datatailr 0.1.5__tar.gz → 0.1.79__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of datatailr might be problematic. Click here for more details.

Files changed (59) hide show
  1. datatailr-0.1.79/PKG-INFO +154 -0
  2. datatailr-0.1.79/README.md +117 -0
  3. {datatailr-0.1.5 → datatailr-0.1.79}/pyproject.toml +19 -3
  4. datatailr-0.1.79/setup.py +21 -0
  5. {datatailr-0.1.5 → datatailr-0.1.79}/src/datatailr/__init__.py +15 -35
  6. {datatailr-0.1.5 → datatailr-0.1.79}/src/datatailr/acl.py +40 -8
  7. {datatailr-0.1.5 → datatailr-0.1.79}/src/datatailr/blob.py +26 -15
  8. datatailr-0.1.79/src/datatailr/build/image.py +162 -0
  9. {datatailr-0.1.5 → datatailr-0.1.79}/src/datatailr/dt_json.py +32 -0
  10. datatailr-0.1.79/src/datatailr/errors.py +27 -0
  11. datatailr-0.1.79/src/datatailr/excel/__init__.py +34 -0
  12. datatailr-0.1.79/src/datatailr/excel/addin.py +201 -0
  13. datatailr-0.1.79/src/datatailr/excel/stubs.py +37 -0
  14. {datatailr-0.1.5 → datatailr-0.1.79}/src/datatailr/group.py +19 -13
  15. {datatailr-0.1.5 → datatailr-0.1.79}/src/datatailr/logging.py +59 -17
  16. datatailr-0.1.79/src/datatailr/scheduler/__init__.py +60 -0
  17. datatailr-0.1.79/src/datatailr/scheduler/arguments_cache.py +168 -0
  18. datatailr-0.1.79/src/datatailr/scheduler/base.py +466 -0
  19. {datatailr-0.1.5 → datatailr-0.1.79}/src/datatailr/scheduler/batch.py +240 -21
  20. {datatailr-0.1.5 → datatailr-0.1.79}/src/datatailr/scheduler/batch_decorator.py +66 -27
  21. {datatailr-0.1.5 → datatailr-0.1.79}/src/datatailr/scheduler/constants.py +2 -2
  22. datatailr-0.1.79/src/datatailr/scheduler/job.py +112 -0
  23. datatailr-0.1.79/src/datatailr/scheduler/schedule.py +117 -0
  24. {datatailr-0.1.5 → datatailr-0.1.79}/src/datatailr/scheduler/utils.py +3 -1
  25. datatailr-0.1.79/src/datatailr/scheduler/workflow.py +84 -0
  26. datatailr-0.1.79/src/datatailr/tag.py +35 -0
  27. {datatailr-0.1.5 → datatailr-0.1.79}/src/datatailr/user.py +27 -17
  28. datatailr-0.1.79/src/datatailr/utils.py +67 -0
  29. {datatailr-0.1.5 → datatailr-0.1.79}/src/datatailr/wrapper.py +15 -13
  30. datatailr-0.1.79/src/datatailr.egg-info/PKG-INFO +154 -0
  31. {datatailr-0.1.5 → datatailr-0.1.79}/src/datatailr.egg-info/SOURCES.txt +12 -3
  32. datatailr-0.1.79/src/datatailr.egg-info/entry_points.txt +6 -0
  33. datatailr-0.1.79/src/datatailr.egg-info/requires.txt +15 -0
  34. datatailr-0.1.79/src/datatailr.egg-info/top_level.txt +1 -0
  35. datatailr-0.1.79/src/sbin/datatailr_run.py +324 -0
  36. datatailr-0.1.79/src/sbin/datatailr_run_app.py +52 -0
  37. datatailr-0.1.5/src/sbin/run_job.py → datatailr-0.1.79/src/sbin/datatailr_run_batch.py +5 -20
  38. datatailr-0.1.79/src/sbin/datatailr_run_excel.py +42 -0
  39. datatailr-0.1.79/src/sbin/datatailr_run_service.py +36 -0
  40. datatailr-0.1.5/PKG-INFO +0 -75
  41. datatailr-0.1.5/README.md +0 -45
  42. datatailr-0.1.5/setup.py +0 -10
  43. datatailr-0.1.5/src/datatailr/build/image.py +0 -87
  44. datatailr-0.1.5/src/datatailr/errors.py +0 -10
  45. datatailr-0.1.5/src/datatailr/scheduler/__init__.py +0 -38
  46. datatailr-0.1.5/src/datatailr/scheduler/arguments_cache.py +0 -126
  47. datatailr-0.1.5/src/datatailr/scheduler/base.py +0 -245
  48. datatailr-0.1.5/src/datatailr/utils.py +0 -35
  49. datatailr-0.1.5/src/datatailr.egg-info/PKG-INFO +0 -75
  50. datatailr-0.1.5/src/datatailr.egg-info/entry_points.txt +0 -2
  51. datatailr-0.1.5/src/datatailr.egg-info/requires.txt +0 -8
  52. datatailr-0.1.5/src/datatailr.egg-info/top_level.txt +0 -2
  53. datatailr-0.1.5/src/test_module/__init__.py +0 -17
  54. datatailr-0.1.5/src/test_module/test_submodule.py +0 -38
  55. {datatailr-0.1.5 → datatailr-0.1.79}/LICENSE +0 -0
  56. {datatailr-0.1.5 → datatailr-0.1.79}/setup.cfg +0 -0
  57. {datatailr-0.1.5 → datatailr-0.1.79}/src/datatailr/build/__init__.py +0 -0
  58. {datatailr-0.1.5 → datatailr-0.1.79}/src/datatailr/version.py +0 -0
  59. {datatailr-0.1.5 → datatailr-0.1.79}/src/datatailr.egg-info/dependency_links.txt +0 -0
@@ -0,0 +1,154 @@
1
+ Metadata-Version: 2.4
2
+ Name: datatailr
3
+ Version: 0.1.79
4
+ Summary: Ready-to-Use Platform That Drives Business Insights
5
+ Author-email: Datatailr <info@datatailr.com>
6
+ License-Expression: MIT
7
+ Project-URL: homepage, https://www.datatailr.com/
8
+ Project-URL: documentation, https://docs.datatailr.com/
9
+ Classifier: Programming Language :: Python :: 3
10
+ Classifier: Programming Language :: Python :: 3 :: Only
11
+ Classifier: Programming Language :: Python :: 3.9
12
+ Classifier: Programming Language :: Python :: 3.10
13
+ Classifier: Programming Language :: Python :: 3.11
14
+ Classifier: Programming Language :: Python :: 3.12
15
+ Classifier: Programming Language :: Python :: 3.13
16
+ Classifier: Environment :: Console
17
+ Classifier: Operating System :: OS Independent
18
+ Classifier: Topic :: Scientific/Engineering
19
+ Requires-Python: >=3.9
20
+ Description-Content-Type: text/markdown
21
+ License-File: LICENSE
22
+ Provides-Extra: dev
23
+ Requires-Dist: ruff; extra == "dev"
24
+ Requires-Dist: pre-commit; extra == "dev"
25
+ Requires-Dist: mypy; extra == "dev"
26
+ Requires-Dist: types-setuptools; extra == "dev"
27
+ Requires-Dist: toml; extra == "dev"
28
+ Requires-Dist: coverage; extra == "dev"
29
+ Requires-Dist: sphinx-rtd-theme; extra == "dev"
30
+ Requires-Dist: sphinx; extra == "dev"
31
+ Requires-Dist: sphinx-autodoc-typehints; extra == "dev"
32
+ Requires-Dist: sphinx-autosummary; extra == "dev"
33
+ Requires-Dist: sphinx-design; extra == "dev"
34
+ Requires-Dist: sphinx-copybutton; extra == "dev"
35
+ Requires-Dist: myst-parser; extra == "dev"
36
+ Dynamic: license-file
37
+
38
+ <div style="text-align: center;">
39
+ <a href="https://www.datatailr.com/" target="_blank">
40
+ <img src="https://s3.eu-west-1.amazonaws.com/datatailr.com/assets/datatailr-logo.svg" alt="Datatailr Logo" />
41
+ </a>
42
+ </div>
43
+
44
+ ---
45
+
46
+ **Datatailr empowers your team to streamline analytics and data workflows
47
+ from idea to production without infrastructure hurdles.**
48
+
49
+ # What is Datatailr?
50
+
51
+ Datatailr is a platform that simplifies the process of building and deploying data applications.
52
+
53
+ It makes it easier to run and maintain large-scale data processing and analytics workloads.
54
+
55
+ ## What is this package?
56
+ This is the Python package for Datatailr, which allows you to interact with the Datatailr platform.
57
+
58
+ It provides the tools to build, deploy, and manage batch jobs, data pipelines, services and analytics applications.
59
+
60
+ Datatailr manages the underlying infrastructure so your applications can be deployed in an easy, secure and scalable way.
61
+
62
+ ## Installation
63
+
64
+ ### Installing the `dt` command line tool
65
+ Before you can use the Datatailr Python package, you need to install the `dt` command line tool.
66
+ **[INSTALLATION INSTRUCTIONS FOR DATATAILR GO HERE]**
67
+
68
+ ### Installing the Python package
69
+ You can install the Datatailr Python package using pip:
70
+ ```bash
71
+ pip install datatailr
72
+ ```
73
+
74
+ ### Testing the installation
75
+ ```python
76
+ import datatailr
77
+
78
+ print(datatailr.__version__)
79
+ print(datatailr.__provider__)
80
+ ```
81
+
82
+
83
+ ## Quickstart
84
+ The following example shows how to create a simple data pipeline using the Datatailr Python package.
85
+
86
+ ```python
87
+ from datatailr import workflow, task
88
+
89
+ @task()
90
+ def func_no_args() -> str:
91
+ return "no_args"
92
+
93
+
94
+ @task()
95
+ def func_with_args(a: int, b: float) -> str:
96
+ return f"args: {a}, {b}"
97
+
98
+ @workflow(name="MY test DAG")
99
+ def my_workflow():
100
+ for n in range(2):
101
+ res1 = func_no_args().alias(f"func_{n}")
102
+ res2 = func_with_args(1, res1).alias(f"func_with_args_{n}")
103
+ my_workflow(local_run=True)
104
+ ```
105
+
106
+ Running this code will create a graph of jobs and execute it.
107
+ Each node on the graph represents a job, which in turn is a call to a function decorated with `@task()`.
108
+
109
+ Since this is a local run then the execution of each node will happen sequentially in the same process.
110
+
111
+ To take advantage of the datatailr platform and execute the graph at scale, you can run it using the job scheduler as presented in the next section.
112
+
113
+ ## Execution at Scale
114
+ To execute the graph at scale, you can use the Datatailr job scheduler. This allows you to run your jobs in parallel, taking advantage of the underlying infrastructure.
115
+
116
+ You will first need to separate your function definitions from the DAG definition. This means you should define your functions as a separate module, which can be imported into the DAG definition.
117
+
118
+
119
+ ```python
120
+ # my_module.py
121
+
122
+ from datatailr import task
123
+
124
+ @task()
125
+ def func_no_args() -> str:
126
+ return "no_args"
127
+
128
+
129
+ @task()
130
+ def func_with_args(a: int, b: float) -> str:
131
+ return f"args: {a}, {b}"
132
+ ```
133
+
134
+ To use these functions in a batch job, you just need to import them and run in a DAG context:
135
+
136
+ ```python
137
+ from my_module import func_no_args, func_with_args
138
+ from datatailr import workflow
139
+
140
+ @workflow(name="MY test DAG")
141
+ def my_workflow():
142
+ for n in range(2):
143
+ res1 = func_no_args().alias(f"func_{n}")
144
+ res2 = func_with_args(1, res1).alias(f"func_with_args_{n}")
145
+
146
+ schedule = Schedule(at_hours=0)
147
+ my_workflow(schedule=schedule)
148
+ ```
149
+
150
+ This will submit the entire workflow for execution, and the scheduler will take care of running the jobs in parallel and managing the resources.
151
+ The workflow in the example above will be scheduled to run daily at 00:00.
152
+
153
+ ___
154
+ Visit [our website](https://www.datatailr.com/) for more!
@@ -0,0 +1,117 @@
1
+ <div style="text-align: center;">
2
+ <a href="https://www.datatailr.com/" target="_blank">
3
+ <img src="https://s3.eu-west-1.amazonaws.com/datatailr.com/assets/datatailr-logo.svg" alt="Datatailr Logo" />
4
+ </a>
5
+ </div>
6
+
7
+ ---
8
+
9
+ **Datatailr empowers your team to streamline analytics and data workflows
10
+ from idea to production without infrastructure hurdles.**
11
+
12
+ # What is Datatailr?
13
+
14
+ Datatailr is a platform that simplifies the process of building and deploying data applications.
15
+
16
+ It makes it easier to run and maintain large-scale data processing and analytics workloads.
17
+
18
+ ## What is this package?
19
+ This is the Python package for Datatailr, which allows you to interact with the Datatailr platform.
20
+
21
+ It provides the tools to build, deploy, and manage batch jobs, data pipelines, services and analytics applications.
22
+
23
+ Datatailr manages the underlying infrastructure so your applications can be deployed in an easy, secure and scalable way.
24
+
25
+ ## Installation
26
+
27
+ ### Installing the `dt` command line tool
28
+ Before you can use the Datatailr Python package, you need to install the `dt` command line tool.
29
+ **[INSTALLATION INSTRUCTIONS FOR DATATAILR GO HERE]**
30
+
31
+ ### Installing the Python package
32
+ You can install the Datatailr Python package using pip:
33
+ ```bash
34
+ pip install datatailr
35
+ ```
36
+
37
+ ### Testing the installation
38
+ ```python
39
+ import datatailr
40
+
41
+ print(datatailr.__version__)
42
+ print(datatailr.__provider__)
43
+ ```
44
+
45
+
46
+ ## Quickstart
47
+ The following example shows how to create a simple data pipeline using the Datatailr Python package.
48
+
49
+ ```python
50
+ from datatailr import workflow, task
51
+
52
+ @task()
53
+ def func_no_args() -> str:
54
+ return "no_args"
55
+
56
+
57
+ @task()
58
+ def func_with_args(a: int, b: float) -> str:
59
+ return f"args: {a}, {b}"
60
+
61
+ @workflow(name="MY test DAG")
62
+ def my_workflow():
63
+ for n in range(2):
64
+ res1 = func_no_args().alias(f"func_{n}")
65
+ res2 = func_with_args(1, res1).alias(f"func_with_args_{n}")
66
+ my_workflow(local_run=True)
67
+ ```
68
+
69
+ Running this code will create a graph of jobs and execute it.
70
+ Each node on the graph represents a job, which in turn is a call to a function decorated with `@task()`.
71
+
72
+ Since this is a local run then the execution of each node will happen sequentially in the same process.
73
+
74
+ To take advantage of the datatailr platform and execute the graph at scale, you can run it using the job scheduler as presented in the next section.
75
+
76
+ ## Execution at Scale
77
+ To execute the graph at scale, you can use the Datatailr job scheduler. This allows you to run your jobs in parallel, taking advantage of the underlying infrastructure.
78
+
79
+ You will first need to separate your function definitions from the DAG definition. This means you should define your functions as a separate module, which can be imported into the DAG definition.
80
+
81
+
82
+ ```python
83
+ # my_module.py
84
+
85
+ from datatailr import task
86
+
87
+ @task()
88
+ def func_no_args() -> str:
89
+ return "no_args"
90
+
91
+
92
+ @task()
93
+ def func_with_args(a: int, b: float) -> str:
94
+ return f"args: {a}, {b}"
95
+ ```
96
+
97
+ To use these functions in a batch job, you just need to import them and run in a DAG context:
98
+
99
+ ```python
100
+ from my_module import func_no_args, func_with_args
101
+ from datatailr import workflow
102
+
103
+ @workflow(name="MY test DAG")
104
+ def my_workflow():
105
+ for n in range(2):
106
+ res1 = func_no_args().alias(f"func_{n}")
107
+ res2 = func_with_args(1, res1).alias(f"func_with_args_{n}")
108
+
109
+ schedule = Schedule(at_hours=0)
110
+ my_workflow(schedule=schedule)
111
+ ```
112
+
113
+ This will submit the entire workflow for execution, and the scheduler will take care of running the jobs in parallel and managing the resources.
114
+ The workflow in the example above will be scheduled to run daily at 00:00.
115
+
116
+ ___
117
+ Visit [our website](https://www.datatailr.com/) for more!
@@ -1,10 +1,10 @@
1
1
  [build-system]
2
- requires = ["setuptools>=60", "wheel", "toml"]
2
+ requires = ["setuptools", "wheel", "toml"]
3
3
  build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "datatailr"
7
- version = "0.1.5"
7
+ version = "0.1.79"
8
8
  description = "Ready-to-Use Platform That Drives Business Insights"
9
9
  readme = "README.md"
10
10
  requires-python = ">=3.9"
@@ -34,7 +34,11 @@ homepage = "https://www.datatailr.com/"
34
34
  documentation = "https://docs.datatailr.com/"
35
35
 
36
36
  [project.scripts]
37
- run_dt_job = "datatailr.sbin.run_job:main"
37
+ datatailr_run = "datatailr.sbin.datatailr_run:main"
38
+ datatailr_run_batch = "datatailr.sbin.datatailr_run_batch:run"
39
+ datatailr_run_app = "datatailr.sbin.datatailr_run_app:run"
40
+ datatailr_run_excel = "datatailr.sbin.datatailr_run_excel:run"
41
+ datatailr_run_service = "datatailr.sbin.datatailr_run_service:run"
38
42
 
39
43
  [project.optional-dependencies]
40
44
  dev = [
@@ -44,13 +48,25 @@ dev = [
44
48
  "types-setuptools",
45
49
  "toml",
46
50
  "coverage",
51
+ "sphinx-rtd-theme",
52
+ "sphinx",
53
+ "sphinx-autodoc-typehints",
54
+ "sphinx-autosummary",
55
+ "sphinx-design",
56
+ "sphinx-copybutton",
57
+ "myst-parser"
47
58
  ]
48
59
 
60
+ [tool.coverage.run]
61
+ branch = true
62
+ source = ["./src/datatailr"]
63
+
49
64
  [tool.ruff]
50
65
  src = [
51
66
  "src",
52
67
  "../../tests/src/python"
53
68
  ]
69
+
54
70
  lint.ignore = ["F841"]
55
71
  show-fixes = true
56
72
  fix = true
@@ -0,0 +1,21 @@
1
+ from datatailr import __version__ # type: ignore
2
+ from setuptools import find_packages, setup
3
+
4
+ setup(
5
+ name="datatailr",
6
+ version=__version__,
7
+ packages=find_packages(where="src", exclude=["test_module", "test_module.*"]),
8
+ package_dir={"": "src"},
9
+ data_files=[
10
+ (
11
+ "/datatailr/sbin",
12
+ [
13
+ "src/sbin/datatailr_run.py",
14
+ "src/sbin/datatailr_run_batch.py",
15
+ "src/sbin/datatailr_run_app.py",
16
+ "src/sbin/datatailr_run_excel.py",
17
+ "src/sbin/datatailr_run_service.py",
18
+ ],
19
+ )
20
+ ],
21
+ )
@@ -8,32 +8,22 @@
8
8
  # of this file, in parts or full, via any medium is strictly prohibited.
9
9
  # *************************************************************************
10
10
 
11
- from datatailr.wrapper import (
12
- dt__Blob,
13
- dt__Dns,
14
- dt__Email,
15
- dt__Group,
16
- dt__Job,
17
- dt__Kv,
18
- dt__Log,
19
- dt__Node,
20
- dt__Registry,
21
- dt__Service,
22
- dt__Settings,
23
- dt__Sms,
24
- dt__System,
25
- dt__Tag,
26
- dt__User,
27
- mock_cli_tool,
28
- )
11
+ from datatailr.wrapper import dt__System, mock_cli_tool
29
12
  from datatailr.group import Group
30
13
  from datatailr.user import User
31
14
  from datatailr.acl import ACL
32
15
  from datatailr.blob import Blob
33
16
  from datatailr.build import Image
34
- from datatailr.dt_json import dt_json
35
17
  from datatailr.utils import Environment, is_dt_installed
36
18
  from datatailr.version import __version__
19
+ from datatailr.scheduler import (
20
+ App,
21
+ Service,
22
+ ExcelAddin,
23
+ workflow,
24
+ task,
25
+ set_allow_unsafe_scheduling,
26
+ )
37
27
 
38
28
  system = dt__System()
39
29
  if isinstance(system, mock_cli_tool):
@@ -50,21 +40,11 @@ __all__ = [
50
40
  "User",
51
41
  "__version__",
52
42
  "__provider__",
53
- "dt__Blob",
54
- "dt__Dns",
55
- "dt__Email",
56
- "dt__Group",
57
- "dt__Job",
58
- "dt__Kv",
59
- "dt__Log",
60
- "dt__Node",
61
- "dt__Registry",
62
- "dt__Service",
63
- "dt__Settings",
64
- "dt__Sms",
65
- "dt__System",
66
- "dt__Tag",
67
- "dt__User",
68
- "dt_json",
69
43
  "is_dt_installed",
44
+ "App",
45
+ "Service",
46
+ "ExcelAddin",
47
+ "workflow",
48
+ "task",
49
+ "set_allow_unsafe_scheduling",
70
50
  ]
@@ -8,6 +8,8 @@
8
8
  # of this file, in parts or full, via any medium is strictly prohibited.
9
9
  # *************************************************************************
10
10
 
11
+ from __future__ import annotations
12
+
11
13
  import json
12
14
  from typing import List, Optional, Union
13
15
 
@@ -23,15 +25,15 @@ class ACL:
23
25
  self,
24
26
  user: Union[User, str],
25
27
  group: Optional[Union[Group, str]] = None,
26
- permissions: Optional[List[str]] = None,
28
+ permissions: Optional[List[str] | str] = None,
27
29
  ):
28
30
  if user is None:
29
31
  user = User.signed_user()
30
32
  self.user = user if isinstance(user, User) else User.get(user)
31
- if self.user is not None:
32
- self.group = (
33
- group if group and isinstance(group, Group) else self.user.primary_group
34
- )
33
+ if group is None:
34
+ group = self.user.primary_group
35
+ group = group if isinstance(group, Group) else Group.get(str(group))
36
+ self.group = group
35
37
  self.permissions = permissions or "rwr---"
36
38
 
37
39
  self.__group_can_read = False
@@ -40,9 +42,9 @@ class ACL:
40
42
  self.__user_can_write = False
41
43
  self.__world_readable = False
42
44
 
43
- self.__parse_permissions()
45
+ self.__parse_permissions_string()
44
46
 
45
- def __parse_permissions(self):
47
+ def __parse_permissions_string(self):
46
48
  """
47
49
  Parse the permissions and set the corresponding flags.
48
50
  """
@@ -59,6 +61,19 @@ class ACL:
59
61
  self.__world_readable = self.permissions[4] == "r"
60
62
  self.__world_writable = self.permissions[5] == "w"
61
63
 
64
+ def _set_permissions_string(self):
65
+ """
66
+ Set the permissions string based on the current flags.
67
+ """
68
+ self.permissions = (
69
+ f"{'r' if self.__user_can_read else '-'}"
70
+ f"{'w' if self.__user_can_write else '-'}"
71
+ f"{'r' if self.__group_can_read else '-'}"
72
+ f"{'w' if self.__group_can_write else '-'}"
73
+ f"{'r' if self.__world_readable else '-'}"
74
+ f"{'w' if self.__world_writable else '-'}"
75
+ )
76
+
62
77
  def __repr__(self):
63
78
  return (
64
79
  f"ACL(user={self.user}, group={self.group}, permissions={self.permissions})"
@@ -67,7 +82,7 @@ class ACL:
67
82
  def to_dict(self):
68
83
  return {
69
84
  "user": self.user.name,
70
- "group": self.group.name if self.group else self.user.primary_group.name,
85
+ "group": self.group.name if self.group else "dtusers",
71
86
  "group_can_read": self.__group_can_read,
72
87
  "group_can_write": self.__group_can_write,
73
88
  "user_can_read": self.__user_can_read,
@@ -76,5 +91,22 @@ class ACL:
76
91
  "world_writable": self.__world_writable,
77
92
  }
78
93
 
94
+ @classmethod
95
+ def from_dict(cls, acl_dict: dict) -> ACL:
96
+ """
97
+ Create an ACL instance from a dictionary.
98
+ """
99
+ user = User(acl_dict["user"])
100
+ group = Group.get(acl_dict["group"]) if "group" in acl_dict else None
101
+ acl = cls(user=user, group=group)
102
+ acl.__group_can_read = acl_dict.get("group_can_read", False)
103
+ acl.__group_can_write = acl_dict.get("group_can_write", False)
104
+ acl.__user_can_read = acl_dict.get("user_can_read", False)
105
+ acl.__user_can_write = acl_dict.get("user_can_write", False)
106
+ acl.__world_readable = acl_dict.get("world_readable", False)
107
+ acl.__world_writable = acl_dict.get("world_writable", False)
108
+ acl._set_permissions_string()
109
+ return acl
110
+
79
111
  def to_json(self):
80
112
  return json.dumps(self.to_dict())
@@ -10,14 +10,17 @@
10
10
 
11
11
  from __future__ import annotations
12
12
 
13
+ import os
13
14
  import tempfile
14
15
 
15
- from datatailr import dt__Blob
16
+ from datatailr.wrapper import dt__Blob
16
17
 
18
+ # Datatailr Blob API Client
19
+ __client__ = dt__Blob()
20
+ __user__ = os.getenv("USER", "root")
17
21
 
18
- class Blob:
19
- __blob_storage__ = dt__Blob()
20
22
 
23
+ class Blob:
21
24
  def ls(self, path: str) -> list[str]:
22
25
  """
23
26
  List files in the specified path.
@@ -25,7 +28,7 @@ class Blob:
25
28
  :param path: The path to list files from.
26
29
  :return: A list of file names in the specified path.
27
30
  """
28
- return self.__blob_storage__.ls(path)
31
+ return __client__.ls(path)
29
32
 
30
33
  def get_file(self, name: str, path: str):
31
34
  """
@@ -35,7 +38,7 @@ class Blob:
35
38
  name (str): The name of the blob to retrieve.
36
39
  path (str): The path to store the blob as a file.
37
40
  """
38
- return self.__blob_storage__.cp(f"blob:///{name}", path)
41
+ return __client__.cp(f"blob://{name}", path)
39
42
 
40
43
  def put_file(self, name: str, path: str):
41
44
  """
@@ -45,7 +48,7 @@ class Blob:
45
48
  name (str): The name of the blob to create.
46
49
  path (str): The path of the local file to copy.
47
50
  """
48
- return self.__blob_storage__.cp(path, f"blob:///{name}")
51
+ return __client__.cp(path, f"blob://{name}")
49
52
 
50
53
  def exists(self, name: str) -> bool:
51
54
  """
@@ -57,7 +60,7 @@ class Blob:
57
60
  Returns:
58
61
  bool: True if the blob exists, False otherwise.
59
62
  """
60
- return self.__blob_storage__.exists(name)
63
+ return __client__.exists(name)
61
64
 
62
65
  def delete(self, name: str):
63
66
  """
@@ -66,7 +69,7 @@ class Blob:
66
69
  Args:
67
70
  name (str): The name of the blob to delete.
68
71
  """
69
- return self.__blob_storage__.rm(name)
72
+ return __client__.rm(name)
70
73
 
71
74
  def get_blob(self, name: str):
72
75
  """
@@ -80,10 +83,15 @@ class Blob:
80
83
  """
81
84
  # Since direct reading and writting of blobs is not implemented yet, we are using a temporary file.
82
85
  # This is a workaround to allow reading the blob content directly from the blob storage.
83
-
84
- with tempfile.NamedTemporaryFile(delete=False) as temp_file:
86
+ temp_dir = f"/home/{__user__}/tmp"
87
+ if not os.path.exists(temp_dir):
88
+ temp_dir = "/tmp"
89
+ else:
90
+ temp_dir += "/.dt"
91
+ os.makedirs(temp_dir, exist_ok=True)
92
+ with tempfile.NamedTemporaryFile(dir=temp_dir, delete=True) as temp_file:
85
93
  self.get_file(name, temp_file.name)
86
- with open(temp_file.name, "rb") as f:
94
+ with open(temp_file.name, "r") as f:
87
95
  return f.read()
88
96
 
89
97
  def put_blob(self, name: str, blob):
@@ -96,8 +104,11 @@ class Blob:
96
104
  """
97
105
  # Since direct reading and writting of blobs is not implemented yet, we are using a temporary file.
98
106
  # This is a workaround to allow writing the blob content directly to the blob storage.
99
-
100
- with tempfile.NamedTemporaryFile(delete=False) as temp_file:
101
- with open(temp_file.name, "wb") as f:
102
- f.write(blob)
107
+ with tempfile.NamedTemporaryFile(delete=True) as temp_file:
108
+ if isinstance(blob, bytes):
109
+ with open(temp_file.name, "wb") as f:
110
+ f.write(blob)
111
+ else:
112
+ with open(temp_file.name, "w") as f:
113
+ f.write(blob)
103
114
  self.put_file(name, temp_file.name)