datasourcelib 0.1.3__tar.gz → 0.1.4__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/PKG-INFO +1 -1
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/setup.py +1 -1
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/src/datasourcelib/indexes/azure_search_index.py +102 -1
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/src/datasourcelib/strategies/full_load.py +1 -1
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/src/datasourcelib.egg-info/PKG-INFO +1 -1
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/src/datasourcelib.egg-info/SOURCES.txt +0 -2
- datasourcelib-0.1.3/src/datasourcelib/indexes/azure_search_index_only.py +0 -162
- datasourcelib-0.1.3/src/datasourcelib/indexes/azure_search_index_vector.py +0 -286
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/LICENSE +0 -0
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/README.md +0 -0
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/pyproject.toml +0 -0
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/setup.cfg +0 -0
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/src/datasourcelib/__init__.py +0 -0
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/src/datasourcelib/core/__init__.py +0 -0
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/src/datasourcelib/core/sync_base.py +0 -0
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/src/datasourcelib/core/sync_manager.py +0 -0
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/src/datasourcelib/core/sync_types.py +0 -0
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/src/datasourcelib/datasources/__init__.py +0 -0
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/src/datasourcelib/datasources/azure_devops_source.py +0 -0
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/src/datasourcelib/datasources/blob_source.py +0 -0
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/src/datasourcelib/datasources/datasource_base.py +0 -0
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/src/datasourcelib/datasources/datasource_types.py +0 -0
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/src/datasourcelib/datasources/sharepoint_source - Copy.py +0 -0
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/src/datasourcelib/datasources/sharepoint_source.py +0 -0
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/src/datasourcelib/datasources/sql_source.py +0 -0
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/src/datasourcelib/indexes/__init__.py +0 -0
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/src/datasourcelib/strategies/__init__.py +0 -0
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/src/datasourcelib/strategies/daily_load.py +0 -0
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/src/datasourcelib/strategies/incremental_load.py +0 -0
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/src/datasourcelib/strategies/ondemand_load.py +0 -0
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/src/datasourcelib/strategies/timerange_load.py +0 -0
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/src/datasourcelib/utils/__init__.py +0 -0
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/src/datasourcelib/utils/byte_reader.py +0 -0
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/src/datasourcelib/utils/exceptions.py +0 -0
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/src/datasourcelib/utils/file_reader.py +0 -0
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/src/datasourcelib/utils/logger.py +0 -0
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/src/datasourcelib/utils/validators.py +0 -0
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/src/datasourcelib.egg-info/dependency_links.txt +0 -0
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/src/datasourcelib.egg-info/requires.txt +0 -0
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/src/datasourcelib.egg-info/top_level.txt +0 -0
- {datasourcelib-0.1.3 → datasourcelib-0.1.4}/tests/test_sync_strategies.py +0 -0
|
@@ -110,7 +110,7 @@ class AzureSearchIndexer:
|
|
|
110
110
|
logger.exception(f"Failed to get embeddings for text: {text[:100]}...")
|
|
111
111
|
raise
|
|
112
112
|
|
|
113
|
-
def
|
|
113
|
+
def _build_vector_search_config_old(self):
|
|
114
114
|
AzureKeyCredential, SearchClient, SearchIndexClient, AzureOpenAI, SearchIndex, SearchField, SearchFieldDataType, SimpleField, SearchableField, VectorSearch, VectorSearchProfile, HnswAlgorithmConfiguration, SemanticSearch, SemanticField, SemanticConfiguration, SemanticPrioritizedFields = self._ensure_sdk()
|
|
115
115
|
vector_config = self.config.get("vector_config", {})
|
|
116
116
|
dimensions = vector_config.get("dimensions", 1536)
|
|
@@ -121,6 +121,107 @@ class AzureSearchIndexer:
|
|
|
121
121
|
)
|
|
122
122
|
|
|
123
123
|
return vector_search, dimensions
|
|
124
|
+
|
|
125
|
+
def _build_vector_search_config(self):
|
|
126
|
+
AzureKeyCredential, SearchClient, SearchIndexClient, AzureOpenAI, SearchIndex, SearchField, SearchFieldDataType, SimpleField, SearchableField, VectorSearch, VectorSearchProfile, HnswAlgorithmConfiguration, SemanticSearch, SemanticField, SemanticConfiguration, SemanticPrioritizedFields = self._ensure_sdk()
|
|
127
|
+
|
|
128
|
+
vector_config = self.config.get("vector_config", {})
|
|
129
|
+
dimensions = vector_config.get("dimensions", 1536)
|
|
130
|
+
algorithm = vector_config.get("algorithm", "hnsw").lower()
|
|
131
|
+
|
|
132
|
+
# Build algorithm configuration (SDK model if available)
|
|
133
|
+
alg_cfg = HnswAlgorithmConfiguration(name="algorithms-config-1")
|
|
134
|
+
|
|
135
|
+
# Build vectorizer settings using Azure OpenAI config from vector_db_config
|
|
136
|
+
deployment = self.config.get("embedding_deployment")
|
|
137
|
+
endpoint = self.config.get("embedding_endpoint")
|
|
138
|
+
api_key = self.config.get("embedding_key")
|
|
139
|
+
# modelName required for API version 2025-09-01 — prefer explicit embedding_model, fall back to deployment
|
|
140
|
+
model_name = self.config.get("embedding_model") or deployment
|
|
141
|
+
content_field = self.config.get("content_field", "content")
|
|
142
|
+
vector_field = self.config.get("vector_field", "contentVector")
|
|
143
|
+
|
|
144
|
+
if not model_name:
|
|
145
|
+
raise RuntimeError("Vectorizer configuration requires 'embedding_model' or 'embedding_deployment' in vector_db_config")
|
|
146
|
+
|
|
147
|
+
# Define vectorizer with explicit name and required azureOpenAIParameters including modelName
|
|
148
|
+
vectorizer_name = "azure-openai-vectorizer"
|
|
149
|
+
vectorizer = {
|
|
150
|
+
"name": vectorizer_name,
|
|
151
|
+
"kind": "azureOpenAI",
|
|
152
|
+
"azureOpenAIParameters": {
|
|
153
|
+
"resourceUri": endpoint.rstrip('/') if endpoint else None,
|
|
154
|
+
# include both modelName (required) and deploymentId (if provided)
|
|
155
|
+
"modelName": model_name,
|
|
156
|
+
**({"deploymentId": deployment} if deployment else {}),
|
|
157
|
+
"apiKey": api_key
|
|
158
|
+
},
|
|
159
|
+
"options": {
|
|
160
|
+
"fieldMapping": [
|
|
161
|
+
{
|
|
162
|
+
"sourceContext": f"/document/{content_field}",
|
|
163
|
+
"outputs": [
|
|
164
|
+
{
|
|
165
|
+
"targetContext": f"/document/{vector_field}",
|
|
166
|
+
"targetDimensions": dimensions
|
|
167
|
+
}
|
|
168
|
+
]
|
|
169
|
+
}
|
|
170
|
+
]
|
|
171
|
+
}
|
|
172
|
+
}
|
|
173
|
+
|
|
174
|
+
profile_name = "vector-profile-1"
|
|
175
|
+
try:
|
|
176
|
+
# Create profile with vectorizer reference (SDK may expect vectorizer_name or vectorizer depending on version)
|
|
177
|
+
try:
|
|
178
|
+
profile = VectorSearchProfile(
|
|
179
|
+
name=profile_name,
|
|
180
|
+
algorithm_configuration_name="algorithms-config-1",
|
|
181
|
+
vectorizer_name=vectorizer_name
|
|
182
|
+
)
|
|
183
|
+
except TypeError:
|
|
184
|
+
# fallback if SDK constructor uses different parameter names
|
|
185
|
+
profile = VectorSearchProfile(name=profile_name, algorithm_configuration_name="algorithms-config-1")
|
|
186
|
+
try:
|
|
187
|
+
setattr(profile, "vectorizer_name", vectorizer_name)
|
|
188
|
+
except Exception:
|
|
189
|
+
pass
|
|
190
|
+
|
|
191
|
+
try:
|
|
192
|
+
# Construct full vector search config with both profile and vectorizer
|
|
193
|
+
vector_search = VectorSearch(
|
|
194
|
+
profiles=[profile],
|
|
195
|
+
algorithms=[alg_cfg],
|
|
196
|
+
vectorizers=[vectorizer]
|
|
197
|
+
)
|
|
198
|
+
except Exception:
|
|
199
|
+
# Fallback to dict if SDK constructor differs
|
|
200
|
+
vector_search = {
|
|
201
|
+
"profiles": [{
|
|
202
|
+
"name": profile_name,
|
|
203
|
+
"algorithmConfigurationName": "algorithms-config-1",
|
|
204
|
+
"vectorizerName": vectorizer_name
|
|
205
|
+
}],
|
|
206
|
+
"algorithms": [{"name": "algorithms-config-1"}],
|
|
207
|
+
"vectorizers": [vectorizer]
|
|
208
|
+
}
|
|
209
|
+
except Exception:
|
|
210
|
+
# Full dict fallback
|
|
211
|
+
vector_search = {
|
|
212
|
+
"profiles": [{
|
|
213
|
+
"name": profile_name,
|
|
214
|
+
"algorithmConfigurationName": "algorithms-config-1",
|
|
215
|
+
"vectorizerName": vectorizer_name
|
|
216
|
+
}],
|
|
217
|
+
"algorithms": [{"name": "algorithms-config-1"}],
|
|
218
|
+
"vectorizers": [vectorizer]
|
|
219
|
+
}
|
|
220
|
+
|
|
221
|
+
logger.info("Built vector_search config (dimensions=%s, model=%s, vectorizer=%s)",
|
|
222
|
+
dimensions, model_name, vectorizer_name)
|
|
223
|
+
return vector_search, dimensions
|
|
224
|
+
|
|
124
225
|
|
|
125
226
|
def _build_semantic_settings(self):
|
|
126
227
|
"""
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
from datasourcelib.core.sync_base import SyncBase
|
|
2
2
|
from datasourcelib.utils.logger import get_logger
|
|
3
|
-
from datasourcelib.indexes.
|
|
3
|
+
from datasourcelib.indexes.azure_search_index import AzureSearchIndexer
|
|
4
4
|
logger = get_logger(__name__)
|
|
5
5
|
|
|
6
6
|
class FullLoadStrategy(SyncBase):
|
|
@@ -22,8 +22,6 @@ src/datasourcelib/datasources/sharepoint_source.py
|
|
|
22
22
|
src/datasourcelib/datasources/sql_source.py
|
|
23
23
|
src/datasourcelib/indexes/__init__.py
|
|
24
24
|
src/datasourcelib/indexes/azure_search_index.py
|
|
25
|
-
src/datasourcelib/indexes/azure_search_index_only.py
|
|
26
|
-
src/datasourcelib/indexes/azure_search_index_vector.py
|
|
27
25
|
src/datasourcelib/strategies/__init__.py
|
|
28
26
|
src/datasourcelib/strategies/daily_load.py
|
|
29
27
|
src/datasourcelib/strategies/full_load.py
|
|
@@ -1,162 +0,0 @@
|
|
|
1
|
-
from typing import List, Dict, Any, Optional
|
|
2
|
-
from datasourcelib.utils.logger import get_logger
|
|
3
|
-
|
|
4
|
-
logger = get_logger(__name__)
|
|
5
|
-
|
|
6
|
-
class AzureSearchIndexer:
|
|
7
|
-
"""
|
|
8
|
-
Minimal Azure Cognitive Search indexer wrapper.
|
|
9
|
-
Expects vector_db_config with:
|
|
10
|
-
- service_endpoint: str
|
|
11
|
-
- index_name: str
|
|
12
|
-
- api_key: str
|
|
13
|
-
Optional:
|
|
14
|
-
- key_field: name of unique key in documents (default 'id')
|
|
15
|
-
"""
|
|
16
|
-
|
|
17
|
-
def __init__(self, vector_db_config: Dict[str, Any]):
|
|
18
|
-
self.config = vector_db_config or {}
|
|
19
|
-
self._client = None
|
|
20
|
-
self._index_client = None
|
|
21
|
-
|
|
22
|
-
def validate_config(self) -> bool:
|
|
23
|
-
required = ("aisearch_endpoint", "aisearch_index_name", "aisearch_api_key")
|
|
24
|
-
missing = [k for k in required if k not in self.config]
|
|
25
|
-
if missing:
|
|
26
|
-
logger.error("AzureSearchIndexer.validate_config missing: %s", missing)
|
|
27
|
-
return False
|
|
28
|
-
return True
|
|
29
|
-
|
|
30
|
-
def _ensure_sdk(self):
|
|
31
|
-
try:
|
|
32
|
-
from azure.core.credentials import AzureKeyCredential # type: ignore
|
|
33
|
-
from azure.search.documents import SearchClient # type: ignore
|
|
34
|
-
from azure.search.documents.indexes import SearchIndexClient # type: ignore
|
|
35
|
-
from azure.search.documents.indexes.models import (
|
|
36
|
-
SearchIndex,
|
|
37
|
-
SimpleField,
|
|
38
|
-
SearchableField,
|
|
39
|
-
SearchFieldDataType,
|
|
40
|
-
) # type: ignore
|
|
41
|
-
except Exception as e:
|
|
42
|
-
raise RuntimeError("azure-search-documents package is required: install azure-search-documents") from e
|
|
43
|
-
|
|
44
|
-
return AzureKeyCredential, SearchClient, SearchIndexClient, SearchIndex, SimpleField, SearchableField, SearchFieldDataType
|
|
45
|
-
|
|
46
|
-
def _infer_field_type(self, value) -> Any:
|
|
47
|
-
"""
|
|
48
|
-
Map Python types to SearchFieldDataType
|
|
49
|
-
"""
|
|
50
|
-
*_, SearchFieldDataType = self._ensure_sdk()
|
|
51
|
-
if value is None:
|
|
52
|
-
return SearchFieldDataType.String
|
|
53
|
-
t = type(value)
|
|
54
|
-
if t is str:
|
|
55
|
-
return SearchFieldDataType.String
|
|
56
|
-
if t is bool:
|
|
57
|
-
return SearchFieldDataType.Boolean
|
|
58
|
-
if t is int:
|
|
59
|
-
return SearchFieldDataType.Int32
|
|
60
|
-
if t is float:
|
|
61
|
-
return SearchFieldDataType.Double
|
|
62
|
-
# fallback to string
|
|
63
|
-
return SearchFieldDataType.String
|
|
64
|
-
|
|
65
|
-
def _build_fields(self, sample: Dict[str, Any], key_field: str):
|
|
66
|
-
AzureKeyCredential, SearchClient, SearchIndexClient, SearchIndex, SimpleField, SearchableField, SearchFieldDataType = self._ensure_sdk()
|
|
67
|
-
|
|
68
|
-
fields = []
|
|
69
|
-
# ensure key field present
|
|
70
|
-
if key_field not in sample:
|
|
71
|
-
# we'll create a string key, uploader will populate unique ids
|
|
72
|
-
fields.append(SimpleField(name=key_field, type=SearchFieldDataType.String, key=True))
|
|
73
|
-
else:
|
|
74
|
-
typ = self._infer_field_type(sample[key_field])
|
|
75
|
-
fields.append(SimpleField(name=key_field, type=SearchFieldDataType.String, key=True))
|
|
76
|
-
|
|
77
|
-
for k, v in sample.items():
|
|
78
|
-
logger.info(f"================={k}============")
|
|
79
|
-
if k == key_field:
|
|
80
|
-
continue
|
|
81
|
-
typ = self._infer_field_type(v)
|
|
82
|
-
# for strings use SearchableField so full text queries work
|
|
83
|
-
if typ == SearchFieldDataType.String:
|
|
84
|
-
fields.append(SearchableField(name=k, type=SearchFieldDataType.String))
|
|
85
|
-
else:
|
|
86
|
-
fields.append(SimpleField(name=k, type=typ))
|
|
87
|
-
return fields
|
|
88
|
-
|
|
89
|
-
def create_index(self, sample: Dict[str, Any]) -> bool:
|
|
90
|
-
try:
|
|
91
|
-
AzureKeyCredential, SearchClient, SearchIndexClient, SearchIndex, SimpleField, SearchableField, SearchFieldDataType = self._ensure_sdk()
|
|
92
|
-
endpoint = self.config["aisearch_endpoint"]
|
|
93
|
-
api_key = self.config["aisearch_api_key"]
|
|
94
|
-
index_name = self.config["aisearch_index_name"]
|
|
95
|
-
key_field = self.config.get("key_field", "id")
|
|
96
|
-
|
|
97
|
-
index_client = SearchIndexClient(endpoint, AzureKeyCredential(api_key))
|
|
98
|
-
fields = self._build_fields(sample, key_field)
|
|
99
|
-
logger.info("=================Creating Index============")
|
|
100
|
-
index = SearchIndex(name=index_name, fields=fields)
|
|
101
|
-
# create or update index
|
|
102
|
-
index_client.create_or_update_index(index)
|
|
103
|
-
logger.info("Azure Search index '%s' created/updated", index_name)
|
|
104
|
-
return True
|
|
105
|
-
except Exception as ex:
|
|
106
|
-
logger.exception("AzureSearchIndexer.create_index failed")
|
|
107
|
-
return False
|
|
108
|
-
|
|
109
|
-
def upload_documents(self, docs: List[Dict[str, Any]]) -> bool:
|
|
110
|
-
try:
|
|
111
|
-
AzureKeyCredential, SearchClient, SearchIndexClient, SearchIndex, SimpleField, SearchableField, SearchFieldDataType = self._ensure_sdk()
|
|
112
|
-
endpoint = self.config["aisearch_endpoint"]
|
|
113
|
-
api_key = self.config["aisearch_api_key"]
|
|
114
|
-
index_name = self.config["aisearch_index_name"]
|
|
115
|
-
key_field = self.config.get("key_field", "id")
|
|
116
|
-
|
|
117
|
-
# ensure each doc has key_field
|
|
118
|
-
from uuid import uuid4
|
|
119
|
-
for d in docs:
|
|
120
|
-
if key_field not in d:
|
|
121
|
-
d[key_field] = str(uuid4())
|
|
122
|
-
# ensure each doc has key_field is of string type
|
|
123
|
-
for d in docs:
|
|
124
|
-
if key_field in d:
|
|
125
|
-
typ = self._infer_field_type(d[key_field])
|
|
126
|
-
if typ != SearchFieldDataType.String:
|
|
127
|
-
d[key_field] = str(d[key_field])
|
|
128
|
-
|
|
129
|
-
client = SearchClient(endpoint=endpoint, index_name=index_name, credential=AzureKeyCredential(api_key))
|
|
130
|
-
logger.info("Uploading %d documents to index %s", len(docs), index_name)
|
|
131
|
-
result = client.upload_documents(documents=docs)
|
|
132
|
-
# Check results for failures
|
|
133
|
-
failed = [r for r in result if not r.succeeded]
|
|
134
|
-
if failed:
|
|
135
|
-
logger.error("Some documents failed to upload: %s", failed)
|
|
136
|
-
return False
|
|
137
|
-
logger.info("Uploaded documents successfully")
|
|
138
|
-
return True
|
|
139
|
-
except Exception:
|
|
140
|
-
logger.exception("AzureSearchIndexer.upload_documents failed")
|
|
141
|
-
return False
|
|
142
|
-
|
|
143
|
-
def index(self, rows: List[Dict[str, Any]]) -> bool:
|
|
144
|
-
"""
|
|
145
|
-
High level: create index (based on first row) and upload all rows.
|
|
146
|
-
"""
|
|
147
|
-
if not rows:
|
|
148
|
-
logger.error("AzureSearchIndexer.index called with empty rows")
|
|
149
|
-
return False
|
|
150
|
-
try:
|
|
151
|
-
if not self.validate_config():
|
|
152
|
-
return False
|
|
153
|
-
sample = rows[0]
|
|
154
|
-
logger.info(f"================={sample}============")
|
|
155
|
-
ok = self.create_index(sample)
|
|
156
|
-
if not ok:
|
|
157
|
-
return False
|
|
158
|
-
ok2 = self.upload_documents(rows)
|
|
159
|
-
return ok2
|
|
160
|
-
except Exception:
|
|
161
|
-
logger.exception("AzureSearchIndexer.index failed")
|
|
162
|
-
return False
|
|
@@ -1,286 +0,0 @@
|
|
|
1
|
-
from typing import List, Dict, Any, Optional
|
|
2
|
-
from datasourcelib.utils.logger import get_logger
|
|
3
|
-
|
|
4
|
-
logger = get_logger(__name__)
|
|
5
|
-
|
|
6
|
-
class AzureSearchIndexer:
|
|
7
|
-
"""
|
|
8
|
-
Azure Cognitive Search indexer with vector search support.
|
|
9
|
-
Required vector_db_config:
|
|
10
|
-
- aisearch_endpoint: str
|
|
11
|
-
- aisearch_index_name: str
|
|
12
|
-
- aisearch_api_key
|
|
13
|
-
|
|
14
|
-
Optional vector search config:
|
|
15
|
-
- vectorization: bool (enable vector search)
|
|
16
|
-
- vector_config: dict
|
|
17
|
-
- dimensions: int (default 1024)
|
|
18
|
-
- algorithm: str ('hnsw' or 'flat', default 'hnsw')
|
|
19
|
-
- metric: str ('cosine', 'euclidean', 'dotProduct', default 'cosine')
|
|
20
|
-
- key_field: str (default 'id')
|
|
21
|
-
- vector_field: str (default 'contentVector')
|
|
22
|
-
- embedding_endpoint: str (Azure OpenAI endpoint for embeddings)
|
|
23
|
-
- embedding_key: str (Azure OpenAI API key)
|
|
24
|
-
- embedding_deployment: str (Azure OpenAI model deployment name)
|
|
25
|
-
"""
|
|
26
|
-
|
|
27
|
-
def __init__(self, vector_db_config: Dict[str, Any]):
|
|
28
|
-
self.config = vector_db_config or {}
|
|
29
|
-
self._client = None
|
|
30
|
-
self._index_client = None
|
|
31
|
-
self._embedding_client = None
|
|
32
|
-
|
|
33
|
-
def validate_config(self) -> bool:
|
|
34
|
-
required = ("aisearch_endpoint", "aisearch_index_name", "aisearch_api_key")
|
|
35
|
-
missing = [k for k in required if k not in self.config]
|
|
36
|
-
|
|
37
|
-
# Check vector search requirements if enabled
|
|
38
|
-
if self.config.get("vectorization", False):
|
|
39
|
-
vector_required = ("embedding_endpoint", "embedding_key", "embedding_deployment")
|
|
40
|
-
missing.extend([k for k in vector_required if k not in self.config])
|
|
41
|
-
|
|
42
|
-
if missing:
|
|
43
|
-
logger.error("AzureSearchIndexer.validate_config missing: %s", missing)
|
|
44
|
-
return False
|
|
45
|
-
return True
|
|
46
|
-
|
|
47
|
-
def _ensure_sdk(self):
|
|
48
|
-
try:
|
|
49
|
-
from azure.core.credentials import AzureKeyCredential # type: ignore
|
|
50
|
-
from azure.search.documents import SearchClient # type: ignore
|
|
51
|
-
from azure.search.documents.indexes import SearchIndexClient # type: ignore
|
|
52
|
-
from openai import AzureOpenAI # type: ignore
|
|
53
|
-
from azure.search.documents.indexes.models import (
|
|
54
|
-
SearchIndex,
|
|
55
|
-
SearchField,
|
|
56
|
-
SearchFieldDataType,
|
|
57
|
-
SimpleField,
|
|
58
|
-
SearchableField,
|
|
59
|
-
VectorSearch,
|
|
60
|
-
VectorSearchProfile,
|
|
61
|
-
HnswAlgorithmConfiguration
|
|
62
|
-
) # type: ignore
|
|
63
|
-
|
|
64
|
-
except Exception as e:
|
|
65
|
-
raise RuntimeError("Required packages missing. Install: azure-search-documents openai") from e
|
|
66
|
-
|
|
67
|
-
return (
|
|
68
|
-
AzureKeyCredential, SearchClient, SearchIndexClient, AzureOpenAI, SearchIndex, SearchField, SearchFieldDataType, SimpleField, SearchableField, VectorSearch, VectorSearchProfile, HnswAlgorithmConfiguration
|
|
69
|
-
)
|
|
70
|
-
|
|
71
|
-
def _setup_embedding_client(self):
|
|
72
|
-
if not self._embedding_client and self.config.get("vectorization"):
|
|
73
|
-
try:
|
|
74
|
-
AzureKeyCredential, SearchClient, SearchIndexClient, AzureOpenAI, SearchIndex, SearchField, SearchFieldDataType, SimpleField, SearchableField, VectorSearch, VectorSearchProfile, HnswAlgorithmConfiguration = self._ensure_sdk()
|
|
75
|
-
self._embedding_client = AzureOpenAI(
|
|
76
|
-
api_version=self.config["embedding_api_version"],
|
|
77
|
-
azure_endpoint=self.config["embedding_endpoint"],
|
|
78
|
-
api_key=self.config["embedding_key"],
|
|
79
|
-
)
|
|
80
|
-
logger.info("Azure OpenAI embedding client initialized")
|
|
81
|
-
except Exception as ex:
|
|
82
|
-
logger.exception("Failed to initialize embedding client")
|
|
83
|
-
raise
|
|
84
|
-
|
|
85
|
-
def _get_embeddings(self, text: str) -> List[float]:
|
|
86
|
-
try:
|
|
87
|
-
self._setup_embedding_client()
|
|
88
|
-
response = self._embedding_client.embeddings.create(
|
|
89
|
-
model=self.config["embedding_deployment"],
|
|
90
|
-
input=text
|
|
91
|
-
)
|
|
92
|
-
return response.data[0].embedding
|
|
93
|
-
except Exception as ex:
|
|
94
|
-
logger.exception(f"Failed to get embeddings for text: {text[:100]}...")
|
|
95
|
-
raise
|
|
96
|
-
|
|
97
|
-
def _build_vector_search_config(self):
|
|
98
|
-
AzureKeyCredential, SearchClient, SearchIndexClient, AzureOpenAI, SearchIndex, SearchField, SearchFieldDataType, SimpleField, SearchableField, VectorSearch, VectorSearchProfile, HnswAlgorithmConfiguration = self._ensure_sdk()
|
|
99
|
-
vector_config = self.config.get("vector_config", {})
|
|
100
|
-
dimensions = vector_config.get("dimensions", 1536)
|
|
101
|
-
|
|
102
|
-
vector_search = VectorSearch(
|
|
103
|
-
profiles=[VectorSearchProfile(name="vector-profile-1", algorithm_configuration_name="algorithms-config-1")],
|
|
104
|
-
algorithms=[HnswAlgorithmConfiguration(name="algorithms-config-1")]
|
|
105
|
-
)
|
|
106
|
-
|
|
107
|
-
return vector_search, dimensions
|
|
108
|
-
|
|
109
|
-
def _infer_field_type(self, value) -> Any:
|
|
110
|
-
#Map Python types to SearchFieldDataType, including collections
|
|
111
|
-
|
|
112
|
-
AzureKeyCredential, SearchClient, SearchIndexClient, AzureOpenAI, SearchIndex, SearchField, SearchFieldDataType, SimpleField, SearchableField, VectorSearch, VectorSearchProfile, HnswAlgorithmConfiguration = self._ensure_sdk()
|
|
113
|
-
|
|
114
|
-
if value is None:
|
|
115
|
-
return SearchFieldDataType.String
|
|
116
|
-
|
|
117
|
-
t = type(value)
|
|
118
|
-
|
|
119
|
-
# Handle list/array types as Collections
|
|
120
|
-
if t in (list, tuple):
|
|
121
|
-
# If empty list, default to Collection of Double
|
|
122
|
-
if not value:
|
|
123
|
-
return SearchFieldDataType.Collection(SearchFieldDataType.Double)
|
|
124
|
-
# Get type of first element for non-empty lists
|
|
125
|
-
element_type = self._infer_field_type(value[0])
|
|
126
|
-
return SearchFieldDataType.Collection(element_type)
|
|
127
|
-
# Handle vector embeddings (list or tuple of floats)
|
|
128
|
-
if type(value) in (list, tuple) and all(isinstance(x, (int, float)) for x in value):
|
|
129
|
-
return SearchFieldDataType.Collection(SearchFieldDataType.Single)
|
|
130
|
-
|
|
131
|
-
# Handle basic types
|
|
132
|
-
logger.info(f"######## Infer field type for value:[ {value} ] of type [ {t} ]")
|
|
133
|
-
if t is bool:
|
|
134
|
-
return SearchFieldDataType.Boolean
|
|
135
|
-
if t is int:
|
|
136
|
-
return SearchFieldDataType.Int32
|
|
137
|
-
if t is float:
|
|
138
|
-
return SearchFieldDataType.Double
|
|
139
|
-
print(f"############## Infer field type for value: {value} of type {t}")
|
|
140
|
-
print(t is str)
|
|
141
|
-
if t is str:
|
|
142
|
-
return SearchFieldDataType.String
|
|
143
|
-
# fallback to string
|
|
144
|
-
logger.warning(f"Falling back to string type for value: {value} of type {t}")
|
|
145
|
-
return SearchFieldDataType.String
|
|
146
|
-
|
|
147
|
-
def _build_fields(self, sample: Dict[str, Any], key_field: str):
|
|
148
|
-
AzureKeyCredential, SearchClient, SearchIndexClient, AzureOpenAI, SearchIndex, SearchField, SearchFieldDataType, SimpleField, SearchableField, VectorSearch, VectorSearchProfile, HnswAlgorithmConfiguration = self._ensure_sdk()
|
|
149
|
-
|
|
150
|
-
fields = []
|
|
151
|
-
# Add key field
|
|
152
|
-
if key_field not in sample:
|
|
153
|
-
fields.append(SimpleField(name=key_field, type=SearchFieldDataType.String, key=True))
|
|
154
|
-
else:
|
|
155
|
-
fields.append(SimpleField(name=key_field, type=SearchFieldDataType.String, key=True))
|
|
156
|
-
|
|
157
|
-
# Add regular fields
|
|
158
|
-
for k, v in sample.items():
|
|
159
|
-
logger.info(f"================={k}============")
|
|
160
|
-
if k == key_field:
|
|
161
|
-
continue
|
|
162
|
-
logger.info(f"#### Infer field type for field: {k}")
|
|
163
|
-
typ = self._infer_field_type(v)
|
|
164
|
-
logger.info(f"#### Inferred type for field {k}: {typ}")
|
|
165
|
-
if typ == SearchFieldDataType.String:
|
|
166
|
-
fields.append(SearchableField(name=k, type=SearchFieldDataType.String))
|
|
167
|
-
else:
|
|
168
|
-
fields.append(SimpleField(name=k, type=typ))
|
|
169
|
-
|
|
170
|
-
# Add vector field if vectorization is enabled
|
|
171
|
-
if self.config.get("vectorization"):
|
|
172
|
-
vector_field = self.config.get("vector_field", "contentVector")
|
|
173
|
-
_, dimensions = self._build_vector_search_config()
|
|
174
|
-
fields.append(
|
|
175
|
-
SearchField(
|
|
176
|
-
name=vector_field,
|
|
177
|
-
type=SearchFieldDataType.Collection(SearchFieldDataType.Single),
|
|
178
|
-
searchable=True,
|
|
179
|
-
vector_search_dimensions=dimensions,
|
|
180
|
-
vector_search_profile_name="vector-profile-1"
|
|
181
|
-
)
|
|
182
|
-
)
|
|
183
|
-
|
|
184
|
-
return fields
|
|
185
|
-
|
|
186
|
-
def create_index(self, sample: Dict[str, Any]) -> bool:
|
|
187
|
-
try:
|
|
188
|
-
AzureKeyCredential, SearchClient, SearchIndexClient, AzureOpenAI, SearchIndex, SearchField, SearchFieldDataType, SimpleField, SearchableField, VectorSearch, VectorSearchProfile, HnswAlgorithmConfiguration = self._ensure_sdk()
|
|
189
|
-
|
|
190
|
-
endpoint = self.config["aisearch_endpoint"]
|
|
191
|
-
api_key = self.config["aisearch_api_key"]
|
|
192
|
-
index_name = self.config["aisearch_index_name"]
|
|
193
|
-
key_field = self.config.get("key_field", "id")
|
|
194
|
-
|
|
195
|
-
index_client = SearchIndexClient(endpoint, AzureKeyCredential(api_key))
|
|
196
|
-
fields = self._build_fields(sample, key_field)
|
|
197
|
-
|
|
198
|
-
# Create index with vector search if enabled
|
|
199
|
-
if self.config.get("vectorization"):
|
|
200
|
-
vector_search, _ = self._build_vector_search_config()
|
|
201
|
-
index = SearchIndex(
|
|
202
|
-
name=index_name,
|
|
203
|
-
fields=fields,
|
|
204
|
-
vector_search=vector_search
|
|
205
|
-
)
|
|
206
|
-
else:
|
|
207
|
-
index = SearchIndex(name=index_name, fields=fields)
|
|
208
|
-
|
|
209
|
-
index_client.create_or_update_index(index)
|
|
210
|
-
logger.info(f"Azure Search index '{index_name}' created/updated with vectorization={self.config.get('vectorization', False)}")
|
|
211
|
-
return True
|
|
212
|
-
except Exception as ex:
|
|
213
|
-
logger.exception("AzureSearchIndexer.create_index failed")
|
|
214
|
-
return False
|
|
215
|
-
|
|
216
|
-
def upload_documents(self, docs: List[Dict[str, Any]]) -> bool:
|
|
217
|
-
try:
|
|
218
|
-
AzureKeyCredential, SearchClient, SearchIndexClient, AzureOpenAI, SearchIndex, SearchField, SearchFieldDataType, SimpleField, SearchableField, VectorSearch, VectorSearchProfile, HnswAlgorithmConfiguration = self._ensure_sdk()
|
|
219
|
-
endpoint = self.config["aisearch_endpoint"]
|
|
220
|
-
api_key = self.config["aisearch_api_key"]
|
|
221
|
-
index_name = self.config["aisearch_index_name"]
|
|
222
|
-
key_field = self.config.get("key_field", "id")
|
|
223
|
-
|
|
224
|
-
# Add IDs if missing
|
|
225
|
-
from uuid import uuid4
|
|
226
|
-
for d in docs:
|
|
227
|
-
if key_field not in d:
|
|
228
|
-
d[key_field] = str(uuid4())
|
|
229
|
-
elif not isinstance(d[key_field], str):
|
|
230
|
-
d[key_field] = str(d[key_field])
|
|
231
|
-
|
|
232
|
-
# Add vector embeddings if enabled
|
|
233
|
-
if self.config.get("vectorization"):
|
|
234
|
-
vector_field = self.config.get("vector_field", "contentVector")
|
|
235
|
-
content_field = self.config.get("content_field", "content")
|
|
236
|
-
|
|
237
|
-
for doc in docs:
|
|
238
|
-
if content_field in doc:
|
|
239
|
-
try:
|
|
240
|
-
embedding = self._get_embeddings(str(doc[content_field]))
|
|
241
|
-
doc[vector_field] = embedding
|
|
242
|
-
except Exception as e:
|
|
243
|
-
logger.error(f"Failed to get embedding for document {doc.get(key_field)}: {str(e)}")
|
|
244
|
-
continue
|
|
245
|
-
|
|
246
|
-
client = SearchClient(endpoint=endpoint, index_name=index_name,
|
|
247
|
-
credential=AzureKeyCredential(api_key))
|
|
248
|
-
|
|
249
|
-
logger.info(f"Uploading {len(docs)} documents to index {index_name}")
|
|
250
|
-
result = client.upload_documents(documents=docs)
|
|
251
|
-
|
|
252
|
-
failed = [r for r in result if not r.succeeded]
|
|
253
|
-
if failed:
|
|
254
|
-
logger.error(f"Some documents failed to upload: {failed}")
|
|
255
|
-
return False
|
|
256
|
-
|
|
257
|
-
logger.info("Documents uploaded successfully")
|
|
258
|
-
return True
|
|
259
|
-
|
|
260
|
-
except Exception:
|
|
261
|
-
logger.exception("AzureSearchIndexer.upload_documents failed")
|
|
262
|
-
return False
|
|
263
|
-
|
|
264
|
-
def index(self, rows: List[Dict[str, Any]]) -> bool:
|
|
265
|
-
"""High level: create index (based on first row) and upload all rows."""
|
|
266
|
-
if not rows:
|
|
267
|
-
logger.error("AzureSearchIndexer.index called with empty rows")
|
|
268
|
-
return False
|
|
269
|
-
|
|
270
|
-
try:
|
|
271
|
-
if not self.validate_config():
|
|
272
|
-
return False
|
|
273
|
-
|
|
274
|
-
sample = rows[0]
|
|
275
|
-
logger.info(f"Creating/updating index with sample: {sample}")
|
|
276
|
-
|
|
277
|
-
ok = self.create_index(sample)
|
|
278
|
-
if not ok:
|
|
279
|
-
return False
|
|
280
|
-
|
|
281
|
-
ok2 = self.upload_documents(rows)
|
|
282
|
-
return ok2
|
|
283
|
-
|
|
284
|
-
except Exception:
|
|
285
|
-
logger.exception("AzureSearchIndexer.index failed")
|
|
286
|
-
return False
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{datasourcelib-0.1.3 → datasourcelib-0.1.4}/src/datasourcelib/datasources/azure_devops_source.py
RENAMED
|
File without changes
|
|
File without changes
|
{datasourcelib-0.1.3 → datasourcelib-0.1.4}/src/datasourcelib/datasources/datasource_base.py
RENAMED
|
File without changes
|
{datasourcelib-0.1.3 → datasourcelib-0.1.4}/src/datasourcelib/datasources/datasource_types.py
RENAMED
|
File without changes
|
|
File without changes
|
{datasourcelib-0.1.3 → datasourcelib-0.1.4}/src/datasourcelib/datasources/sharepoint_source.py
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{datasourcelib-0.1.3 → datasourcelib-0.1.4}/src/datasourcelib/strategies/incremental_load.py
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|