dcnum 0.24.0__tar.gz → 0.25.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of dcnum might be problematic. Click here for more details.
- {dcnum-0.24.0 → dcnum-0.25.0}/CHANGELOG +4 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/PKG-INFO +1 -1
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/_version.py +2 -2
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/feat/feat_background/bg_sparse_median.py +2 -2
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/meta/ppid.py +3 -2
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/read/__init__.py +1 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/read/cache.py +4 -3
- dcnum-0.25.0/src/dcnum/read/detect_flicker.py +44 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum.egg-info/PKG-INFO +1 -1
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum.egg-info/SOURCES.txt +2 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_meta_ppid_base.py +8 -0
- dcnum-0.25.0/tests/test_read_detect_flicker.py +87 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_read_hdf5.py +13 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/.github/workflows/check.yml +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/.github/workflows/deploy_pypi.yml +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/.gitignore +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/.readthedocs.yml +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/LICENSE +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/README.rst +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/docs/conf.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/docs/extensions/github_changelog.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/docs/index.rst +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/docs/requirements.txt +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/pyproject.toml +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/setup.cfg +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/__init__.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/feat/__init__.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/feat/event_extractor_manager_thread.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/feat/feat_background/__init__.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/feat/feat_background/base.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/feat/feat_background/bg_copy.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/feat/feat_background/bg_roll_median.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/feat/feat_brightness/__init__.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/feat/feat_brightness/bright_all.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/feat/feat_brightness/common.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/feat/feat_contour/__init__.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/feat/feat_contour/contour.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/feat/feat_contour/moments.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/feat/feat_contour/volume.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/feat/feat_texture/__init__.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/feat/feat_texture/common.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/feat/feat_texture/tex_all.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/feat/gate.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/feat/queue_event_extractor.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/logic/__init__.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/logic/ctrl.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/logic/job.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/logic/json_encoder.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/meta/__init__.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/meta/paths.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/read/const.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/read/hdf5_data.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/read/mapped.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/segm/__init__.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/segm/segm_thresh.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/segm/segm_torch/__init__.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/segm/segm_torch/segm_torch_base.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/segm/segm_torch/segm_torch_mpo.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/segm/segm_torch/segm_torch_sto.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/segm/segm_torch/torch_model.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/segm/segm_torch/torch_postproc.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/segm/segm_torch/torch_preproc.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/segm/segmenter.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/segm/segmenter_manager_thread.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/segm/segmenter_mpo.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/segm/segmenter_sto.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/write/__init__.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/write/deque_writer_thread.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/write/queue_collector_thread.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum/write/writer.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum.egg-info/dependency_links.txt +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum.egg-info/requires.txt +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/src/dcnum.egg-info/top_level.txt +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/conftest.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/data/fmt-hdf5_cytoshot_extended-moments-features.zip +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/data/fmt-hdf5_cytoshot_full-features_2023.zip +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/data/fmt-hdf5_cytoshot_full-features_2024.zip +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/data/fmt-hdf5_cytoshot_full-features_legacy_allev_2023.zip +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/data/fmt-hdf5_shapein_empty.zip +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/data/fmt-hdf5_shapein_raw-with-variable-length-logs.zip +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/data/segm-torch-model_unet-dcnum-test_g1_910c2.zip +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/data/segm-torch-test-data_unet-dcnum-test_g1_910c2.zip +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/helper_methods.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/requirements.txt +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_feat_background_base.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_feat_background_bg_copy.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_feat_background_bg_roll_median.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_feat_background_bg_sparsemed.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_feat_brightness.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_feat_event_extractor_manager.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_feat_gate.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_feat_haralick.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_feat_moments_based.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_feat_moments_based_extended.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_feat_volume.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_init.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_logic_job.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_logic_join.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_logic_json.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_logic_pipeline.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_meta_paths.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_meta_ppid_bg.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_meta_ppid_data.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_meta_ppid_feat.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_meta_ppid_gate.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_meta_ppid_segm.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_read_basin.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_read_concat_hdf5.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_read_hdf5_basins.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_read_hdf5_index_mapping.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_segm_base.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_segm_mpo.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_segm_no_mask_proc.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_segm_sto.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_segm_thresh.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_segm_torch.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_segm_torch_preproc.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_write_deque_writer_thread.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_write_queue_collector_thread.py +0 -0
- {dcnum-0.24.0 → dcnum-0.25.0}/tests/test_write_writer.py +0 -0
|
@@ -1,3 +1,7 @@
|
|
|
1
|
+
0.25.0
|
|
2
|
+
- feat: identify flickering in raw data via dcnum.read.detect_flickering
|
|
3
|
+
- fix: handle out-of-bounds slice indexing for BaseImageChunkCache
|
|
4
|
+
- fix: np.bool_ and np.floating not recognized in PPID parsing
|
|
1
5
|
0.24.0
|
|
2
6
|
- feat: add support for internal basins
|
|
3
7
|
- feat: "image_bg" as internal basin for "sparsemed" background computer
|
|
@@ -59,7 +59,7 @@ class BackgroundSparseMed(Background):
|
|
|
59
59
|
offset_correction: bool
|
|
60
60
|
The sparse median background correction produces one median
|
|
61
61
|
image for multiple input frames (BTW this also leads to very
|
|
62
|
-
efficient data storage with HDF5
|
|
62
|
+
efficient data storage with internal HDF5 basins). In
|
|
63
63
|
case the input frames are subject to frame-by-frame brightness
|
|
64
64
|
variations (e.g. flickering of the illumination source), it
|
|
65
65
|
is useful to have an offset value per frame that can then be
|
|
@@ -226,7 +226,7 @@ class BackgroundSparseMed(Background):
|
|
|
226
226
|
offset_correction: bool
|
|
227
227
|
The sparse median background correction produces one median
|
|
228
228
|
image for multiple input frames (BTW this also leads to very
|
|
229
|
-
efficient data storage with HDF5
|
|
229
|
+
efficient data storage with internal HDF5 basins). In
|
|
230
230
|
case the input frames are subject to frame-by-frame brightness
|
|
231
231
|
variations (e.g. flickering of the illumination source), it
|
|
232
232
|
is useful to have an offset value per frame that can then be
|
|
@@ -7,6 +7,7 @@ import pathlib
|
|
|
7
7
|
from typing import Dict, List, Protocol
|
|
8
8
|
import warnings
|
|
9
9
|
|
|
10
|
+
import numpy as np
|
|
10
11
|
|
|
11
12
|
#: Increment this string if there are breaking changes that make
|
|
12
13
|
#: previous pipelines unreproducible.
|
|
@@ -140,9 +141,9 @@ def kwargs_to_ppid(cls: ClassWithPPIDCapabilities,
|
|
|
140
141
|
path = pathlib.Path(val)
|
|
141
142
|
if path.exists():
|
|
142
143
|
val = path.name
|
|
143
|
-
if isinstance(val, bool):
|
|
144
|
+
if isinstance(val, (bool, np.bool_)):
|
|
144
145
|
val = int(val) # do not print e.g. "True"
|
|
145
|
-
elif isinstance(val, float):
|
|
146
|
+
elif isinstance(val, (float, np.floating)):
|
|
146
147
|
if val == int(val):
|
|
147
148
|
val = int(val) # omit the ".0" at the end
|
|
148
149
|
concat_strings.append(f"{abr}={val}")
|
|
@@ -1,5 +1,6 @@
|
|
|
1
1
|
# flake8: noqa: F401
|
|
2
2
|
from .cache import md5sum
|
|
3
3
|
from .const import PROTECTED_FEATURES
|
|
4
|
+
from .detect_flicker import detect_flickering
|
|
4
5
|
from .hdf5_data import HDF5Data, HDF5ImageCache, concatenated_hdf5_data
|
|
5
6
|
from .mapped import get_mapping_indices, get_mapped_object
|
|
@@ -36,9 +36,10 @@ class BaseImageChunkCache(abc.ABC):
|
|
|
36
36
|
def __getitem__(self, index):
|
|
37
37
|
if isinstance(index, (slice, list, np.ndarray)):
|
|
38
38
|
if isinstance(index, slice):
|
|
39
|
-
indices = np.arange(
|
|
40
|
-
|
|
41
|
-
|
|
39
|
+
indices = np.arange(
|
|
40
|
+
index.start or 0,
|
|
41
|
+
min(index.stop, len(self)) if index.stop else len(self),
|
|
42
|
+
index.step)
|
|
42
43
|
else:
|
|
43
44
|
indices = index
|
|
44
45
|
array_out = np.empty((len(indices),) + self.image_shape,
|
|
@@ -0,0 +1,44 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
|
|
3
|
+
from .hdf5_data import HDF5Data
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
def detect_flickering(image_data: np.ndarray | HDF5Data,
|
|
7
|
+
roi_height: int = 10,
|
|
8
|
+
brightness_threshold: float = 2.5,
|
|
9
|
+
count_threshold: int = 5,
|
|
10
|
+
max_frames: int = 1000):
|
|
11
|
+
"""Determine whether an image series experiences flickering
|
|
12
|
+
|
|
13
|
+
Flickering is an unwelcome phenomenon due to a faulty data
|
|
14
|
+
acquisition device. For instance, if there is random voltage noise in
|
|
15
|
+
the electronics managing the LED power, then the brightness of the
|
|
16
|
+
LED will vary randomly when the noise signal overlaps with the flash
|
|
17
|
+
triggering signal.
|
|
18
|
+
|
|
19
|
+
If flickering is detected, you should use the "sparsemed" background
|
|
20
|
+
computation with `offset_correction` set to True.
|
|
21
|
+
|
|
22
|
+
Parameters
|
|
23
|
+
----------
|
|
24
|
+
image_data:
|
|
25
|
+
sliceable object (e.g. numpy array or HDF5Data) containing
|
|
26
|
+
image data.
|
|
27
|
+
roi_height: int
|
|
28
|
+
height of the ROI in pixels for which to search for flickering;
|
|
29
|
+
the entire width of the image is used
|
|
30
|
+
brightness_threshold: float
|
|
31
|
+
brightness difference between individual ROIs median and median
|
|
32
|
+
of all ROI medians leading to a positive flickering event
|
|
33
|
+
count_threshold: int
|
|
34
|
+
minimum number of flickering events that would lead to a positive
|
|
35
|
+
flickering decision
|
|
36
|
+
max_frames: int
|
|
37
|
+
maximum number of frames to include in the flickering analysis
|
|
38
|
+
"""
|
|
39
|
+
# slice event axis first in case we have and HDF5Data instance
|
|
40
|
+
roi_data = image_data[:max_frames][:, :roi_height, :]
|
|
41
|
+
roi_median = np.median(roi_data, axis=(1, 2))
|
|
42
|
+
roi_offset = roi_median - np.median(roi_median)
|
|
43
|
+
flickering_events = np.sum(np.abs(roi_offset) >= abs(brightness_threshold))
|
|
44
|
+
return flickering_events >= count_threshold
|
|
@@ -46,6 +46,7 @@ src/dcnum/meta/ppid.py
|
|
|
46
46
|
src/dcnum/read/__init__.py
|
|
47
47
|
src/dcnum/read/cache.py
|
|
48
48
|
src/dcnum/read/const.py
|
|
49
|
+
src/dcnum/read/detect_flicker.py
|
|
49
50
|
src/dcnum/read/hdf5_data.py
|
|
50
51
|
src/dcnum/read/mapped.py
|
|
51
52
|
src/dcnum/segm/__init__.py
|
|
@@ -93,6 +94,7 @@ tests/test_meta_ppid_gate.py
|
|
|
93
94
|
tests/test_meta_ppid_segm.py
|
|
94
95
|
tests/test_read_basin.py
|
|
95
96
|
tests/test_read_concat_hdf5.py
|
|
97
|
+
tests/test_read_detect_flicker.py
|
|
96
98
|
tests/test_read_hdf5.py
|
|
97
99
|
tests/test_read_hdf5_basins.py
|
|
98
100
|
tests/test_read_hdf5_index_mapping.py
|
|
@@ -1,5 +1,7 @@
|
|
|
1
1
|
import inspect
|
|
2
2
|
|
|
3
|
+
import numpy as np
|
|
4
|
+
|
|
3
5
|
import pytest
|
|
4
6
|
|
|
5
7
|
from dcnum.meta import ppid
|
|
@@ -80,8 +82,14 @@ def test_unique_prefix_unordered(in_list, out_list):
|
|
|
80
82
|
"tem=90^te=a^o=0^wit=1^a=1000^win=red^tes=1"),
|
|
81
83
|
({"temperature": 10.1},
|
|
82
84
|
"tem=10.1^te=a^o=0^wit=1^a=1000^win=red^tes=1"),
|
|
85
|
+
({"temperature": 10.0},
|
|
86
|
+
"tem=10^te=a^o=0^wit=1^a=1000^win=red^tes=1"),
|
|
87
|
+
({"temperature": np.float16(9.0)},
|
|
88
|
+
"tem=9^te=a^o=0^wit=1^a=1000^win=red^tes=1"),
|
|
83
89
|
({"with_water": False, "wine_type": "blue"},
|
|
84
90
|
"tem=90^te=a^o=0^wit=0^a=1000^win=blue^tes=1"),
|
|
91
|
+
({"with_water": np.bool_(1), "wine_type": "blue"},
|
|
92
|
+
"tem=90^te=a^o=0^wit=1^a=1000^win=blue^tes=1"),
|
|
85
93
|
])
|
|
86
94
|
def test_kwargs_to_ppid(kwargs, pid):
|
|
87
95
|
ptest = ppid.kwargs_to_ppid(ExampleClass, "cook", kwargs)
|
|
@@ -0,0 +1,87 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
|
|
3
|
+
from dcnum.read import concatenated_hdf5_data, detect_flickering
|
|
4
|
+
|
|
5
|
+
from helper_methods import retrieve_data
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
def test_detect_flicker_basic():
|
|
9
|
+
image_data = np.full((500, 80, 320), 145)
|
|
10
|
+
flicker_indices = [4, 9, 10, 23, 439]
|
|
11
|
+
for idx in flicker_indices:
|
|
12
|
+
image_data[idx] += 5
|
|
13
|
+
assert detect_flickering(image_data,
|
|
14
|
+
roi_height=10,
|
|
15
|
+
brightness_threshold=5,
|
|
16
|
+
count_threshold=5,
|
|
17
|
+
max_frames=500,
|
|
18
|
+
)
|
|
19
|
+
|
|
20
|
+
assert not detect_flickering(image_data,
|
|
21
|
+
roi_height=10,
|
|
22
|
+
brightness_threshold=5,
|
|
23
|
+
count_threshold=6, # threshold too low
|
|
24
|
+
max_frames=500,
|
|
25
|
+
)
|
|
26
|
+
|
|
27
|
+
assert not detect_flickering(image_data,
|
|
28
|
+
roi_height=10,
|
|
29
|
+
brightness_threshold=6, # threshold too low
|
|
30
|
+
count_threshold=5,
|
|
31
|
+
max_frames=500,
|
|
32
|
+
)
|
|
33
|
+
|
|
34
|
+
assert not detect_flickering(image_data,
|
|
35
|
+
roi_height=10,
|
|
36
|
+
brightness_threshold=5,
|
|
37
|
+
count_threshold=5,
|
|
38
|
+
max_frames=400, # too few frames
|
|
39
|
+
)
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
def test_detect_flicker_hdf5data_instance():
|
|
43
|
+
path = retrieve_data("fmt-hdf5_cytoshot_full-features_2023.zip")
|
|
44
|
+
path_out = path.with_name("input.rtdc")
|
|
45
|
+
# create simple concatenated dataset, repeating a file
|
|
46
|
+
with concatenated_hdf5_data([path]*25, path_out=path_out) as hd:
|
|
47
|
+
assert len(hd) == 1000
|
|
48
|
+
assert not detect_flickering(hd.image)
|
|
49
|
+
assert detect_flickering(hd.image, brightness_threshold=1)
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
def test_detect_flicker_none():
|
|
53
|
+
image_data = np.full((500, 80, 320), 145)
|
|
54
|
+
assert not detect_flickering(image_data,
|
|
55
|
+
roi_height=10,
|
|
56
|
+
brightness_threshold=5,
|
|
57
|
+
count_threshold=5,
|
|
58
|
+
max_frames=500,
|
|
59
|
+
)
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
def test_detect_flicker_not_outside_roi():
|
|
63
|
+
image_data = np.full((500, 80, 320), 145)
|
|
64
|
+
flicker_indices = [4, 9, 10, 23, 439]
|
|
65
|
+
for idx in flicker_indices:
|
|
66
|
+
# only modify data outside the ROI
|
|
67
|
+
image_data[idx, 11:, :] += 5
|
|
68
|
+
assert not detect_flickering(image_data,
|
|
69
|
+
roi_height=10,
|
|
70
|
+
brightness_threshold=5,
|
|
71
|
+
count_threshold=5,
|
|
72
|
+
max_frames=500,
|
|
73
|
+
)
|
|
74
|
+
|
|
75
|
+
|
|
76
|
+
def test_detect_flicker_only_inside_roi():
|
|
77
|
+
image_data = np.full((500, 80, 320), 145)
|
|
78
|
+
flicker_indices = [4, 9, 10, 23, 439]
|
|
79
|
+
for idx in flicker_indices:
|
|
80
|
+
# only modify data inside the ROI
|
|
81
|
+
image_data[idx, :10, :] += 5
|
|
82
|
+
assert detect_flickering(image_data,
|
|
83
|
+
roi_height=10,
|
|
84
|
+
brightness_threshold=5,
|
|
85
|
+
count_threshold=5,
|
|
86
|
+
max_frames=500,
|
|
87
|
+
)
|
|
@@ -106,6 +106,19 @@ def test_image_cache(tmp_path):
|
|
|
106
106
|
assert 2 in hic.cache
|
|
107
107
|
|
|
108
108
|
|
|
109
|
+
def test_image_cache_slice_out_of_bounds(tmp_path):
|
|
110
|
+
path = tmp_path / "test.hdf5"
|
|
111
|
+
with h5py.File(path, "w") as hw:
|
|
112
|
+
hw["events/image"] = np.random.rand(210, 80, 180)
|
|
113
|
+
|
|
114
|
+
with h5py.File(path, "r") as h5:
|
|
115
|
+
hic = read.HDF5ImageCache(h5["events/image"],
|
|
116
|
+
chunk_size=100,
|
|
117
|
+
cache_size=2)
|
|
118
|
+
assert len(hic) == 210
|
|
119
|
+
assert len(hic[:300]) == 210
|
|
120
|
+
|
|
121
|
+
|
|
109
122
|
def test_image_cache_index_out_of_range(tmp_path):
|
|
110
123
|
path = tmp_path / "test.hdf5"
|
|
111
124
|
size = 20
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{dcnum-0.24.0 → dcnum-0.25.0}/tests/data/fmt-hdf5_cytoshot_full-features_legacy_allev_2023.zip
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|