', 'description', 'synthesis_reference', 'indication', 'pharmacodynamics', 'mechanism_of_action', 'toxicity', 'metabolism', 'absorption', 'half_life',
|
126
|
+
'protein_binding', 'route_of_elimination', 'volume_of_distribution', 'clearance', 'smiles_notation', 'smile', 'enzyme', 'target', 'pathway',
|
127
|
+
'tui_description', 'cui_description', 'entities_description']
|
128
|
+
df = pd.DataFrame(columns=headers, data=rows)
|
129
|
+
df['smile'] = df['smile'].apply(lambda x:
|
130
|
+
np.fromstring(
|
131
|
+
x.replace(
|
132
|
+
'\n', '')
|
133
|
+
.replace('[', '')
|
134
|
+
.replace(']', '')
|
135
|
+
.replace(' ', ' '), sep=','))
|
136
|
+
df['enzyme'] = df['enzyme'].apply(
|
137
|
+
lambda x: x.split('|') if x is not None else [])
|
138
|
+
df['target'] = df['target'].apply(
|
139
|
+
lambda x: x.split('|') if x is not None else [])
|
140
|
+
df['pathway'] = df['pathway'].apply(
|
141
|
+
lambda x: x.split('|') if x is not None else [])
|
142
|
+
df['tui_description'] = df['tui_description'].apply(
|
143
|
+
lambda x: x.split('|') if x is not None else [])
|
144
|
+
df['cui_description'] = df['cui_description'].apply(
|
145
|
+
lambda x: x.split('|') if x is not None else [])
|
146
|
+
df['entities_description'] = df['entities_description'].apply(
|
147
|
+
lambda x: x.split('|') if x is not None else [])
|
148
|
+
return df
|
@@ -0,0 +1,63 @@
|
|
1
|
+
import pathlib
|
2
|
+
|
3
|
+
import pandas as pd
|
4
|
+
from .. import BaseDataset
|
5
|
+
from ..db_utils import create_connection
|
6
|
+
|
7
|
+
HERE = pathlib.Path(__file__).resolve().parent
|
8
|
+
|
9
|
+
|
10
|
+
class DDIMDLDataset(BaseDataset):
|
11
|
+
def __init__(self, chemical_property_columns=['enzyme',
|
12
|
+
'target',
|
13
|
+
'pathway',
|
14
|
+
'smile'],
|
15
|
+
embedding_columns=[],
|
16
|
+
ner_columns=[],
|
17
|
+
**kwargs):
|
18
|
+
|
19
|
+
super().__init__(chemical_property_columns, embedding_columns,
|
20
|
+
ner_columns, **kwargs)
|
21
|
+
|
22
|
+
# kwargs = {'index_path': str(HERE.joinpath('indexes'))}
|
23
|
+
kwargs['index_path']= str(HERE.joinpath('indexes'))
|
24
|
+
|
25
|
+
db = HERE.joinpath('event.db')
|
26
|
+
conn = create_connection(db)
|
27
|
+
print("db prep")
|
28
|
+
self.drugs_df = self.__select_all_drugs_as_dataframe__(conn)
|
29
|
+
self.ddis_df = self.__select_all_events__(conn)
|
30
|
+
print("db bitti")
|
31
|
+
self.index_path = kwargs.get('index_path')
|
32
|
+
|
33
|
+
def __select_all_drugs_as_dataframe__(self, conn):
|
34
|
+
headers = ['index', 'id', 'name',
|
35
|
+
'target', 'enzyme', 'pathway', 'smile']
|
36
|
+
cur = conn.cursor()
|
37
|
+
cur.execute(
|
38
|
+
'''select "index", id, name, target, enzyme, pathway, smile from drug''')
|
39
|
+
rows = cur.fetchall()
|
40
|
+
df = pd.DataFrame(columns=headers, data=rows)
|
41
|
+
df['enzyme'] = df['enzyme'].apply(lambda x: x.split('|'))
|
42
|
+
df['target'] = df['target'].apply(lambda x: x.split('|'))
|
43
|
+
df['pathway'] = df['pathway'].apply(lambda x: x.split('|'))
|
44
|
+
df['smile'] = df['smile'].apply(lambda x: x.split('|'))
|
45
|
+
return df
|
46
|
+
|
47
|
+
def __select_all_events__(self, conn):
|
48
|
+
"""
|
49
|
+
Query all rows in the event table
|
50
|
+
:param conn: the Connection object
|
51
|
+
:return:
|
52
|
+
"""
|
53
|
+
cur = conn.cursor()
|
54
|
+
cur.execute('''
|
55
|
+
select ex."index", d1.id, d1.name, d2.id, d2.name, mechanism || ' ' ||action from extraction ex
|
56
|
+
join drug d1 on d1.name = ex.drugA
|
57
|
+
join drug d2 on d2.name = ex.drugB
|
58
|
+
''')
|
59
|
+
|
60
|
+
rows = cur.fetchall()
|
61
|
+
|
62
|
+
headers = ["index", "id1", "name1", "id2", "name2", "event_category"]
|
63
|
+
return pd.DataFrame(columns=headers, data=rows)
|
@@ -0,0 +1,138 @@
|
|
1
|
+
import os
|
2
|
+
import pathlib
|
3
|
+
import sqlite3
|
4
|
+
from sqlite3 import Error
|
5
|
+
import pandas as pd
|
6
|
+
|
7
|
+
from ddi_fw.utils import ZipHelper
|
8
|
+
|
9
|
+
from ..core import BaseDataset
|
10
|
+
# from ..db_utils import create_connection, select_all_drugs_as_dataframe, select_events_with_category
|
11
|
+
|
12
|
+
HERE = pathlib.Path(__file__).resolve().parent
|
13
|
+
|
14
|
+
|
15
|
+
class MDFSADDIDataset(BaseDataset):
|
16
|
+
def __init__(self, chemical_property_columns=['enzyme',
|
17
|
+
'target',
|
18
|
+
'smile'],
|
19
|
+
embedding_columns=[],
|
20
|
+
ner_columns=[],
|
21
|
+
**kwargs):
|
22
|
+
|
23
|
+
super().__init__(chemical_property_columns, embedding_columns,
|
24
|
+
ner_columns, **kwargs)
|
25
|
+
|
26
|
+
db_zip_path = HERE.joinpath('mdf-sa-ddi.zip')
|
27
|
+
db_path = HERE.joinpath('mdf-sa-ddi.db')
|
28
|
+
if not os.path.exists(db_zip_path):
|
29
|
+
self.__to_db__(db_path)
|
30
|
+
else:
|
31
|
+
ZipHelper().extract(
|
32
|
+
input_path=str(HERE), output_path=str(HERE))
|
33
|
+
conn = create_connection(db_path)
|
34
|
+
self.drugs_df = select_all_drugs_as_dataframe(conn)
|
35
|
+
self.ddis_df = select_all_events_as_dataframe(conn)
|
36
|
+
kwargs = {'index_path': str(HERE.joinpath('indexes'))}
|
37
|
+
|
38
|
+
self.index_path = kwargs.get('index_path')
|
39
|
+
|
40
|
+
def __to_db__(self, db_path):
|
41
|
+
conn = create_connection(db_path)
|
42
|
+
drugs_path = HERE.joinpath('drug_information_del_noDDIxiaoyu50.csv')
|
43
|
+
ddis_path = HERE.joinpath('df_extraction_cleanxiaoyu50.csv')
|
44
|
+
self.drugs_df = pd.read_csv(drugs_path)
|
45
|
+
self.ddis_df = pd.read_csv(ddis_path)
|
46
|
+
self.drugs_df.drop(columns="Unnamed: 0", inplace=True)
|
47
|
+
self.ddis_df.drop(columns="Unnamed: 0", inplace=True)
|
48
|
+
|
49
|
+
self.ddis_df.rename(
|
50
|
+
columns={"drugA": "name1", "drugB": "name2"}, inplace=True)
|
51
|
+
self.ddis_df['event_category'] = self.ddis_df['mechanism'] + \
|
52
|
+
' ' + self.ddis_df['action']
|
53
|
+
|
54
|
+
reverse_ddis_df = pd.DataFrame()
|
55
|
+
reverse_ddis_df['id1'] = self.ddis_df['id2']
|
56
|
+
reverse_ddis_df['name1'] = self.ddis_df['name2']
|
57
|
+
reverse_ddis_df['id2'] = self.ddis_df['id1']
|
58
|
+
reverse_ddis_df['name2'] = self.ddis_df['name1']
|
59
|
+
reverse_ddis_df['event_category'] = self.ddis_df['event_category']
|
60
|
+
|
61
|
+
self.ddis_df = pd.concat(
|
62
|
+
[self.ddis_df, reverse_ddis_df], ignore_index=True)
|
63
|
+
|
64
|
+
drug_name_id_pairs = {}
|
65
|
+
for idx, row in self.drugs_df.iterrows():
|
66
|
+
drug_name_id_pairs[row['name']] = row['id']
|
67
|
+
|
68
|
+
# id1,id2
|
69
|
+
|
70
|
+
def lambda_fnc1(column):
|
71
|
+
return drug_name_id_pairs[column]
|
72
|
+
# def lambda_fnc2(row):
|
73
|
+
# x = self.drugs_df[self.drugs_df['name'] == row['name2']]
|
74
|
+
# return x['id']
|
75
|
+
|
76
|
+
self.ddis_df['id1'] = self.ddis_df['name1'].apply(
|
77
|
+
lambda_fnc1) # , axis=1
|
78
|
+
self.ddis_df['id2'] = self.ddis_df['name2'].apply(
|
79
|
+
lambda_fnc1) # , axis=1
|
80
|
+
self.drugs_df.to_sql('drug', conn, if_exists='replace', index=False)
|
81
|
+
self.ddis_df.to_sql('event', conn, if_exists='replace', index=False)
|
82
|
+
ZipHelper().zip_single_file(
|
83
|
+
file_path=db_path, output_path=HERE, name='mdf-sa-ddi')
|
84
|
+
|
85
|
+
|
86
|
+
def create_connection(db_file=r"mdf-sa-ddi.db"):
|
87
|
+
""" create a database connection to the SQLite database
|
88
|
+
specified by db_file
|
89
|
+
:param db_file: database file
|
90
|
+
:return: Connection object or None
|
91
|
+
"""
|
92
|
+
conn = None
|
93
|
+
try:
|
94
|
+
conn = sqlite3.connect(db_file)
|
95
|
+
except Error as e:
|
96
|
+
print(e)
|
97
|
+
|
98
|
+
return conn
|
99
|
+
|
100
|
+
|
101
|
+
def select_all_drugs(conn):
|
102
|
+
cur = conn.cursor()
|
103
|
+
cur.execute(
|
104
|
+
'''select "index", id, name, target, enzyme, smile from drug''')
|
105
|
+
rows = cur.fetchall()
|
106
|
+
return rows
|
107
|
+
|
108
|
+
|
109
|
+
def select_all_drugs_as_dataframe(conn):
|
110
|
+
headers = ['index', 'id', 'name', 'target', 'enzyme', 'smile']
|
111
|
+
rows = select_all_drugs(conn)
|
112
|
+
df = pd.DataFrame(columns=headers, data=rows)
|
113
|
+
df['enzyme'] = df['enzyme'].apply(lambda x: x.split('|'))
|
114
|
+
df['target'] = df['target'].apply(lambda x: x.split('|'))
|
115
|
+
df['smile'] = df['smile'].apply(lambda x: x.split('|'))
|
116
|
+
return df
|
117
|
+
|
118
|
+
|
119
|
+
def select_all_events(conn):
|
120
|
+
"""
|
121
|
+
Query all rows in the event table
|
122
|
+
:param conn: the Connection object
|
123
|
+
:return:
|
124
|
+
"""
|
125
|
+
cur = conn.cursor()
|
126
|
+
cur.execute('''
|
127
|
+
select event."index", id1, name1, id2, name2, mechanism, action, event_category from event
|
128
|
+
''')
|
129
|
+
|
130
|
+
rows = cur.fetchall()
|
131
|
+
return rows
|
132
|
+
|
133
|
+
|
134
|
+
def select_all_events_as_dataframe(conn):
|
135
|
+
headers = ["index", "id1", "name1", "id2",
|
136
|
+
"name2", "mechanism", "action", "event_category"]
|
137
|
+
rows = select_all_events(conn)
|
138
|
+
return pd.DataFrame(columns=headers, data=rows)
|
@@ -11,7 +11,7 @@ from rdkit import Chem
|
|
11
11
|
from rdkit.Chem import AllChem
|
12
12
|
import numpy as np
|
13
13
|
from ddi_fw.drugbank.event_extractor import EventExtractor
|
14
|
-
from ner.ner import CTakesNER
|
14
|
+
from ddi_fw.ner.ner import CTakesNER
|
15
15
|
|
16
16
|
from ddi_fw.utils import ZipHelper
|
17
17
|
# from event_extractor import EventExtractor
|
@@ -11,6 +11,11 @@ ddi_fw/datasets/embedding_generator.py
|
|
11
11
|
ddi_fw/datasets/embedding_generator_new.py
|
12
12
|
ddi_fw/datasets/feature_vector_generation.py
|
13
13
|
ddi_fw/datasets/idf_helper.py
|
14
|
+
ddi_fw/datasets/custom/__init__.py
|
15
|
+
ddi_fw/datasets/custom/base.py
|
16
|
+
ddi_fw/datasets/ddi_mdl/base.py
|
17
|
+
ddi_fw/datasets/mdf_sa_ddi/__init__.py
|
18
|
+
ddi_fw/datasets/mdf_sa_ddi/base.py
|
14
19
|
ddi_fw/drugbank/__init__.py
|
15
20
|
ddi_fw/drugbank/drugbank_parser.py
|
16
21
|
ddi_fw/drugbank/drugbank_processor.py
|
ddi_fw-0.0.6/setup.py
ADDED
@@ -0,0 +1,17 @@
|
|
1
|
+
from setuptools import setup, find_packages
|
2
|
+
setup(
|
3
|
+
name='ddi_fw',
|
4
|
+
version='0.0.6',
|
5
|
+
author='Kıvanç Bayraktar',
|
6
|
+
author_email='bayraktarkivanc@gmail.com',
|
7
|
+
description='Do not use :)',
|
8
|
+
# packages=find_packages(),
|
9
|
+
packages=['ddi_fw/datasets', 'ddi_fw/datasets/mdf_sa_ddi', 'ddi_fw/datasets/ddi_mdl',
|
10
|
+
'ddi_fw/datasets/custom', 'ddi_fw/drugbank', 'ddi_fw/experiments', 'ddi_fw/ner', 'ddi_fw/utils'],
|
11
|
+
classifiers=[
|
12
|
+
'Programming Language :: Python :: 3',
|
13
|
+
'License :: OSI Approved :: MIT License',
|
14
|
+
'Operating System :: OS Independent',
|
15
|
+
],
|
16
|
+
python_requires='>=3.6',
|
17
|
+
)
|
ddi_fw-0.0.4/setup.py
DELETED
@@ -1,16 +0,0 @@
|
|
1
|
-
from setuptools import setup, find_packages
|
2
|
-
setup(
|
3
|
-
name='ddi_fw',
|
4
|
-
version='0.0.4',
|
5
|
-
author='Kıvanç Bayraktar',
|
6
|
-
author_email='bayraktarkivanc@gmail.com',
|
7
|
-
description='Do not use :)',
|
8
|
-
# packages=find_packages(),
|
9
|
-
packages=['ddi_fw/datasets','ddi_fw/drugbank','ddi_fw/experiments','ddi_fw/ner','ddi_fw/utils'],
|
10
|
-
classifiers=[
|
11
|
-
'Programming Language :: Python :: 3',
|
12
|
-
'License :: OSI Approved :: MIT License',
|
13
|
-
'Operating System :: OS Independent',
|
14
|
-
],
|
15
|
-
python_requires='>=3.6',
|
16
|
-
)
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|