ddi-fw 0.0.259__tar.gz → 0.0.261__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (49) hide show
  1. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/PKG-INFO +1 -1
  2. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/pyproject.toml +1 -1
  3. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/langchain/chroma_storage.py +7 -1
  4. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/langchain/faiss_storage.py +10 -4
  5. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw.egg-info/PKG-INFO +1 -1
  6. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/README.md +0 -0
  7. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/setup.cfg +0 -0
  8. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/datasets/__init__.py +0 -0
  9. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/datasets/core.py +0 -0
  10. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/datasets/dataset_splitter.py +0 -0
  11. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/datasets/db_utils.py +0 -0
  12. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/datasets/setup_._py +0 -0
  13. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/langchain/__init__.py +0 -0
  14. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/langchain/embeddings.py +0 -0
  15. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/langchain/sentence_splitter.py +0 -0
  16. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/langchain/storage.py +0 -0
  17. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/ml/__init__.py +0 -0
  18. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/ml/evaluation_helper.py +0 -0
  19. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/ml/ml_helper.py +0 -0
  20. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/ml/model_wrapper.py +0 -0
  21. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/ml/pytorch_wrapper.py +0 -0
  22. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/ml/tensorflow_wrapper.py +0 -0
  23. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/ml/tracking_service.py +0 -0
  24. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/ner/__init__.py +0 -0
  25. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/ner/mmlrestclient.py +0 -0
  26. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/ner/ner.py +0 -0
  27. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/pipeline/__init__.py +0 -0
  28. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/pipeline/multi_modal_combination_strategy.py +0 -0
  29. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/pipeline/multi_pipeline.py +0 -0
  30. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/pipeline/multi_pipeline_org.py +0 -0
  31. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/pipeline/ner_pipeline.py +0 -0
  32. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/pipeline/pipeline.py +0 -0
  33. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/utils/__init__.py +0 -0
  34. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/utils/categorical_data_encoding_checker.py +0 -0
  35. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/utils/enums.py +0 -0
  36. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/utils/json_helper.py +0 -0
  37. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/utils/kaggle.py +0 -0
  38. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/utils/numpy_utils.py +0 -0
  39. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/utils/package_helper.py +0 -0
  40. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/utils/py7zr_helper.py +0 -0
  41. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/utils/utils.py +0 -0
  42. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/utils/zip_helper.py +0 -0
  43. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/vectorization/__init__.py +0 -0
  44. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/vectorization/feature_vector_generation.py +0 -0
  45. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw/vectorization/idf_helper.py +0 -0
  46. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw.egg-info/SOURCES.txt +0 -0
  47. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw.egg-info/dependency_links.txt +0 -0
  48. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw.egg-info/requires.txt +0 -0
  49. {ddi_fw-0.0.259 → ddi_fw-0.0.261}/src/ddi_fw.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ddi_fw
3
- Version: 0.0.259
3
+ Version: 0.0.261
4
4
  Summary: Do not use :)
5
5
  Author-email: Kıvanç Bayraktar <bayraktarkivanc@gmail.com>
6
6
  Maintainer-email: Kıvanç Bayraktar <bayraktarkivanc@gmail.com>
@@ -6,7 +6,7 @@ build-backend = "setuptools.build_meta"
6
6
 
7
7
  [project]
8
8
  name = "ddi_fw"
9
- version = "0.0.259"
9
+ version = "0.0.261"
10
10
  description = "Do not use :)"
11
11
  readme = "README.md"
12
12
  authors = [
@@ -267,7 +267,13 @@ class ChromaVectorStoreManager(BaseVectorStoreManager):
267
267
  # Ensure all lists are not None and have the same length
268
268
  docs = results.get('documents', []) or []
269
269
  metadatas = results.get('metadatas', []) or []
270
- embeddings = results.get('embeddings', []) or []
270
+ # embeddings = results.get('embeddings', []) or []
271
+
272
+ embeddings = results.get('embeddings')
273
+ if isinstance(embeddings, np.ndarray):
274
+ pass # Keep as-is
275
+ elif embeddings is None:
276
+ embeddings = []
271
277
 
272
278
  # Check if all lists have the same length
273
279
  if not (len(docs) == len(metadatas) == len(embeddings)):
@@ -14,6 +14,7 @@ from langchain_core.embeddings import Embeddings
14
14
  from langchain_core.vectorstores import VectorStore
15
15
  from ddi_fw.utils import get_import
16
16
  from langchain.document_loaders import DataFrameLoader
17
+ from collections import defaultdict
17
18
 
18
19
  class BaseVectorStoreManager(BaseModel):
19
20
  embeddings: Optional[Embeddings] = None
@@ -77,10 +78,15 @@ class FaissVectorStoreManager(BaseVectorStoreManager):
77
78
  dict: A dictionary with the structure {type: {drugbank_id: [embedding]}}.
78
79
  """
79
80
  self.load(self.persist_directory)
81
+ # df = self.as_dataframe(formatter_fn=custom_formatter)
80
82
  df = self.as_dataframe(formatter_fn=custom_formatter)
81
- type_dict = {}
82
- for drug_type, group in df.groupby('type'):
83
- type_dict[drug_type] = dict(zip(group['id'], group['embedding'].apply(lambda x: [x])))
83
+ type_dict = defaultdict(lambda: defaultdict(list))
84
+
85
+ grouped = df.groupby(['type', 'id'])['embedding'].apply(list)
86
+
87
+ for (drug_type, id), embeddings in grouped.items():
88
+ type_dict[drug_type][id] = embeddings
89
+
84
90
  return type_dict
85
91
 
86
92
  def generate_vector_store(self, docs, handle_empty='zero'):
@@ -258,7 +264,7 @@ class FaissVectorStoreManager(BaseVectorStoreManager):
258
264
 
259
265
  def custom_formatter(document: Document, vector: np.ndarray) -> Dict[str, Any]:
260
266
  return {
261
- "id": document.metadata.get("drugbank_id", None),
267
+ "id": document.metadata.get("id", None),
262
268
  "type": document.metadata.get("type", None),
263
269
  "embedding": vector
264
270
  }
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ddi_fw
3
- Version: 0.0.259
3
+ Version: 0.0.261
4
4
  Summary: Do not use :)
5
5
  Author-email: Kıvanç Bayraktar <bayraktarkivanc@gmail.com>
6
6
  Maintainer-email: Kıvanç Bayraktar <bayraktarkivanc@gmail.com>
File without changes
File without changes
File without changes