datatailr 0.1.12__tar.gz → 0.1.14__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of datatailr might be problematic. Click here for more details.
- {datatailr-0.1.12/src/datatailr.egg-info → datatailr-0.1.14}/PKG-INFO +9 -9
- {datatailr-0.1.12 → datatailr-0.1.14}/README.md +8 -8
- {datatailr-0.1.12 → datatailr-0.1.14}/pyproject.toml +1 -1
- {datatailr-0.1.12 → datatailr-0.1.14/src/datatailr.egg-info}/PKG-INFO +9 -9
- {datatailr-0.1.12 → datatailr-0.1.14}/LICENSE +0 -0
- {datatailr-0.1.12 → datatailr-0.1.14}/setup.cfg +0 -0
- {datatailr-0.1.12 → datatailr-0.1.14}/setup.py +0 -0
- {datatailr-0.1.12 → datatailr-0.1.14}/src/datatailr/__init__.py +0 -0
- {datatailr-0.1.12 → datatailr-0.1.14}/src/datatailr/acl.py +0 -0
- {datatailr-0.1.12 → datatailr-0.1.14}/src/datatailr/blob.py +0 -0
- {datatailr-0.1.12 → datatailr-0.1.14}/src/datatailr/build/__init__.py +0 -0
- {datatailr-0.1.12 → datatailr-0.1.14}/src/datatailr/build/image.py +0 -0
- {datatailr-0.1.12 → datatailr-0.1.14}/src/datatailr/dt_json.py +0 -0
- {datatailr-0.1.12 → datatailr-0.1.14}/src/datatailr/errors.py +0 -0
- {datatailr-0.1.12 → datatailr-0.1.14}/src/datatailr/group.py +0 -0
- {datatailr-0.1.12 → datatailr-0.1.14}/src/datatailr/logging.py +0 -0
- {datatailr-0.1.12 → datatailr-0.1.14}/src/datatailr/scheduler/__init__.py +0 -0
- {datatailr-0.1.12 → datatailr-0.1.14}/src/datatailr/scheduler/arguments_cache.py +0 -0
- {datatailr-0.1.12 → datatailr-0.1.14}/src/datatailr/scheduler/base.py +0 -0
- {datatailr-0.1.12 → datatailr-0.1.14}/src/datatailr/scheduler/batch.py +0 -0
- {datatailr-0.1.12 → datatailr-0.1.14}/src/datatailr/scheduler/batch_decorator.py +0 -0
- {datatailr-0.1.12 → datatailr-0.1.14}/src/datatailr/scheduler/constants.py +0 -0
- {datatailr-0.1.12 → datatailr-0.1.14}/src/datatailr/scheduler/schedule.py +0 -0
- {datatailr-0.1.12 → datatailr-0.1.14}/src/datatailr/scheduler/utils.py +0 -0
- {datatailr-0.1.12 → datatailr-0.1.14}/src/datatailr/user.py +0 -0
- {datatailr-0.1.12 → datatailr-0.1.14}/src/datatailr/utils.py +0 -0
- {datatailr-0.1.12 → datatailr-0.1.14}/src/datatailr/version.py +0 -0
- {datatailr-0.1.12 → datatailr-0.1.14}/src/datatailr/wrapper.py +0 -0
- {datatailr-0.1.12 → datatailr-0.1.14}/src/datatailr.egg-info/SOURCES.txt +0 -0
- {datatailr-0.1.12 → datatailr-0.1.14}/src/datatailr.egg-info/dependency_links.txt +0 -0
- {datatailr-0.1.12 → datatailr-0.1.14}/src/datatailr.egg-info/entry_points.txt +0 -0
- {datatailr-0.1.12 → datatailr-0.1.14}/src/datatailr.egg-info/requires.txt +0 -0
- {datatailr-0.1.12 → datatailr-0.1.14}/src/datatailr.egg-info/top_level.txt +0 -0
- {datatailr-0.1.12 → datatailr-0.1.14}/src/sbin/datatailr_run.py +0 -0
- {datatailr-0.1.12 → datatailr-0.1.14}/src/sbin/datatailr_run_app.py +0 -0
- {datatailr-0.1.12 → datatailr-0.1.14}/src/sbin/datatailr_run_batch.py +0 -0
- {datatailr-0.1.12 → datatailr-0.1.14}/src/sbin/datatailr_run_excel.py +0 -0
- {datatailr-0.1.12 → datatailr-0.1.14}/src/sbin/datatailr_run_service.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: datatailr
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.14
|
|
4
4
|
Summary: Ready-to-Use Platform That Drives Business Insights
|
|
5
5
|
Author-email: Datatailr <info@datatailr.com>
|
|
6
6
|
License-Expression: MIT
|
|
@@ -86,12 +86,12 @@ The following example shows how to create a simple data pipeline using the Datat
|
|
|
86
86
|
```python
|
|
87
87
|
from datatailr.scheduler import batch, Batch
|
|
88
88
|
|
|
89
|
-
@
|
|
89
|
+
@batch_job_job()
|
|
90
90
|
def func_no_args() -> str:
|
|
91
91
|
return "no_args"
|
|
92
92
|
|
|
93
93
|
|
|
94
|
-
@
|
|
94
|
+
@batch_job()
|
|
95
95
|
def func_with_args(a: int, b: float) -> str:
|
|
96
96
|
return f"args: {a}, {b}"
|
|
97
97
|
|
|
@@ -102,7 +102,7 @@ with Batch(name="MY test DAG", local_run=True) as dag:
|
|
|
102
102
|
```
|
|
103
103
|
|
|
104
104
|
Running this code will create a graph of jobs and execute it.
|
|
105
|
-
Each node on the graph represents a job, which in turn is a call to a function decorated with `@
|
|
105
|
+
Each node on the graph represents a job, which in turn is a call to a function decorated with `@batch_job()`.
|
|
106
106
|
|
|
107
107
|
Since this is a local run then the execution of each node will happen sequentially in the same process.
|
|
108
108
|
|
|
@@ -117,14 +117,14 @@ You will first need to separate your function definitions from the DAG definitio
|
|
|
117
117
|
```python
|
|
118
118
|
# my_module.py
|
|
119
119
|
|
|
120
|
-
from datatailr.scheduler import
|
|
120
|
+
from datatailr.scheduler import batch_job, Batch
|
|
121
121
|
|
|
122
|
-
@
|
|
122
|
+
@batch_job()
|
|
123
123
|
def func_no_args() -> str:
|
|
124
124
|
return "no_args"
|
|
125
125
|
|
|
126
126
|
|
|
127
|
-
@
|
|
127
|
+
@batch_job()
|
|
128
128
|
def func_with_args(a: int, b: float) -> str:
|
|
129
129
|
return f"args: {a}, {b}"
|
|
130
130
|
```
|
|
@@ -133,9 +133,9 @@ To use these functions in a batch job, you just need to import them and run in a
|
|
|
133
133
|
|
|
134
134
|
```python
|
|
135
135
|
from my_module import func_no_args, func_with_args
|
|
136
|
-
from datatailr.scheduler import Schedule
|
|
136
|
+
from datatailr.scheduler import Batch, Schedule
|
|
137
137
|
|
|
138
|
-
schedule = Schedule(
|
|
138
|
+
schedule = Schedule(at_hours=0)
|
|
139
139
|
|
|
140
140
|
with Batch(name="MY test DAG", schedule=schedule) as dag:
|
|
141
141
|
for n in range(2):
|
|
@@ -49,12 +49,12 @@ The following example shows how to create a simple data pipeline using the Datat
|
|
|
49
49
|
```python
|
|
50
50
|
from datatailr.scheduler import batch, Batch
|
|
51
51
|
|
|
52
|
-
@
|
|
52
|
+
@batch_job_job()
|
|
53
53
|
def func_no_args() -> str:
|
|
54
54
|
return "no_args"
|
|
55
55
|
|
|
56
56
|
|
|
57
|
-
@
|
|
57
|
+
@batch_job()
|
|
58
58
|
def func_with_args(a: int, b: float) -> str:
|
|
59
59
|
return f"args: {a}, {b}"
|
|
60
60
|
|
|
@@ -65,7 +65,7 @@ with Batch(name="MY test DAG", local_run=True) as dag:
|
|
|
65
65
|
```
|
|
66
66
|
|
|
67
67
|
Running this code will create a graph of jobs and execute it.
|
|
68
|
-
Each node on the graph represents a job, which in turn is a call to a function decorated with `@
|
|
68
|
+
Each node on the graph represents a job, which in turn is a call to a function decorated with `@batch_job()`.
|
|
69
69
|
|
|
70
70
|
Since this is a local run then the execution of each node will happen sequentially in the same process.
|
|
71
71
|
|
|
@@ -80,14 +80,14 @@ You will first need to separate your function definitions from the DAG definitio
|
|
|
80
80
|
```python
|
|
81
81
|
# my_module.py
|
|
82
82
|
|
|
83
|
-
from datatailr.scheduler import
|
|
83
|
+
from datatailr.scheduler import batch_job, Batch
|
|
84
84
|
|
|
85
|
-
@
|
|
85
|
+
@batch_job()
|
|
86
86
|
def func_no_args() -> str:
|
|
87
87
|
return "no_args"
|
|
88
88
|
|
|
89
89
|
|
|
90
|
-
@
|
|
90
|
+
@batch_job()
|
|
91
91
|
def func_with_args(a: int, b: float) -> str:
|
|
92
92
|
return f"args: {a}, {b}"
|
|
93
93
|
```
|
|
@@ -96,9 +96,9 @@ To use these functions in a batch job, you just need to import them and run in a
|
|
|
96
96
|
|
|
97
97
|
```python
|
|
98
98
|
from my_module import func_no_args, func_with_args
|
|
99
|
-
from datatailr.scheduler import Schedule
|
|
99
|
+
from datatailr.scheduler import Batch, Schedule
|
|
100
100
|
|
|
101
|
-
schedule = Schedule(
|
|
101
|
+
schedule = Schedule(at_hours=0)
|
|
102
102
|
|
|
103
103
|
with Batch(name="MY test DAG", schedule=schedule) as dag:
|
|
104
104
|
for n in range(2):
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: datatailr
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.14
|
|
4
4
|
Summary: Ready-to-Use Platform That Drives Business Insights
|
|
5
5
|
Author-email: Datatailr <info@datatailr.com>
|
|
6
6
|
License-Expression: MIT
|
|
@@ -86,12 +86,12 @@ The following example shows how to create a simple data pipeline using the Datat
|
|
|
86
86
|
```python
|
|
87
87
|
from datatailr.scheduler import batch, Batch
|
|
88
88
|
|
|
89
|
-
@
|
|
89
|
+
@batch_job_job()
|
|
90
90
|
def func_no_args() -> str:
|
|
91
91
|
return "no_args"
|
|
92
92
|
|
|
93
93
|
|
|
94
|
-
@
|
|
94
|
+
@batch_job()
|
|
95
95
|
def func_with_args(a: int, b: float) -> str:
|
|
96
96
|
return f"args: {a}, {b}"
|
|
97
97
|
|
|
@@ -102,7 +102,7 @@ with Batch(name="MY test DAG", local_run=True) as dag:
|
|
|
102
102
|
```
|
|
103
103
|
|
|
104
104
|
Running this code will create a graph of jobs and execute it.
|
|
105
|
-
Each node on the graph represents a job, which in turn is a call to a function decorated with `@
|
|
105
|
+
Each node on the graph represents a job, which in turn is a call to a function decorated with `@batch_job()`.
|
|
106
106
|
|
|
107
107
|
Since this is a local run then the execution of each node will happen sequentially in the same process.
|
|
108
108
|
|
|
@@ -117,14 +117,14 @@ You will first need to separate your function definitions from the DAG definitio
|
|
|
117
117
|
```python
|
|
118
118
|
# my_module.py
|
|
119
119
|
|
|
120
|
-
from datatailr.scheduler import
|
|
120
|
+
from datatailr.scheduler import batch_job, Batch
|
|
121
121
|
|
|
122
|
-
@
|
|
122
|
+
@batch_job()
|
|
123
123
|
def func_no_args() -> str:
|
|
124
124
|
return "no_args"
|
|
125
125
|
|
|
126
126
|
|
|
127
|
-
@
|
|
127
|
+
@batch_job()
|
|
128
128
|
def func_with_args(a: int, b: float) -> str:
|
|
129
129
|
return f"args: {a}, {b}"
|
|
130
130
|
```
|
|
@@ -133,9 +133,9 @@ To use these functions in a batch job, you just need to import them and run in a
|
|
|
133
133
|
|
|
134
134
|
```python
|
|
135
135
|
from my_module import func_no_args, func_with_args
|
|
136
|
-
from datatailr.scheduler import Schedule
|
|
136
|
+
from datatailr.scheduler import Batch, Schedule
|
|
137
137
|
|
|
138
|
-
schedule = Schedule(
|
|
138
|
+
schedule = Schedule(at_hours=0)
|
|
139
139
|
|
|
140
140
|
with Batch(name="MY test DAG", schedule=schedule) as dag:
|
|
141
141
|
for n in range(2):
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|