datachain 0.6.8__tar.gz → 0.6.9__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of datachain might be problematic. Click here for more details.
- {datachain-0.6.8 → datachain-0.6.9}/.pre-commit-config.yaml +1 -1
- {datachain-0.6.8/src/datachain.egg-info → datachain-0.6.9}/PKG-INFO +41 -21
- {datachain-0.6.8 → datachain-0.6.9}/README.rst +40 -20
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/catalog/catalog.py +5 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/client/fsspec.py +1 -1
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/data_storage/metastore.py +4 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/dataset.py +5 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/lib/dataset_info.py +3 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/lib/dc.py +26 -6
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/lib/meta_formats.py +1 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/lib/signal_schema.py +1 -1
- {datachain-0.6.8 → datachain-0.6.9/src/datachain.egg-info}/PKG-INFO +41 -21
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain.egg-info/SOURCES.txt +0 -1
- {datachain-0.6.8 → datachain-0.6.9}/tests/func/test_datasets.py +4 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/func/test_pull.py +4 -0
- datachain-0.6.8/docs/assets/flowchart.png +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/.cruft.json +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/.gitattributes +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/.github/ISSUE_TEMPLATE/bug_report.yml +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/.github/ISSUE_TEMPLATE/empty_issue.md +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/.github/ISSUE_TEMPLATE/feature_request.yml +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/.github/codecov.yaml +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/.github/dependabot.yml +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/.github/workflows/benchmarks.yml +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/.github/workflows/release.yml +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/.github/workflows/tests-studio.yml +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/.github/workflows/tests.yml +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/.github/workflows/update-template.yaml +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/.gitignore +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/CODE_OF_CONDUCT.rst +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/CONTRIBUTING.rst +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/LICENSE +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/docs/assets/captioned_cartoons.png +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/docs/assets/datachain-white.svg +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/docs/assets/datachain.svg +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/docs/index.md +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/docs/references/datachain.md +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/docs/references/datatype.md +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/docs/references/file.md +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/docs/references/index.md +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/docs/references/sql.md +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/docs/references/torch.md +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/docs/references/udf.md +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/examples/computer_vision/iptc_exif_xmp_lib.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/examples/computer_vision/llava2_image_desc_lib.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/examples/computer_vision/openimage-detect.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/examples/get_started/common_sql_functions.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/examples/get_started/json-csv-reader.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/examples/get_started/torch-loader.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/examples/get_started/udfs/parallel.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/examples/get_started/udfs/simple.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/examples/get_started/udfs/stateful.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/examples/llm_and_nlp/claude-query.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/examples/llm_and_nlp/hf-dataset-llm-eval.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/examples/llm_and_nlp/unstructured-embeddings-gen.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/examples/llm_and_nlp/unstructured-summary-map.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/examples/multimodal/clip_inference.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/examples/multimodal/hf_pipeline.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/examples/multimodal/openai_image_desc_lib.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/examples/multimodal/wds.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/examples/multimodal/wds_filtered.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/mkdocs.yml +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/noxfile.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/overrides/main.html +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/pyproject.toml +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/setup.cfg +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/__init__.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/__main__.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/asyn.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/cache.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/catalog/__init__.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/catalog/datasource.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/catalog/loader.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/cli.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/cli_utils.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/client/__init__.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/client/azure.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/client/fileslice.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/client/gcs.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/client/hf.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/client/local.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/client/s3.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/config.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/data_storage/__init__.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/data_storage/db_engine.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/data_storage/id_generator.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/data_storage/job.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/data_storage/schema.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/data_storage/serializer.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/data_storage/sqlite.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/data_storage/warehouse.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/error.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/job.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/lib/__init__.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/lib/arrow.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/lib/clip.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/lib/convert/__init__.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/lib/convert/flatten.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/lib/convert/python_to_sql.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/lib/convert/sql_to_python.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/lib/convert/unflatten.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/lib/convert/values_to_tuples.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/lib/data_model.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/lib/file.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/lib/func/__init__.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/lib/func/aggregate.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/lib/func/func.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/lib/hf.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/lib/image.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/lib/listing.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/lib/listing_info.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/lib/model_store.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/lib/models/__init__.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/lib/models/bbox.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/lib/models/pose.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/lib/models/yolo.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/lib/pytorch.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/lib/settings.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/lib/tar.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/lib/text.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/lib/udf.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/lib/udf_signature.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/lib/utils.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/lib/vfile.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/lib/webdataset.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/lib/webdataset_laion.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/listing.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/node.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/nodes_fetcher.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/nodes_thread_pool.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/progress.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/py.typed +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/query/__init__.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/query/batch.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/query/dataset.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/query/dispatch.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/query/metrics.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/query/params.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/query/queue.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/query/schema.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/query/session.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/remote/__init__.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/remote/studio.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/sql/__init__.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/sql/default/__init__.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/sql/default/base.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/sql/functions/__init__.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/sql/functions/aggregate.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/sql/functions/array.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/sql/functions/conditional.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/sql/functions/path.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/sql/functions/random.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/sql/functions/string.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/sql/selectable.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/sql/sqlite/__init__.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/sql/sqlite/base.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/sql/sqlite/types.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/sql/sqlite/vector.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/sql/types.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/sql/utils.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/studio.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/telemetry.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/torch/__init__.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain/utils.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain.egg-info/dependency_links.txt +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain.egg-info/entry_points.txt +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain.egg-info/requires.txt +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/src/datachain.egg-info/top_level.txt +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/__init__.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/benchmarks/__init__.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/benchmarks/conftest.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/benchmarks/datasets/.dvc/.gitignore +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/benchmarks/datasets/.dvc/config +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/benchmarks/datasets/.gitignore +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/benchmarks/datasets/laion-tiny.npz.dvc +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/benchmarks/test_datachain.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/benchmarks/test_ls.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/benchmarks/test_version.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/conftest.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/data.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/examples/__init__.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/examples/test_examples.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/examples/test_wds_e2e.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/examples/wds_data.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/func/__init__.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/func/test_catalog.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/func/test_client.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/func/test_datachain.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/func/test_dataset_query.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/func/test_feature_pickling.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/func/test_listing.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/func/test_ls.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/func/test_meta_formats.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/func/test_metrics.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/func/test_pytorch.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/func/test_query.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/scripts/feature_class.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/scripts/feature_class_exception.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/scripts/feature_class_parallel.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/scripts/feature_class_parallel_data_model.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/scripts/name_len_slow.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/test_atomicity.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/test_cli_e2e.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/test_cli_studio.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/test_query_e2e.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/test_telemetry.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/__init__.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/lib/__init__.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/lib/conftest.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/lib/test_arrow.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/lib/test_clip.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/lib/test_datachain.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/lib/test_datachain_bootstrap.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/lib/test_datachain_merge.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/lib/test_feature.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/lib/test_feature_utils.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/lib/test_file.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/lib/test_hf.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/lib/test_image.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/lib/test_listing_info.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/lib/test_models.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/lib/test_schema.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/lib/test_signal_schema.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/lib/test_sql_to_python.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/lib/test_text.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/lib/test_udf_signature.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/lib/test_utils.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/lib/test_webdataset.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/sql/__init__.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/sql/sqlite/__init__.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/sql/sqlite/test_utils.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/sql/test_array.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/sql/test_conditional.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/sql/test_path.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/sql/test_random.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/sql/test_selectable.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/sql/test_string.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/test_asyn.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/test_cache.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/test_catalog.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/test_catalog_loader.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/test_cli_parsing.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/test_client.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/test_client_s3.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/test_config.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/test_data_storage.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/test_database_engine.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/test_dataset.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/test_dispatch.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/test_fileslice.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/test_id_generator.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/test_listing.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/test_metastore.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/test_module_exports.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/test_query.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/test_query_metrics.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/test_query_params.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/test_serializer.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/test_session.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/test_utils.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/unit/test_warehouse.py +0 -0
- {datachain-0.6.8 → datachain-0.6.9}/tests/utils.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: datachain
|
|
3
|
-
Version: 0.6.
|
|
3
|
+
Version: 0.6.9
|
|
4
4
|
Summary: Wrangle unstructured AI data at scale
|
|
5
5
|
Author-email: Dmitry Petrov <support@dvc.org>
|
|
6
6
|
License: Apache-2.0
|
|
@@ -120,33 +120,41 @@ Requires-Dist: onnx==1.16.1; extra == "examples"
|
|
|
120
120
|
:target: https://github.com/iterative/datachain/actions/workflows/tests.yml
|
|
121
121
|
:alt: Tests
|
|
122
122
|
|
|
123
|
-
DataChain is a
|
|
124
|
-
|
|
125
|
-
|
|
123
|
+
DataChain is a Python-based AI-data warehouse for transforming and analyzing unstructured
|
|
124
|
+
data like images, audio, videos, text and PDFs. It integrates with external storage
|
|
125
|
+
(e.g., S3) to process data efficiently without data duplication and manages metadata
|
|
126
|
+
in an internal database for easy and efficient querying.
|
|
127
|
+
|
|
128
|
+
|
|
129
|
+
Use Cases
|
|
130
|
+
=========
|
|
131
|
+
|
|
132
|
+
1. **Multimodal Dataset Preparation and Curation**: ideal for organizing and
|
|
133
|
+
refining data in pre-training, finetuning or LLM evaluating stages.
|
|
134
|
+
2. **GenAI Data Analytics**: Enables advanced analytics for multimodal data and
|
|
135
|
+
ad-hoc analytics using LLMs.
|
|
126
136
|
|
|
127
137
|
Key Features
|
|
128
138
|
============
|
|
129
139
|
|
|
130
|
-
📂 **
|
|
131
|
-
-
|
|
132
|
-
file systems.
|
|
133
|
-
- Multimodal data support: images, video, text, PDFs, JSONs, CSVs, parquet.
|
|
140
|
+
📂 **Multimodal Dataset Versioning.**
|
|
141
|
+
- Version unstructured data without redundant data copies, by supporitng
|
|
142
|
+
references to S3, GCP, Azure, and local file systems.
|
|
143
|
+
- Multimodal data support: images, video, text, PDFs, JSONs, CSVs, parquet, etc.
|
|
134
144
|
- Unite files and metadata together into persistent, versioned, columnar datasets.
|
|
135
145
|
|
|
136
|
-
🐍 **Python-friendly
|
|
137
|
-
- Operate on Python objects and object fields
|
|
138
|
-
|
|
146
|
+
🐍 **Python-friendly.**
|
|
147
|
+
- Operate on Python objects and object fields: float scores, strings, matrixes,
|
|
148
|
+
LLM response objects.
|
|
149
|
+
- Run Python code in a high-scale, terabytes size datasets, with built-in
|
|
150
|
+
parallelization and memory-efficient computing — no SQL or Spark required.
|
|
139
151
|
|
|
140
152
|
🧠 **Data Enrichment and Processing.**
|
|
141
153
|
- Generate metadata using local AI models and LLM APIs.
|
|
142
|
-
- Filter, join, and group by metadata. Search by vector embeddings.
|
|
154
|
+
- Filter, join, and group datasets by metadata. Search by vector embeddings.
|
|
155
|
+
- High-performance vectorized operations on Python objects: sum, count, avg, etc.
|
|
143
156
|
- Pass datasets to Pytorch and Tensorflow, or export them back into storage.
|
|
144
157
|
|
|
145
|
-
🚀 **Efficiency.**
|
|
146
|
-
- Parallelization, out-of-memory workloads and data caching.
|
|
147
|
-
- Vectorized operations on Python object fields: sum, count, avg, etc.
|
|
148
|
-
- Optimized vector search.
|
|
149
|
-
|
|
150
158
|
|
|
151
159
|
Quick Start
|
|
152
160
|
-----------
|
|
@@ -196,7 +204,7 @@ Batch inference with a simple sentiment model using the `transformers` library:
|
|
|
196
204
|
|
|
197
205
|
pip install transformers
|
|
198
206
|
|
|
199
|
-
The code below downloads files the cloud, and applies a user-defined function
|
|
207
|
+
The code below downloads files from the cloud, and applies a user-defined function
|
|
200
208
|
to each one of them. All files with a positive sentiment
|
|
201
209
|
detected are then copied to the local directory.
|
|
202
210
|
|
|
@@ -429,6 +437,19 @@ name suffix, the following code will do it:
|
|
|
429
437
|
loader = DataLoader(chain, batch_size=1)
|
|
430
438
|
|
|
431
439
|
|
|
440
|
+
DataChain Studio Platform
|
|
441
|
+
-------------------------
|
|
442
|
+
|
|
443
|
+
`DataChain Studio`_ is a proprietary solution for teams that offers:
|
|
444
|
+
|
|
445
|
+
- **Centralized dataset registry** to manage data, code and dependency
|
|
446
|
+
dependencies in one place.
|
|
447
|
+
- **Data Lineage** for data sources as well as direvative dataset.
|
|
448
|
+
- **UI for Multimodal Data** like images, videos, and PDFs.
|
|
449
|
+
- **Scalable Compute** to handle large datasets (100M+ files) and in-house
|
|
450
|
+
AI model inference.
|
|
451
|
+
- **Access control** including SSO and team based collaboration.
|
|
452
|
+
|
|
432
453
|
Tutorials
|
|
433
454
|
---------
|
|
434
455
|
|
|
@@ -462,6 +483,5 @@ Community and Support
|
|
|
462
483
|
.. _Pydantic: https://github.com/pydantic/pydantic
|
|
463
484
|
.. _publicly available: https://radar.kit.edu/radar/en/dataset/FdJmclKpjHzLfExE.ExpBot%2B-%2BA%2Bdataset%2Bof%2B79%2Bdialogs%2Bwith%2Ban%2Bexperimental%2Bcustomer%2Bservice%2Bchatbot
|
|
464
485
|
.. _SQLite: https://www.sqlite.org/
|
|
465
|
-
.. _Getting Started: https://datachain.
|
|
466
|
-
..
|
|
467
|
-
:alt: DataChain FlowChart
|
|
486
|
+
.. _Getting Started: https://docs.datachain.ai/
|
|
487
|
+
.. _DataChain Studio: https://studio.datachain.ai/
|
|
@@ -19,33 +19,41 @@
|
|
|
19
19
|
:target: https://github.com/iterative/datachain/actions/workflows/tests.yml
|
|
20
20
|
:alt: Tests
|
|
21
21
|
|
|
22
|
-
DataChain is a
|
|
23
|
-
|
|
24
|
-
|
|
22
|
+
DataChain is a Python-based AI-data warehouse for transforming and analyzing unstructured
|
|
23
|
+
data like images, audio, videos, text and PDFs. It integrates with external storage
|
|
24
|
+
(e.g., S3) to process data efficiently without data duplication and manages metadata
|
|
25
|
+
in an internal database for easy and efficient querying.
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
Use Cases
|
|
29
|
+
=========
|
|
30
|
+
|
|
31
|
+
1. **Multimodal Dataset Preparation and Curation**: ideal for organizing and
|
|
32
|
+
refining data in pre-training, finetuning or LLM evaluating stages.
|
|
33
|
+
2. **GenAI Data Analytics**: Enables advanced analytics for multimodal data and
|
|
34
|
+
ad-hoc analytics using LLMs.
|
|
25
35
|
|
|
26
36
|
Key Features
|
|
27
37
|
============
|
|
28
38
|
|
|
29
|
-
📂 **
|
|
30
|
-
-
|
|
31
|
-
file systems.
|
|
32
|
-
- Multimodal data support: images, video, text, PDFs, JSONs, CSVs, parquet.
|
|
39
|
+
📂 **Multimodal Dataset Versioning.**
|
|
40
|
+
- Version unstructured data without redundant data copies, by supporitng
|
|
41
|
+
references to S3, GCP, Azure, and local file systems.
|
|
42
|
+
- Multimodal data support: images, video, text, PDFs, JSONs, CSVs, parquet, etc.
|
|
33
43
|
- Unite files and metadata together into persistent, versioned, columnar datasets.
|
|
34
44
|
|
|
35
|
-
🐍 **Python-friendly
|
|
36
|
-
- Operate on Python objects and object fields
|
|
37
|
-
|
|
45
|
+
🐍 **Python-friendly.**
|
|
46
|
+
- Operate on Python objects and object fields: float scores, strings, matrixes,
|
|
47
|
+
LLM response objects.
|
|
48
|
+
- Run Python code in a high-scale, terabytes size datasets, with built-in
|
|
49
|
+
parallelization and memory-efficient computing — no SQL or Spark required.
|
|
38
50
|
|
|
39
51
|
🧠 **Data Enrichment and Processing.**
|
|
40
52
|
- Generate metadata using local AI models and LLM APIs.
|
|
41
|
-
- Filter, join, and group by metadata. Search by vector embeddings.
|
|
53
|
+
- Filter, join, and group datasets by metadata. Search by vector embeddings.
|
|
54
|
+
- High-performance vectorized operations on Python objects: sum, count, avg, etc.
|
|
42
55
|
- Pass datasets to Pytorch and Tensorflow, or export them back into storage.
|
|
43
56
|
|
|
44
|
-
🚀 **Efficiency.**
|
|
45
|
-
- Parallelization, out-of-memory workloads and data caching.
|
|
46
|
-
- Vectorized operations on Python object fields: sum, count, avg, etc.
|
|
47
|
-
- Optimized vector search.
|
|
48
|
-
|
|
49
57
|
|
|
50
58
|
Quick Start
|
|
51
59
|
-----------
|
|
@@ -95,7 +103,7 @@ Batch inference with a simple sentiment model using the `transformers` library:
|
|
|
95
103
|
|
|
96
104
|
pip install transformers
|
|
97
105
|
|
|
98
|
-
The code below downloads files the cloud, and applies a user-defined function
|
|
106
|
+
The code below downloads files from the cloud, and applies a user-defined function
|
|
99
107
|
to each one of them. All files with a positive sentiment
|
|
100
108
|
detected are then copied to the local directory.
|
|
101
109
|
|
|
@@ -328,6 +336,19 @@ name suffix, the following code will do it:
|
|
|
328
336
|
loader = DataLoader(chain, batch_size=1)
|
|
329
337
|
|
|
330
338
|
|
|
339
|
+
DataChain Studio Platform
|
|
340
|
+
-------------------------
|
|
341
|
+
|
|
342
|
+
`DataChain Studio`_ is a proprietary solution for teams that offers:
|
|
343
|
+
|
|
344
|
+
- **Centralized dataset registry** to manage data, code and dependency
|
|
345
|
+
dependencies in one place.
|
|
346
|
+
- **Data Lineage** for data sources as well as direvative dataset.
|
|
347
|
+
- **UI for Multimodal Data** like images, videos, and PDFs.
|
|
348
|
+
- **Scalable Compute** to handle large datasets (100M+ files) and in-house
|
|
349
|
+
AI model inference.
|
|
350
|
+
- **Access control** including SSO and team based collaboration.
|
|
351
|
+
|
|
331
352
|
Tutorials
|
|
332
353
|
---------
|
|
333
354
|
|
|
@@ -361,6 +382,5 @@ Community and Support
|
|
|
361
382
|
.. _Pydantic: https://github.com/pydantic/pydantic
|
|
362
383
|
.. _publicly available: https://radar.kit.edu/radar/en/dataset/FdJmclKpjHzLfExE.ExpBot%2B-%2BA%2Bdataset%2Bof%2B79%2Bdialogs%2Bwith%2Ban%2Bexperimental%2Bcustomer%2Bservice%2Bchatbot
|
|
363
384
|
.. _SQLite: https://www.sqlite.org/
|
|
364
|
-
.. _Getting Started: https://datachain.
|
|
365
|
-
..
|
|
366
|
-
:alt: DataChain FlowChart
|
|
385
|
+
.. _Getting Started: https://docs.datachain.ai/
|
|
386
|
+
.. _DataChain Studio: https://studio.datachain.ai/
|
|
@@ -769,6 +769,7 @@ class Catalog:
|
|
|
769
769
|
create_rows: Optional[bool] = True,
|
|
770
770
|
validate_version: Optional[bool] = True,
|
|
771
771
|
listing: Optional[bool] = False,
|
|
772
|
+
uuid: Optional[str] = None,
|
|
772
773
|
) -> "DatasetRecord":
|
|
773
774
|
"""
|
|
774
775
|
Creates new dataset of a specific version.
|
|
@@ -816,6 +817,7 @@ class Catalog:
|
|
|
816
817
|
query_script=query_script,
|
|
817
818
|
create_rows_table=create_rows,
|
|
818
819
|
columns=columns,
|
|
820
|
+
uuid=uuid,
|
|
819
821
|
)
|
|
820
822
|
|
|
821
823
|
def create_new_dataset_version(
|
|
@@ -832,6 +834,7 @@ class Catalog:
|
|
|
832
834
|
script_output="",
|
|
833
835
|
create_rows_table=True,
|
|
834
836
|
job_id: Optional[str] = None,
|
|
837
|
+
uuid: Optional[str] = None,
|
|
835
838
|
) -> DatasetRecord:
|
|
836
839
|
"""
|
|
837
840
|
Creates dataset version if it doesn't exist.
|
|
@@ -855,6 +858,7 @@ class Catalog:
|
|
|
855
858
|
schema=schema,
|
|
856
859
|
job_id=job_id,
|
|
857
860
|
ignore_if_exists=True,
|
|
861
|
+
uuid=uuid,
|
|
858
862
|
)
|
|
859
863
|
|
|
860
864
|
if create_rows_table:
|
|
@@ -1400,6 +1404,7 @@ class Catalog:
|
|
|
1400
1404
|
columns=columns,
|
|
1401
1405
|
feature_schema=remote_dataset_version.feature_schema,
|
|
1402
1406
|
validate_version=False,
|
|
1407
|
+
uuid=remote_dataset_version.uuid,
|
|
1403
1408
|
)
|
|
1404
1409
|
|
|
1405
1410
|
# asking remote to export dataset rows table to s3 and to return signed
|
|
@@ -358,7 +358,7 @@ class Client(ABC):
|
|
|
358
358
|
) -> BinaryIO:
|
|
359
359
|
"""Open a file, including files in tar archives."""
|
|
360
360
|
if use_cache and (cache_path := self.cache.get_path(file)):
|
|
361
|
-
return open(cache_path, mode="rb")
|
|
361
|
+
return open(cache_path, mode="rb")
|
|
362
362
|
assert not file.location
|
|
363
363
|
return FileWrapper(self.fs.open(self.get_full_path(file.path)), cb) # type: ignore[return-value]
|
|
364
364
|
|
|
@@ -138,6 +138,7 @@ class AbstractMetastore(ABC, Serializable):
|
|
|
138
138
|
size: Optional[int] = None,
|
|
139
139
|
preview: Optional[list[dict]] = None,
|
|
140
140
|
job_id: Optional[str] = None,
|
|
141
|
+
uuid: Optional[str] = None,
|
|
141
142
|
) -> DatasetRecord:
|
|
142
143
|
"""Creates new dataset version."""
|
|
143
144
|
|
|
@@ -352,6 +353,7 @@ class AbstractDBMetastore(AbstractMetastore):
|
|
|
352
353
|
"""Datasets versions table columns."""
|
|
353
354
|
return [
|
|
354
355
|
Column("id", Integer, primary_key=True),
|
|
356
|
+
Column("uuid", Text, nullable=False, default=uuid4()),
|
|
355
357
|
Column(
|
|
356
358
|
"dataset_id",
|
|
357
359
|
Integer,
|
|
@@ -545,6 +547,7 @@ class AbstractDBMetastore(AbstractMetastore):
|
|
|
545
547
|
size: Optional[int] = None,
|
|
546
548
|
preview: Optional[list[dict]] = None,
|
|
547
549
|
job_id: Optional[str] = None,
|
|
550
|
+
uuid: Optional[str] = None,
|
|
548
551
|
conn=None,
|
|
549
552
|
) -> DatasetRecord:
|
|
550
553
|
"""Creates new dataset version."""
|
|
@@ -555,6 +558,7 @@ class AbstractDBMetastore(AbstractMetastore):
|
|
|
555
558
|
|
|
556
559
|
query = self._datasets_versions_insert().values(
|
|
557
560
|
dataset_id=dataset.id,
|
|
561
|
+
uuid=uuid or str(uuid4()),
|
|
558
562
|
version=version,
|
|
559
563
|
status=status,
|
|
560
564
|
feature_schema=json.dumps(feature_schema or {}),
|
|
@@ -163,6 +163,7 @@ class DatasetStatus:
|
|
|
163
163
|
@dataclass
|
|
164
164
|
class DatasetVersion:
|
|
165
165
|
id: int
|
|
166
|
+
uuid: str
|
|
166
167
|
dataset_id: int
|
|
167
168
|
version: int
|
|
168
169
|
status: int
|
|
@@ -184,6 +185,7 @@ class DatasetVersion:
|
|
|
184
185
|
def parse( # noqa: PLR0913
|
|
185
186
|
cls: type[V],
|
|
186
187
|
id: int,
|
|
188
|
+
uuid: str,
|
|
187
189
|
dataset_id: int,
|
|
188
190
|
version: int,
|
|
189
191
|
status: int,
|
|
@@ -203,6 +205,7 @@ class DatasetVersion:
|
|
|
203
205
|
):
|
|
204
206
|
return cls(
|
|
205
207
|
id,
|
|
208
|
+
uuid,
|
|
206
209
|
dataset_id,
|
|
207
210
|
version,
|
|
208
211
|
status,
|
|
@@ -306,6 +309,7 @@ class DatasetRecord:
|
|
|
306
309
|
query_script: str,
|
|
307
310
|
schema: str,
|
|
308
311
|
version_id: int,
|
|
312
|
+
version_uuid: str,
|
|
309
313
|
version_dataset_id: int,
|
|
310
314
|
version: int,
|
|
311
315
|
version_status: int,
|
|
@@ -331,6 +335,7 @@ class DatasetRecord:
|
|
|
331
335
|
|
|
332
336
|
dataset_version = DatasetVersion.parse(
|
|
333
337
|
version_id,
|
|
338
|
+
version_uuid,
|
|
334
339
|
version_dataset_id,
|
|
335
340
|
version,
|
|
336
341
|
version_status,
|
|
@@ -1,6 +1,7 @@
|
|
|
1
1
|
import json
|
|
2
2
|
from datetime import datetime
|
|
3
3
|
from typing import TYPE_CHECKING, Any, Optional, Union
|
|
4
|
+
from uuid import uuid4
|
|
4
5
|
|
|
5
6
|
from pydantic import Field, field_validator
|
|
6
7
|
|
|
@@ -15,6 +16,7 @@ if TYPE_CHECKING:
|
|
|
15
16
|
|
|
16
17
|
class DatasetInfo(DataModel):
|
|
17
18
|
name: str
|
|
19
|
+
uuid: str = Field(default=str(uuid4()))
|
|
18
20
|
version: int = Field(default=1)
|
|
19
21
|
status: int = Field(default=DatasetStatus.CREATED)
|
|
20
22
|
created_at: datetime = Field(default=TIME_ZERO)
|
|
@@ -60,6 +62,7 @@ class DatasetInfo(DataModel):
|
|
|
60
62
|
job: Optional[Job],
|
|
61
63
|
) -> "Self":
|
|
62
64
|
return cls(
|
|
65
|
+
uuid=version.uuid,
|
|
63
66
|
name=dataset.name,
|
|
64
67
|
version=version.version,
|
|
65
68
|
status=version.status,
|
|
@@ -30,7 +30,7 @@ from datachain.client.local import FileClient
|
|
|
30
30
|
from datachain.dataset import DatasetRecord
|
|
31
31
|
from datachain.lib.convert.python_to_sql import python_to_sql
|
|
32
32
|
from datachain.lib.convert.values_to_tuples import values_to_tuples
|
|
33
|
-
from datachain.lib.data_model import DataModel, DataType, dict_to_data_model
|
|
33
|
+
from datachain.lib.data_model import DataModel, DataType, DataValue, dict_to_data_model
|
|
34
34
|
from datachain.lib.dataset_info import DatasetInfo
|
|
35
35
|
from datachain.lib.file import ArrowRow, File, get_file_type
|
|
36
36
|
from datachain.lib.file import ExportPlacement as FileExportPlacement
|
|
@@ -895,7 +895,7 @@ class DataChain:
|
|
|
895
895
|
2. Group-based UDF function input: Instead of individual rows, the function
|
|
896
896
|
receives a list all rows within each group defined by `partition_by`.
|
|
897
897
|
|
|
898
|
-
|
|
898
|
+
Examples:
|
|
899
899
|
```py
|
|
900
900
|
chain = chain.agg(
|
|
901
901
|
total=lambda category, amount: [sum(amount)],
|
|
@@ -904,6 +904,26 @@ class DataChain:
|
|
|
904
904
|
)
|
|
905
905
|
chain.save("new_dataset")
|
|
906
906
|
```
|
|
907
|
+
|
|
908
|
+
An alternative syntax, when you need to specify a more complex function:
|
|
909
|
+
|
|
910
|
+
```py
|
|
911
|
+
# It automatically resolves which columns to pass to the function
|
|
912
|
+
# by looking at the function signature.
|
|
913
|
+
def agg_sum(
|
|
914
|
+
file: list[File], amount: list[float]
|
|
915
|
+
) -> Iterator[tuple[File, float]]:
|
|
916
|
+
yield file[0], sum(amount)
|
|
917
|
+
|
|
918
|
+
chain = chain.agg(
|
|
919
|
+
agg_sum,
|
|
920
|
+
output={"file": File, "total": float},
|
|
921
|
+
# Alternative syntax is to use `C` (short for Column) to specify
|
|
922
|
+
# a column name or a nested column, e.g. C("file.path").
|
|
923
|
+
partition_by=C("category"),
|
|
924
|
+
)
|
|
925
|
+
chain.save("new_dataset")
|
|
926
|
+
```
|
|
907
927
|
"""
|
|
908
928
|
udf_obj = self._udf_to_obj(Aggregator, func, params, output, signal_map)
|
|
909
929
|
return self._evolve(
|
|
@@ -1242,15 +1262,15 @@ class DataChain:
|
|
|
1242
1262
|
return self.results(row_factory=to_dict)
|
|
1243
1263
|
|
|
1244
1264
|
@overload
|
|
1245
|
-
def collect(self) -> Iterator[tuple[
|
|
1265
|
+
def collect(self) -> Iterator[tuple[DataValue, ...]]: ...
|
|
1246
1266
|
|
|
1247
1267
|
@overload
|
|
1248
|
-
def collect(self, col: str) -> Iterator[
|
|
1268
|
+
def collect(self, col: str) -> Iterator[DataValue]: ...
|
|
1249
1269
|
|
|
1250
1270
|
@overload
|
|
1251
|
-
def collect(self, *cols: str) -> Iterator[tuple[
|
|
1271
|
+
def collect(self, *cols: str) -> Iterator[tuple[DataValue, ...]]: ...
|
|
1252
1272
|
|
|
1253
|
-
def collect(self, *cols: str) -> Iterator[Union[
|
|
1273
|
+
def collect(self, *cols: str) -> Iterator[Union[DataValue, tuple[DataValue, ...]]]: # type: ignore[overload-overlap,misc]
|
|
1254
1274
|
"""Yields rows of values, optionally limited to the specified columns.
|
|
1255
1275
|
|
|
1256
1276
|
Args:
|
|
@@ -114,6 +114,7 @@ def read_meta( # noqa: C901
|
|
|
114
114
|
)
|
|
115
115
|
)
|
|
116
116
|
(model_output,) = chain.collect("meta_schema")
|
|
117
|
+
assert isinstance(model_output, str)
|
|
117
118
|
if print_schema:
|
|
118
119
|
print(f"{model_output}")
|
|
119
120
|
# Below 'spec' should be a dynamically converted DataModel from Pydantic
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: datachain
|
|
3
|
-
Version: 0.6.
|
|
3
|
+
Version: 0.6.9
|
|
4
4
|
Summary: Wrangle unstructured AI data at scale
|
|
5
5
|
Author-email: Dmitry Petrov <support@dvc.org>
|
|
6
6
|
License: Apache-2.0
|
|
@@ -120,33 +120,41 @@ Requires-Dist: onnx==1.16.1; extra == "examples"
|
|
|
120
120
|
:target: https://github.com/iterative/datachain/actions/workflows/tests.yml
|
|
121
121
|
:alt: Tests
|
|
122
122
|
|
|
123
|
-
DataChain is a
|
|
124
|
-
|
|
125
|
-
|
|
123
|
+
DataChain is a Python-based AI-data warehouse for transforming and analyzing unstructured
|
|
124
|
+
data like images, audio, videos, text and PDFs. It integrates with external storage
|
|
125
|
+
(e.g., S3) to process data efficiently without data duplication and manages metadata
|
|
126
|
+
in an internal database for easy and efficient querying.
|
|
127
|
+
|
|
128
|
+
|
|
129
|
+
Use Cases
|
|
130
|
+
=========
|
|
131
|
+
|
|
132
|
+
1. **Multimodal Dataset Preparation and Curation**: ideal for organizing and
|
|
133
|
+
refining data in pre-training, finetuning or LLM evaluating stages.
|
|
134
|
+
2. **GenAI Data Analytics**: Enables advanced analytics for multimodal data and
|
|
135
|
+
ad-hoc analytics using LLMs.
|
|
126
136
|
|
|
127
137
|
Key Features
|
|
128
138
|
============
|
|
129
139
|
|
|
130
|
-
📂 **
|
|
131
|
-
-
|
|
132
|
-
file systems.
|
|
133
|
-
- Multimodal data support: images, video, text, PDFs, JSONs, CSVs, parquet.
|
|
140
|
+
📂 **Multimodal Dataset Versioning.**
|
|
141
|
+
- Version unstructured data without redundant data copies, by supporitng
|
|
142
|
+
references to S3, GCP, Azure, and local file systems.
|
|
143
|
+
- Multimodal data support: images, video, text, PDFs, JSONs, CSVs, parquet, etc.
|
|
134
144
|
- Unite files and metadata together into persistent, versioned, columnar datasets.
|
|
135
145
|
|
|
136
|
-
🐍 **Python-friendly
|
|
137
|
-
- Operate on Python objects and object fields
|
|
138
|
-
|
|
146
|
+
🐍 **Python-friendly.**
|
|
147
|
+
- Operate on Python objects and object fields: float scores, strings, matrixes,
|
|
148
|
+
LLM response objects.
|
|
149
|
+
- Run Python code in a high-scale, terabytes size datasets, with built-in
|
|
150
|
+
parallelization and memory-efficient computing — no SQL or Spark required.
|
|
139
151
|
|
|
140
152
|
🧠 **Data Enrichment and Processing.**
|
|
141
153
|
- Generate metadata using local AI models and LLM APIs.
|
|
142
|
-
- Filter, join, and group by metadata. Search by vector embeddings.
|
|
154
|
+
- Filter, join, and group datasets by metadata. Search by vector embeddings.
|
|
155
|
+
- High-performance vectorized operations on Python objects: sum, count, avg, etc.
|
|
143
156
|
- Pass datasets to Pytorch and Tensorflow, or export them back into storage.
|
|
144
157
|
|
|
145
|
-
🚀 **Efficiency.**
|
|
146
|
-
- Parallelization, out-of-memory workloads and data caching.
|
|
147
|
-
- Vectorized operations on Python object fields: sum, count, avg, etc.
|
|
148
|
-
- Optimized vector search.
|
|
149
|
-
|
|
150
158
|
|
|
151
159
|
Quick Start
|
|
152
160
|
-----------
|
|
@@ -196,7 +204,7 @@ Batch inference with a simple sentiment model using the `transformers` library:
|
|
|
196
204
|
|
|
197
205
|
pip install transformers
|
|
198
206
|
|
|
199
|
-
The code below downloads files the cloud, and applies a user-defined function
|
|
207
|
+
The code below downloads files from the cloud, and applies a user-defined function
|
|
200
208
|
to each one of them. All files with a positive sentiment
|
|
201
209
|
detected are then copied to the local directory.
|
|
202
210
|
|
|
@@ -429,6 +437,19 @@ name suffix, the following code will do it:
|
|
|
429
437
|
loader = DataLoader(chain, batch_size=1)
|
|
430
438
|
|
|
431
439
|
|
|
440
|
+
DataChain Studio Platform
|
|
441
|
+
-------------------------
|
|
442
|
+
|
|
443
|
+
`DataChain Studio`_ is a proprietary solution for teams that offers:
|
|
444
|
+
|
|
445
|
+
- **Centralized dataset registry** to manage data, code and dependency
|
|
446
|
+
dependencies in one place.
|
|
447
|
+
- **Data Lineage** for data sources as well as direvative dataset.
|
|
448
|
+
- **UI for Multimodal Data** like images, videos, and PDFs.
|
|
449
|
+
- **Scalable Compute** to handle large datasets (100M+ files) and in-house
|
|
450
|
+
AI model inference.
|
|
451
|
+
- **Access control** including SSO and team based collaboration.
|
|
452
|
+
|
|
432
453
|
Tutorials
|
|
433
454
|
---------
|
|
434
455
|
|
|
@@ -462,6 +483,5 @@ Community and Support
|
|
|
462
483
|
.. _Pydantic: https://github.com/pydantic/pydantic
|
|
463
484
|
.. _publicly available: https://radar.kit.edu/radar/en/dataset/FdJmclKpjHzLfExE.ExpBot%2B-%2BA%2Bdataset%2Bof%2B79%2Bdialogs%2Bwith%2Ban%2Bexperimental%2Bcustomer%2Bservice%2Bchatbot
|
|
464
485
|
.. _SQLite: https://www.sqlite.org/
|
|
465
|
-
.. _Getting Started: https://datachain.
|
|
466
|
-
..
|
|
467
|
-
:alt: DataChain FlowChart
|
|
486
|
+
.. _Getting Started: https://docs.datachain.ai/
|
|
487
|
+
.. _DataChain Studio: https://studio.datachain.ai/
|
|
@@ -56,6 +56,7 @@ def test_create_dataset_no_version_specified(cloud_test_catalog, create_rows):
|
|
|
56
56
|
assert dataset.schema["similarity"] == Float32
|
|
57
57
|
assert dataset_version.schema["similarity"] == Float32
|
|
58
58
|
assert dataset_version.status == DatasetStatus.PENDING
|
|
59
|
+
assert dataset_version.uuid
|
|
59
60
|
assert dataset.status == DatasetStatus.CREATED # dataset status is deprecated
|
|
60
61
|
if create_rows:
|
|
61
62
|
assert dataset_version.num_objects == 0
|
|
@@ -85,6 +86,7 @@ def test_create_dataset_with_explicit_version(cloud_test_catalog, create_rows):
|
|
|
85
86
|
assert dataset.schema["similarity"] == Float32
|
|
86
87
|
assert dataset_version.schema["similarity"] == Float32
|
|
87
88
|
assert dataset_version.status == DatasetStatus.PENDING
|
|
89
|
+
assert dataset_version.uuid
|
|
88
90
|
assert dataset.status == DatasetStatus.CREATED
|
|
89
91
|
if create_rows:
|
|
90
92
|
assert dataset_version.num_objects == 0
|
|
@@ -178,6 +180,7 @@ def test_create_dataset_from_sources(listed_bucket, cloud_test_catalog):
|
|
|
178
180
|
assert dataset_version.error_stack == ""
|
|
179
181
|
assert dataset_version.script_output == ""
|
|
180
182
|
assert dataset_version.sources == f"{src_uri}/dogs/*"
|
|
183
|
+
assert dataset_version.uuid
|
|
181
184
|
|
|
182
185
|
dr = catalog.warehouse.schema.dataset_row_cls
|
|
183
186
|
sys_schema = {c.name: type(c.type) for c in dr.sys_columns()}
|
|
@@ -214,6 +217,7 @@ def test_create_dataset_from_sources_dataset(cloud_test_catalog, dogs_dataset):
|
|
|
214
217
|
assert dataset_version.error_stack == ""
|
|
215
218
|
assert dataset_version.script_output == ""
|
|
216
219
|
assert dataset_version.sources == f"ds://{dogs_dataset.name}"
|
|
220
|
+
assert dataset_version.uuid
|
|
217
221
|
|
|
218
222
|
dr = catalog.warehouse.schema.dataset_row_cls
|
|
219
223
|
sys_schema = {c.name: type(c.type) for c in dr.sys_columns()}
|
|
@@ -13,6 +13,8 @@ from datachain.utils import STUDIO_URL, JSONSerialize
|
|
|
13
13
|
from tests.data import ENTRIES
|
|
14
14
|
from tests.utils import assert_row_names, skip_if_not_sqlite
|
|
15
15
|
|
|
16
|
+
DATASET_UUID = "20f5a2f1-fc9a-4e36-8b91-5a530f289451"
|
|
17
|
+
|
|
16
18
|
|
|
17
19
|
@pytest.fixture(autouse=True)
|
|
18
20
|
def studio_config():
|
|
@@ -90,6 +92,7 @@ def schema():
|
|
|
90
92
|
def remote_dataset_version(schema, dataset_rows):
|
|
91
93
|
return {
|
|
92
94
|
"id": 1,
|
|
95
|
+
"uuid": DATASET_UUID,
|
|
93
96
|
"dataset_id": 1,
|
|
94
97
|
"version": 1,
|
|
95
98
|
"status": 4,
|
|
@@ -179,6 +182,7 @@ def test_pull_dataset_success(
|
|
|
179
182
|
assert dataset_version.schema
|
|
180
183
|
assert dataset_version.num_objects == 4
|
|
181
184
|
assert dataset_version.size == 15
|
|
185
|
+
assert dataset_version.uuid == DATASET_UUID
|
|
182
186
|
|
|
183
187
|
assert_row_names(
|
|
184
188
|
catalog,
|
|
Binary file
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|