ddeutil-workflow 0.0.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ddeutil_workflow-0.0.1/LICENSE +21 -0
- ddeutil_workflow-0.0.1/PKG-INFO +251 -0
- ddeutil_workflow-0.0.1/README.md +215 -0
- ddeutil_workflow-0.0.1/pyproject.toml +136 -0
- ddeutil_workflow-0.0.1/setup.cfg +4 -0
- ddeutil_workflow-0.0.1/src/ddeutil/workflow/__about__.py +1 -0
- ddeutil_workflow-0.0.1/src/ddeutil/workflow/__init__.py +0 -0
- ddeutil_workflow-0.0.1/src/ddeutil/workflow/__regex.py +44 -0
- ddeutil_workflow-0.0.1/src/ddeutil/workflow/__types.py +11 -0
- ddeutil_workflow-0.0.1/src/ddeutil/workflow/conn.py +235 -0
- ddeutil_workflow-0.0.1/src/ddeutil/workflow/dataset.py +306 -0
- ddeutil_workflow-0.0.1/src/ddeutil/workflow/exceptions.py +82 -0
- ddeutil_workflow-0.0.1/src/ddeutil/workflow/hooks/__init__.py +9 -0
- ddeutil_workflow-0.0.1/src/ddeutil/workflow/hooks/_postgres.py +2 -0
- ddeutil_workflow-0.0.1/src/ddeutil/workflow/loader.py +310 -0
- ddeutil_workflow-0.0.1/src/ddeutil/workflow/pipeline.py +338 -0
- ddeutil_workflow-0.0.1/src/ddeutil/workflow/schedule.py +87 -0
- ddeutil_workflow-0.0.1/src/ddeutil/workflow/tasks/__init__.py +10 -0
- ddeutil_workflow-0.0.1/src/ddeutil/workflow/tasks/_polars.py +41 -0
- ddeutil_workflow-0.0.1/src/ddeutil/workflow/utils/__init__.py +0 -0
- ddeutil_workflow-0.0.1/src/ddeutil/workflow/utils/receive.py +33 -0
- ddeutil_workflow-0.0.1/src/ddeutil/workflow/utils/selection.py +2 -0
- ddeutil_workflow-0.0.1/src/ddeutil/workflow/vendors/__dict.py +333 -0
- ddeutil_workflow-0.0.1/src/ddeutil/workflow/vendors/__init__.py +0 -0
- ddeutil_workflow-0.0.1/src/ddeutil/workflow/vendors/__schedule.py +667 -0
- ddeutil_workflow-0.0.1/src/ddeutil/workflow/vendors/aws_warpped.py +185 -0
- ddeutil_workflow-0.0.1/src/ddeutil/workflow/vendors/minio_warpped.py +11 -0
- ddeutil_workflow-0.0.1/src/ddeutil/workflow/vendors/sftp_wrapped.py +209 -0
- ddeutil_workflow-0.0.1/src/ddeutil_workflow.egg-info/PKG-INFO +251 -0
- ddeutil_workflow-0.0.1/src/ddeutil_workflow.egg-info/SOURCES.txt +42 -0
- ddeutil_workflow-0.0.1/src/ddeutil_workflow.egg-info/dependency_links.txt +1 -0
- ddeutil_workflow-0.0.1/src/ddeutil_workflow.egg-info/requires.txt +13 -0
- ddeutil_workflow-0.0.1/src/ddeutil_workflow.egg-info/top_level.txt +1 -0
- ddeutil_workflow-0.0.1/tests/test_base_data.py +14 -0
- ddeutil_workflow-0.0.1/tests/test_base_local_and_global.py +158 -0
- ddeutil_workflow-0.0.1/tests/test_base_regex.py +46 -0
- ddeutil_workflow-0.0.1/tests/test_conn.py +94 -0
- ddeutil_workflow-0.0.1/tests/test_dataset.py +88 -0
- ddeutil_workflow-0.0.1/tests/test_loader.py +51 -0
- ddeutil_workflow-0.0.1/tests/test_loader_simple.py +89 -0
- ddeutil_workflow-0.0.1/tests/test_pipeline.py +46 -0
- ddeutil_workflow-0.0.1/tests/test_pipeline_run.py +117 -0
- ddeutil_workflow-0.0.1/tests/test_pipeline_task.py +11 -0
- ddeutil_workflow-0.0.1/tests/test_schedule.py +55 -0
@@ -0,0 +1,21 @@
|
|
1
|
+
MIT License
|
2
|
+
|
3
|
+
Copyright (c) 2024 Data Developer & Engineering
|
4
|
+
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
7
|
+
in the Software without restriction, including without limitation the rights
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
10
|
+
furnished to do so, subject to the following conditions:
|
11
|
+
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
13
|
+
copies or substantial portions of the Software.
|
14
|
+
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21
|
+
SOFTWARE.
|
@@ -0,0 +1,251 @@
|
|
1
|
+
Metadata-Version: 2.1
|
2
|
+
Name: ddeutil-workflow
|
3
|
+
Version: 0.0.1
|
4
|
+
Summary: Data Developer & Engineer Workflow Utility Objects
|
5
|
+
Author-email: ddeutils <korawich.anu@gmail.com>
|
6
|
+
License: MIT
|
7
|
+
Project-URL: Homepage, https://github.com/ddeutils/ddeutil-workflow/
|
8
|
+
Project-URL: Source Code, https://github.com/ddeutils/ddeutil-workflow/
|
9
|
+
Keywords: data,workflow,utility,pipeline
|
10
|
+
Classifier: Topic :: Utilities
|
11
|
+
Classifier: Natural Language :: English
|
12
|
+
Classifier: Development Status :: 3 - Alpha
|
13
|
+
Classifier: Intended Audience :: Developers
|
14
|
+
Classifier: Operating System :: OS Independent
|
15
|
+
Classifier: Programming Language :: Python
|
16
|
+
Classifier: Programming Language :: Python :: 3 :: Only
|
17
|
+
Classifier: Programming Language :: Python :: 3.9
|
18
|
+
Classifier: Programming Language :: Python :: 3.10
|
19
|
+
Classifier: Programming Language :: Python :: 3.11
|
20
|
+
Classifier: Programming Language :: Python :: 3.12
|
21
|
+
Requires-Python: >=3.9.13
|
22
|
+
Description-Content-Type: text/markdown
|
23
|
+
License-File: LICENSE
|
24
|
+
Requires-Dist: fmtutil
|
25
|
+
Requires-Dist: ddeutil-io
|
26
|
+
Requires-Dist: ddeutil-model
|
27
|
+
Requires-Dist: python-dotenv
|
28
|
+
Provides-Extra: test
|
29
|
+
Requires-Dist: sqlalchemy==2.0.30; extra == "test"
|
30
|
+
Requires-Dist: paramiko==3.4.0; extra == "test"
|
31
|
+
Requires-Dist: sshtunnel==0.4.0; extra == "test"
|
32
|
+
Requires-Dist: boto3==1.34.109; extra == "test"
|
33
|
+
Requires-Dist: fsspec==2024.5.0; extra == "test"
|
34
|
+
Requires-Dist: polars==0.20.26; extra == "test"
|
35
|
+
Requires-Dist: pyarrow==16.1.0; extra == "test"
|
36
|
+
|
37
|
+
# Data Utility: _Workflow_
|
38
|
+
|
39
|
+
[](https://github.com/ddeutils/ddeutil-workflow/actions/workflows/tests.yml)
|
40
|
+
[](https://pypi.org/project/ddeutil-workflow/)
|
41
|
+
[](https://github.com/ddeutils/ddeutil-workflow)
|
42
|
+
|
43
|
+
**Table of Contents**:
|
44
|
+
|
45
|
+
- [Installation](#installation)
|
46
|
+
- [Getting Started](#getting-started)
|
47
|
+
- [Connection](#connection)
|
48
|
+
- [Dataset](#dataset)
|
49
|
+
- [Schedule](#schedule)
|
50
|
+
- [Examples](#examples)
|
51
|
+
- [Python](#python)
|
52
|
+
- [Tasks (EL)](#tasks-extract--load)
|
53
|
+
- [Hooks (T)](#hooks-transform)
|
54
|
+
|
55
|
+
This **Utility Workflow** objects was created for easy to make a simple metadata
|
56
|
+
driven pipeline that able to **ETL, T, EL, or ELT** by `.yaml` file.
|
57
|
+
|
58
|
+
I think we should not create the multiple pipeline per use-case if we able to
|
59
|
+
write some dynamic pipeline that just change the input parameters per use-case
|
60
|
+
instead. This way we can handle a lot of pipelines in our orgs with metadata only.
|
61
|
+
It called **Metadata Driven**.
|
62
|
+
|
63
|
+
Next, we should get some monitoring tools for manage logging that return from
|
64
|
+
pipeline running. Because it not show us what is a use-case that running data
|
65
|
+
pipeline.
|
66
|
+
|
67
|
+
> [!NOTE]
|
68
|
+
> _Disclaimer_: I inspire the dynamic statement from the GitHub Action `.yml` files
|
69
|
+
> and all of config file from several data orchestration framework tools from my
|
70
|
+
> experience on Data Engineer.
|
71
|
+
|
72
|
+
## Installation
|
73
|
+
|
74
|
+
```shell
|
75
|
+
pip install ddeutil-workflow
|
76
|
+
```
|
77
|
+
|
78
|
+
This project need `ddeutil-io`, `ddeutil-model` extension namespace packages.
|
79
|
+
|
80
|
+
## Getting Started
|
81
|
+
|
82
|
+
The first step, you should start create the connections and datasets for In and
|
83
|
+
Out of you data that want to use in pipeline of workflow. Some of this component
|
84
|
+
is similar component of the **Airflow** because I like it concepts.
|
85
|
+
|
86
|
+
### Connection
|
87
|
+
|
88
|
+
The connection for worker able to do any thing.
|
89
|
+
|
90
|
+
```yaml
|
91
|
+
conn_postgres_data:
|
92
|
+
type: conn.Postgres
|
93
|
+
url: 'postgres//username:${ENV_PASS}@hostname:port/database?echo=True&time_out=10'
|
94
|
+
```
|
95
|
+
|
96
|
+
```python
|
97
|
+
from ddeutil.workflow.conn import Conn
|
98
|
+
|
99
|
+
conn = Conn.from_loader(name='conn_postgres_data', externals={})
|
100
|
+
assert conn.ping()
|
101
|
+
```
|
102
|
+
|
103
|
+
### Dataset
|
104
|
+
|
105
|
+
The dataset is define any objects on the connection.
|
106
|
+
|
107
|
+
```yaml
|
108
|
+
ds_postgres_customer_tbl:
|
109
|
+
type: dataset.PostgresTbl
|
110
|
+
conn: 'conn_postgres_data'
|
111
|
+
features:
|
112
|
+
id: serial primary key
|
113
|
+
name: varchar( 100 ) not null
|
114
|
+
```
|
115
|
+
|
116
|
+
```python
|
117
|
+
from ddeutil.workflow.dataset import PostgresTbl
|
118
|
+
|
119
|
+
dataset = PostgresTbl.from_loader(name='ds_postgres_customer_tbl', externals={})
|
120
|
+
assert dataset.exists()
|
121
|
+
```
|
122
|
+
|
123
|
+
### Schedule
|
124
|
+
|
125
|
+
```yaml
|
126
|
+
schd_for_node:
|
127
|
+
type: schedule.Scdl
|
128
|
+
cron: "*/5 * * * *"
|
129
|
+
```
|
130
|
+
|
131
|
+
```python
|
132
|
+
from ddeutil.workflow.schedule import Scdl
|
133
|
+
|
134
|
+
scdl = Scdl.from_loader(name='schd_for_node', externals={})
|
135
|
+
assert '*/5 * * * *' == str(scdl.cronjob)
|
136
|
+
|
137
|
+
cron_iterate = scdl.generate('2022-01-01 00:00:00')
|
138
|
+
assert '2022-01-01 00:05:00' f"{cron_iterate.next:%Y-%m-%d %H:%M:%S}"
|
139
|
+
assert '2022-01-01 00:10:00' f"{cron_iterate.next:%Y-%m-%d %H:%M:%S}"
|
140
|
+
assert '2022-01-01 00:15:00' f"{cron_iterate.next:%Y-%m-%d %H:%M:%S}"
|
141
|
+
assert '2022-01-01 00:20:00' f"{cron_iterate.next:%Y-%m-%d %H:%M:%S}"
|
142
|
+
assert '2022-01-01 00:25:00' f"{cron_iterate.next:%Y-%m-%d %H:%M:%S}"
|
143
|
+
```
|
144
|
+
|
145
|
+
## Examples
|
146
|
+
|
147
|
+
This is examples that use workflow file for running common Data Engineering
|
148
|
+
use-case.
|
149
|
+
|
150
|
+
### Python
|
151
|
+
|
152
|
+
The state of doing lists that worker should to do. It be collection of the stage.
|
153
|
+
|
154
|
+
```yaml
|
155
|
+
run_py_local:
|
156
|
+
type: ddeutil.workflow.pipe.Pipeline
|
157
|
+
params:
|
158
|
+
author-run: utils.receive.string
|
159
|
+
run-date: utils.receive.datetime
|
160
|
+
jobs:
|
161
|
+
first-job:
|
162
|
+
stages:
|
163
|
+
- name: Printing Information
|
164
|
+
id: define-func
|
165
|
+
run: |
|
166
|
+
x = '${{ params.author-run }}'
|
167
|
+
print(f'Hello {x}')
|
168
|
+
|
169
|
+
def echo(name: str):
|
170
|
+
print(f'Hello {name}')
|
171
|
+
|
172
|
+
- name: Run Sequence and use var from Above
|
173
|
+
vars:
|
174
|
+
x: ${{ params.author-run }}
|
175
|
+
run: |
|
176
|
+
print(f'Receive x from above with {x}')
|
177
|
+
# Change x value
|
178
|
+
x: int = 1
|
179
|
+
|
180
|
+
- name: Call Function
|
181
|
+
vars:
|
182
|
+
echo: ${{ stages.define-func.outputs.echo }}
|
183
|
+
run: |
|
184
|
+
echo('Caller')
|
185
|
+
```
|
186
|
+
|
187
|
+
```python
|
188
|
+
from ddeutil.workflow.pipeline import Pipeline
|
189
|
+
|
190
|
+
pipe = Pipeline.from_loader(name='run_py_local', externals={})
|
191
|
+
pipe.execute(params={'author-run': 'Local Workflow', 'run-date': '2024-01-01'})
|
192
|
+
```
|
193
|
+
|
194
|
+
```shell
|
195
|
+
> Hello Local Workflow
|
196
|
+
> Receive x from above with Local Workflow
|
197
|
+
> Hello Caller
|
198
|
+
```
|
199
|
+
|
200
|
+
### Tasks (Extract & Load)
|
201
|
+
|
202
|
+
```yaml
|
203
|
+
pipe_el_pg_to_lake:
|
204
|
+
type: ddeutil.workflow.pipe.Pipeline
|
205
|
+
params:
|
206
|
+
run-date: utils.receive.datetime
|
207
|
+
author-email: utils.receive.string
|
208
|
+
jobs:
|
209
|
+
extract-load:
|
210
|
+
stages:
|
211
|
+
- name: "Extract Load from Postgres to Lake"
|
212
|
+
id: extract
|
213
|
+
task: tasks/postgres-to-delta@polars
|
214
|
+
with:
|
215
|
+
source:
|
216
|
+
conn: conn_postgres_url
|
217
|
+
query: |
|
218
|
+
select * from ${{ params.name }}
|
219
|
+
where update_date = '${{ params.datetime }}'
|
220
|
+
sink:
|
221
|
+
conn: conn_az_lake
|
222
|
+
endpoint: "/${{ params.name }}"
|
223
|
+
```
|
224
|
+
|
225
|
+
### Hooks (Transform)
|
226
|
+
|
227
|
+
```yaml
|
228
|
+
pipe_hook_mssql_proc:
|
229
|
+
type: ddeutil.workflow.pipe.Pipeline
|
230
|
+
params:
|
231
|
+
run_date: utils.receive.datetime
|
232
|
+
sp_name: utils.receive.string
|
233
|
+
source_name: utils.receive.string
|
234
|
+
target_name: utils.receive.string
|
235
|
+
jobs:
|
236
|
+
transform:
|
237
|
+
stages:
|
238
|
+
- name: "Transform Data in MS SQL Server"
|
239
|
+
hook: hooks/mssql-proc@odbc
|
240
|
+
with:
|
241
|
+
exec: ${{ params.sp_name }}
|
242
|
+
params:
|
243
|
+
run_mode: "T"
|
244
|
+
run_date: ${{ params.run_date }}
|
245
|
+
source: ${{ params.source_name }}
|
246
|
+
target: ${{ params.target_name }}
|
247
|
+
```
|
248
|
+
|
249
|
+
## License
|
250
|
+
|
251
|
+
This project was licensed under the terms of the [MIT license](LICENSE).
|
@@ -0,0 +1,215 @@
|
|
1
|
+
# Data Utility: _Workflow_
|
2
|
+
|
3
|
+
[](https://github.com/ddeutils/ddeutil-workflow/actions/workflows/tests.yml)
|
4
|
+
[](https://pypi.org/project/ddeutil-workflow/)
|
5
|
+
[](https://github.com/ddeutils/ddeutil-workflow)
|
6
|
+
|
7
|
+
**Table of Contents**:
|
8
|
+
|
9
|
+
- [Installation](#installation)
|
10
|
+
- [Getting Started](#getting-started)
|
11
|
+
- [Connection](#connection)
|
12
|
+
- [Dataset](#dataset)
|
13
|
+
- [Schedule](#schedule)
|
14
|
+
- [Examples](#examples)
|
15
|
+
- [Python](#python)
|
16
|
+
- [Tasks (EL)](#tasks-extract--load)
|
17
|
+
- [Hooks (T)](#hooks-transform)
|
18
|
+
|
19
|
+
This **Utility Workflow** objects was created for easy to make a simple metadata
|
20
|
+
driven pipeline that able to **ETL, T, EL, or ELT** by `.yaml` file.
|
21
|
+
|
22
|
+
I think we should not create the multiple pipeline per use-case if we able to
|
23
|
+
write some dynamic pipeline that just change the input parameters per use-case
|
24
|
+
instead. This way we can handle a lot of pipelines in our orgs with metadata only.
|
25
|
+
It called **Metadata Driven**.
|
26
|
+
|
27
|
+
Next, we should get some monitoring tools for manage logging that return from
|
28
|
+
pipeline running. Because it not show us what is a use-case that running data
|
29
|
+
pipeline.
|
30
|
+
|
31
|
+
> [!NOTE]
|
32
|
+
> _Disclaimer_: I inspire the dynamic statement from the GitHub Action `.yml` files
|
33
|
+
> and all of config file from several data orchestration framework tools from my
|
34
|
+
> experience on Data Engineer.
|
35
|
+
|
36
|
+
## Installation
|
37
|
+
|
38
|
+
```shell
|
39
|
+
pip install ddeutil-workflow
|
40
|
+
```
|
41
|
+
|
42
|
+
This project need `ddeutil-io`, `ddeutil-model` extension namespace packages.
|
43
|
+
|
44
|
+
## Getting Started
|
45
|
+
|
46
|
+
The first step, you should start create the connections and datasets for In and
|
47
|
+
Out of you data that want to use in pipeline of workflow. Some of this component
|
48
|
+
is similar component of the **Airflow** because I like it concepts.
|
49
|
+
|
50
|
+
### Connection
|
51
|
+
|
52
|
+
The connection for worker able to do any thing.
|
53
|
+
|
54
|
+
```yaml
|
55
|
+
conn_postgres_data:
|
56
|
+
type: conn.Postgres
|
57
|
+
url: 'postgres//username:${ENV_PASS}@hostname:port/database?echo=True&time_out=10'
|
58
|
+
```
|
59
|
+
|
60
|
+
```python
|
61
|
+
from ddeutil.workflow.conn import Conn
|
62
|
+
|
63
|
+
conn = Conn.from_loader(name='conn_postgres_data', externals={})
|
64
|
+
assert conn.ping()
|
65
|
+
```
|
66
|
+
|
67
|
+
### Dataset
|
68
|
+
|
69
|
+
The dataset is define any objects on the connection.
|
70
|
+
|
71
|
+
```yaml
|
72
|
+
ds_postgres_customer_tbl:
|
73
|
+
type: dataset.PostgresTbl
|
74
|
+
conn: 'conn_postgres_data'
|
75
|
+
features:
|
76
|
+
id: serial primary key
|
77
|
+
name: varchar( 100 ) not null
|
78
|
+
```
|
79
|
+
|
80
|
+
```python
|
81
|
+
from ddeutil.workflow.dataset import PostgresTbl
|
82
|
+
|
83
|
+
dataset = PostgresTbl.from_loader(name='ds_postgres_customer_tbl', externals={})
|
84
|
+
assert dataset.exists()
|
85
|
+
```
|
86
|
+
|
87
|
+
### Schedule
|
88
|
+
|
89
|
+
```yaml
|
90
|
+
schd_for_node:
|
91
|
+
type: schedule.Scdl
|
92
|
+
cron: "*/5 * * * *"
|
93
|
+
```
|
94
|
+
|
95
|
+
```python
|
96
|
+
from ddeutil.workflow.schedule import Scdl
|
97
|
+
|
98
|
+
scdl = Scdl.from_loader(name='schd_for_node', externals={})
|
99
|
+
assert '*/5 * * * *' == str(scdl.cronjob)
|
100
|
+
|
101
|
+
cron_iterate = scdl.generate('2022-01-01 00:00:00')
|
102
|
+
assert '2022-01-01 00:05:00' f"{cron_iterate.next:%Y-%m-%d %H:%M:%S}"
|
103
|
+
assert '2022-01-01 00:10:00' f"{cron_iterate.next:%Y-%m-%d %H:%M:%S}"
|
104
|
+
assert '2022-01-01 00:15:00' f"{cron_iterate.next:%Y-%m-%d %H:%M:%S}"
|
105
|
+
assert '2022-01-01 00:20:00' f"{cron_iterate.next:%Y-%m-%d %H:%M:%S}"
|
106
|
+
assert '2022-01-01 00:25:00' f"{cron_iterate.next:%Y-%m-%d %H:%M:%S}"
|
107
|
+
```
|
108
|
+
|
109
|
+
## Examples
|
110
|
+
|
111
|
+
This is examples that use workflow file for running common Data Engineering
|
112
|
+
use-case.
|
113
|
+
|
114
|
+
### Python
|
115
|
+
|
116
|
+
The state of doing lists that worker should to do. It be collection of the stage.
|
117
|
+
|
118
|
+
```yaml
|
119
|
+
run_py_local:
|
120
|
+
type: ddeutil.workflow.pipe.Pipeline
|
121
|
+
params:
|
122
|
+
author-run: utils.receive.string
|
123
|
+
run-date: utils.receive.datetime
|
124
|
+
jobs:
|
125
|
+
first-job:
|
126
|
+
stages:
|
127
|
+
- name: Printing Information
|
128
|
+
id: define-func
|
129
|
+
run: |
|
130
|
+
x = '${{ params.author-run }}'
|
131
|
+
print(f'Hello {x}')
|
132
|
+
|
133
|
+
def echo(name: str):
|
134
|
+
print(f'Hello {name}')
|
135
|
+
|
136
|
+
- name: Run Sequence and use var from Above
|
137
|
+
vars:
|
138
|
+
x: ${{ params.author-run }}
|
139
|
+
run: |
|
140
|
+
print(f'Receive x from above with {x}')
|
141
|
+
# Change x value
|
142
|
+
x: int = 1
|
143
|
+
|
144
|
+
- name: Call Function
|
145
|
+
vars:
|
146
|
+
echo: ${{ stages.define-func.outputs.echo }}
|
147
|
+
run: |
|
148
|
+
echo('Caller')
|
149
|
+
```
|
150
|
+
|
151
|
+
```python
|
152
|
+
from ddeutil.workflow.pipeline import Pipeline
|
153
|
+
|
154
|
+
pipe = Pipeline.from_loader(name='run_py_local', externals={})
|
155
|
+
pipe.execute(params={'author-run': 'Local Workflow', 'run-date': '2024-01-01'})
|
156
|
+
```
|
157
|
+
|
158
|
+
```shell
|
159
|
+
> Hello Local Workflow
|
160
|
+
> Receive x from above with Local Workflow
|
161
|
+
> Hello Caller
|
162
|
+
```
|
163
|
+
|
164
|
+
### Tasks (Extract & Load)
|
165
|
+
|
166
|
+
```yaml
|
167
|
+
pipe_el_pg_to_lake:
|
168
|
+
type: ddeutil.workflow.pipe.Pipeline
|
169
|
+
params:
|
170
|
+
run-date: utils.receive.datetime
|
171
|
+
author-email: utils.receive.string
|
172
|
+
jobs:
|
173
|
+
extract-load:
|
174
|
+
stages:
|
175
|
+
- name: "Extract Load from Postgres to Lake"
|
176
|
+
id: extract
|
177
|
+
task: tasks/postgres-to-delta@polars
|
178
|
+
with:
|
179
|
+
source:
|
180
|
+
conn: conn_postgres_url
|
181
|
+
query: |
|
182
|
+
select * from ${{ params.name }}
|
183
|
+
where update_date = '${{ params.datetime }}'
|
184
|
+
sink:
|
185
|
+
conn: conn_az_lake
|
186
|
+
endpoint: "/${{ params.name }}"
|
187
|
+
```
|
188
|
+
|
189
|
+
### Hooks (Transform)
|
190
|
+
|
191
|
+
```yaml
|
192
|
+
pipe_hook_mssql_proc:
|
193
|
+
type: ddeutil.workflow.pipe.Pipeline
|
194
|
+
params:
|
195
|
+
run_date: utils.receive.datetime
|
196
|
+
sp_name: utils.receive.string
|
197
|
+
source_name: utils.receive.string
|
198
|
+
target_name: utils.receive.string
|
199
|
+
jobs:
|
200
|
+
transform:
|
201
|
+
stages:
|
202
|
+
- name: "Transform Data in MS SQL Server"
|
203
|
+
hook: hooks/mssql-proc@odbc
|
204
|
+
with:
|
205
|
+
exec: ${{ params.sp_name }}
|
206
|
+
params:
|
207
|
+
run_mode: "T"
|
208
|
+
run_date: ${{ params.run_date }}
|
209
|
+
source: ${{ params.source_name }}
|
210
|
+
target: ${{ params.target_name }}
|
211
|
+
```
|
212
|
+
|
213
|
+
## License
|
214
|
+
|
215
|
+
This project was licensed under the terms of the [MIT license](LICENSE).
|
@@ -0,0 +1,136 @@
|
|
1
|
+
[build-system]
|
2
|
+
requires = ["setuptools>=68.0"]
|
3
|
+
build-backend = "setuptools.build_meta"
|
4
|
+
|
5
|
+
[project]
|
6
|
+
name = "ddeutil-workflow"
|
7
|
+
description = "Data Developer & Engineer Workflow Utility Objects"
|
8
|
+
readme = {file = "README.md", content-type = "text/markdown"}
|
9
|
+
license = {text = "MIT"}
|
10
|
+
authors = [{ name = "ddeutils", email = "korawich.anu@gmail.com" }]
|
11
|
+
keywords = ['data', 'workflow', 'utility', 'pipeline']
|
12
|
+
classifiers = [
|
13
|
+
"Topic :: Utilities",
|
14
|
+
"Natural Language :: English",
|
15
|
+
"Development Status :: 3 - Alpha",
|
16
|
+
# "Development Status :: 4 - Beta",
|
17
|
+
# "Development Status :: 5 - Production/Stable",
|
18
|
+
"Intended Audience :: Developers",
|
19
|
+
"Operating System :: OS Independent",
|
20
|
+
"Programming Language :: Python",
|
21
|
+
"Programming Language :: Python :: 3 :: Only",
|
22
|
+
"Programming Language :: Python :: 3.9",
|
23
|
+
"Programming Language :: Python :: 3.10",
|
24
|
+
"Programming Language :: Python :: 3.11",
|
25
|
+
"Programming Language :: Python :: 3.12",
|
26
|
+
]
|
27
|
+
requires-python = ">=3.9.13"
|
28
|
+
dependencies = [
|
29
|
+
"fmtutil",
|
30
|
+
"ddeutil-io",
|
31
|
+
"ddeutil-model",
|
32
|
+
"python-dotenv",
|
33
|
+
]
|
34
|
+
dynamic = ["version"]
|
35
|
+
|
36
|
+
[project.urls]
|
37
|
+
Homepage = "https://github.com/ddeutils/ddeutil-workflow/"
|
38
|
+
"Source Code" = "https://github.com/ddeutils/ddeutil-workflow/"
|
39
|
+
|
40
|
+
[project.optional-dependencies]
|
41
|
+
test = [
|
42
|
+
"sqlalchemy==2.0.30",
|
43
|
+
# SFTP warpper
|
44
|
+
"paramiko==3.4.0",
|
45
|
+
"sshtunnel==0.4.0",
|
46
|
+
# AWS
|
47
|
+
"boto3==1.34.109",
|
48
|
+
# Open files
|
49
|
+
"fsspec==2024.5.0",
|
50
|
+
# Polars
|
51
|
+
"polars==0.20.26",
|
52
|
+
"pyarrow==16.1.0",
|
53
|
+
]
|
54
|
+
|
55
|
+
[tool.setuptools.dynamic]
|
56
|
+
version = {attr = "ddeutil.workflow.__about__.__version__"}
|
57
|
+
|
58
|
+
[tool.setuptools.packages.find]
|
59
|
+
where = ["src"]
|
60
|
+
|
61
|
+
[tool.shelf.version]
|
62
|
+
version = "./src/ddeutil/workflow/__about__.py"
|
63
|
+
changelog = "CHANGELOG.md"
|
64
|
+
|
65
|
+
[tool.coverage.run]
|
66
|
+
branch = true
|
67
|
+
relative_files = true
|
68
|
+
concurrency = ["thread", "multiprocessing"]
|
69
|
+
source = ["ddeutil", "tests"]
|
70
|
+
omit = ["scripts/"]
|
71
|
+
|
72
|
+
[tool.coverage.report]
|
73
|
+
exclude_lines = ["raise NotImplementedError"]
|
74
|
+
|
75
|
+
[tool.pytest.ini_options]
|
76
|
+
pythonpath = ["src"]
|
77
|
+
console_output_style = "count"
|
78
|
+
addopts = [
|
79
|
+
"--strict-config",
|
80
|
+
"--strict-markers",
|
81
|
+
]
|
82
|
+
filterwarnings = ["error"]
|
83
|
+
|
84
|
+
[tool.black]
|
85
|
+
line-length = 80
|
86
|
+
target-version = ['py39']
|
87
|
+
exclude = """
|
88
|
+
(
|
89
|
+
/(
|
90
|
+
\\.git
|
91
|
+
| \\.eggs
|
92
|
+
| \\.__pycache__
|
93
|
+
| \\.idea
|
94
|
+
| \\.ruff_cache
|
95
|
+
| \\.mypy_cache
|
96
|
+
| \\.pytest_cache
|
97
|
+
| \\.venv
|
98
|
+
| build
|
99
|
+
| dist
|
100
|
+
| venv
|
101
|
+
| __legacy
|
102
|
+
)/
|
103
|
+
)
|
104
|
+
"""
|
105
|
+
|
106
|
+
[tool.ruff]
|
107
|
+
line-length = 80
|
108
|
+
exclude = [
|
109
|
+
"__pypackages__",
|
110
|
+
".git",
|
111
|
+
".mypy_cache",
|
112
|
+
".ruff_cache",
|
113
|
+
".venv",
|
114
|
+
"build",
|
115
|
+
"dist",
|
116
|
+
"venv",
|
117
|
+
"__legacy",
|
118
|
+
]
|
119
|
+
|
120
|
+
[tool.ruff.lint]
|
121
|
+
select = [
|
122
|
+
"E", # pycodestyle errors
|
123
|
+
"W", # pycodestyle warnings
|
124
|
+
"F", # pyflakes
|
125
|
+
"I", # isort
|
126
|
+
"C", # flake8-comprehensions
|
127
|
+
"B", # flake8-bugbear
|
128
|
+
]
|
129
|
+
ignore = [
|
130
|
+
"E501", # line too long, handled by black
|
131
|
+
"B008", # do not perform function calls in argument defaults
|
132
|
+
"C901", # too complex
|
133
|
+
]
|
134
|
+
|
135
|
+
[tool.ruff.lint.per-file-ignores]
|
136
|
+
"__init__.py" = ["F401"]
|
@@ -0,0 +1 @@
|
|
1
|
+
__version__: str = "0.0.1"
|
File without changes
|
@@ -0,0 +1,44 @@
|
|
1
|
+
# -------------------------------------------------------------------------
|
2
|
+
# Copyright (c) 2022 Korawich Anuttra. All rights reserved.
|
3
|
+
# Licensed under the MIT License. See LICENSE in the project root for
|
4
|
+
# license information.
|
5
|
+
# --------------------------------------------------------------------------
|
6
|
+
import re
|
7
|
+
from re import (
|
8
|
+
IGNORECASE,
|
9
|
+
MULTILINE,
|
10
|
+
UNICODE,
|
11
|
+
VERBOSE,
|
12
|
+
Pattern,
|
13
|
+
)
|
14
|
+
|
15
|
+
|
16
|
+
class RegexConf:
|
17
|
+
"""Regular expression config."""
|
18
|
+
|
19
|
+
# NOTE: Search caller
|
20
|
+
__re_caller: str = r"""
|
21
|
+
\$
|
22
|
+
{{
|
23
|
+
\s*(?P<caller>
|
24
|
+
[a-zA-Z0-9_.\s'\"\[\]\(\)\-\{}]+?
|
25
|
+
)\s*
|
26
|
+
}}
|
27
|
+
"""
|
28
|
+
RE_CALLER: Pattern = re.compile(
|
29
|
+
__re_caller, MULTILINE | IGNORECASE | UNICODE | VERBOSE
|
30
|
+
)
|
31
|
+
|
32
|
+
# NOTE: Search task
|
33
|
+
__re_task_fmt: str = r"""
|
34
|
+
^
|
35
|
+
(?P<path>[^/@]+)
|
36
|
+
/
|
37
|
+
(?P<func>[^@]+)
|
38
|
+
@
|
39
|
+
(?P<tag>.+)
|
40
|
+
$
|
41
|
+
"""
|
42
|
+
RE_TASK_FMT: Pattern = re.compile(
|
43
|
+
__re_task_fmt, MULTILINE | IGNORECASE | UNICODE | VERBOSE
|
44
|
+
)
|
@@ -0,0 +1,11 @@
|
|
1
|
+
# ------------------------------------------------------------------------------
|
2
|
+
# Copyright (c) 2022 Korawich Anuttra. All rights reserved.
|
3
|
+
# Licensed under the MIT License. See LICENSE in the project root for
|
4
|
+
# license information.
|
5
|
+
# ------------------------------------------------------------------------------
|
6
|
+
from __future__ import annotations
|
7
|
+
|
8
|
+
from typing import Any
|
9
|
+
|
10
|
+
TupleStr = tuple[str, ...]
|
11
|
+
DictData = dict[str, Any]
|