databricks-sqlalchemy 1.0.0__tar.gz → 1.0.2__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- databricks_sqlalchemy-1.0.2/CHANGELOG.md +5 -0
- {databricks_sqlalchemy-1.0.0 → databricks_sqlalchemy-1.0.2}/PKG-INFO +39 -61
- {databricks_sqlalchemy-1.0.0 → databricks_sqlalchemy-1.0.2}/README.md +37 -58
- {databricks_sqlalchemy-1.0.0 → databricks_sqlalchemy-1.0.2}/pyproject.toml +3 -11
- databricks_sqlalchemy-1.0.2/src/databricks/sqlalchemy/__init__.py +1 -0
- databricks_sqlalchemy-1.0.2/src/databricks/sqlalchemy/dialect/__init__.py +340 -0
- databricks_sqlalchemy-1.0.2/src/databricks/sqlalchemy/dialect/base.py +17 -0
- databricks_sqlalchemy-1.0.2/src/databricks/sqlalchemy/dialect/compiler.py +38 -0
- databricks_sqlalchemy-1.0.0/CHANGELOG.md +0 -274
- databricks_sqlalchemy-1.0.0/src/databricks/sqlalchemy/__init__.py +0 -4
- databricks_sqlalchemy-1.0.0/src/databricks/sqlalchemy/_ddl.py +0 -100
- databricks_sqlalchemy-1.0.0/src/databricks/sqlalchemy/_parse.py +0 -385
- databricks_sqlalchemy-1.0.0/src/databricks/sqlalchemy/_types.py +0 -323
- databricks_sqlalchemy-1.0.0/src/databricks/sqlalchemy/base.py +0 -436
- databricks_sqlalchemy-1.0.0/src/databricks/sqlalchemy/dependency_test/test_dependency.py +0 -22
- databricks_sqlalchemy-1.0.0/src/databricks/sqlalchemy/py.typed +0 -0
- databricks_sqlalchemy-1.0.0/src/databricks/sqlalchemy/pytest.ini +0 -4
- databricks_sqlalchemy-1.0.0/src/databricks/sqlalchemy/requirements.py +0 -249
- databricks_sqlalchemy-1.0.0/src/databricks/sqlalchemy/setup.cfg +0 -4
- databricks_sqlalchemy-1.0.0/src/databricks/sqlalchemy/test/_extra.py +0 -70
- databricks_sqlalchemy-1.0.0/src/databricks/sqlalchemy/test/_future.py +0 -331
- databricks_sqlalchemy-1.0.0/src/databricks/sqlalchemy/test/_regression.py +0 -311
- databricks_sqlalchemy-1.0.0/src/databricks/sqlalchemy/test/_unsupported.py +0 -450
- databricks_sqlalchemy-1.0.0/src/databricks/sqlalchemy/test/conftest.py +0 -13
- databricks_sqlalchemy-1.0.0/src/databricks/sqlalchemy/test/overrides/_componentreflectiontest.py +0 -189
- databricks_sqlalchemy-1.0.0/src/databricks/sqlalchemy/test/overrides/_ctetest.py +0 -33
- databricks_sqlalchemy-1.0.0/src/databricks/sqlalchemy/test/test_suite.py +0 -13
- databricks_sqlalchemy-1.0.0/src/databricks/sqlalchemy/test_local/__init__.py +0 -5
- databricks_sqlalchemy-1.0.0/src/databricks/sqlalchemy/test_local/conftest.py +0 -44
- databricks_sqlalchemy-1.0.0/src/databricks/sqlalchemy/test_local/e2e/MOCK_DATA.xlsx +0 -0
- databricks_sqlalchemy-1.0.0/src/databricks/sqlalchemy/test_local/e2e/test_basic.py +0 -543
- databricks_sqlalchemy-1.0.0/src/databricks/sqlalchemy/test_local/test_ddl.py +0 -96
- databricks_sqlalchemy-1.0.0/src/databricks/sqlalchemy/test_local/test_parsing.py +0 -160
- databricks_sqlalchemy-1.0.0/src/databricks/sqlalchemy/test_local/test_types.py +0 -161
- {databricks_sqlalchemy-1.0.0 → databricks_sqlalchemy-1.0.2}/LICENSE +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: databricks-sqlalchemy
|
3
|
-
Version: 1.0.
|
3
|
+
Version: 1.0.2
|
4
4
|
Summary: Databricks SQLAlchemy plugin for Python
|
5
5
|
License: Apache-2.0
|
6
6
|
Author: Databricks
|
@@ -13,18 +13,14 @@ Classifier: Programming Language :: Python :: 3.9
|
|
13
13
|
Classifier: Programming Language :: Python :: 3.10
|
14
14
|
Classifier: Programming Language :: Python :: 3.11
|
15
15
|
Classifier: Programming Language :: Python :: 3.12
|
16
|
-
Requires-Dist:
|
17
|
-
Requires-Dist: sqlalchemy (>=2.0.21)
|
16
|
+
Requires-Dist: sqlalchemy (>=1.3.24,<2.0.0)
|
18
17
|
Project-URL: Bug Tracker, https://github.com/databricks/databricks-sqlalchemy/issues
|
19
18
|
Project-URL: Homepage, https://github.com/databricks/databricks-sqlalchemy
|
20
19
|
Description-Content-Type: text/markdown
|
21
20
|
|
22
|
-
## Databricks dialect for SQLALchemy
|
21
|
+
## Databricks dialect for SQLALchemy 1.0
|
23
22
|
|
24
|
-
The Databricks dialect for SQLAlchemy serves as bridge between [SQLAlchemy](https://www.sqlalchemy.org/) and the Databricks SQL Python driver. A working example demonstrating usage can be found in `
|
25
|
-
|
26
|
-
## Usage with SQLAlchemy <= 2.0
|
27
|
-
A SQLAlchemy 1.4 compatible dialect was first released in connector [version 2.4](https://github.com/databricks/databricks-sql-python/releases/tag/v2.4.0). Support for SQLAlchemy 1.4 was dropped from the dialect as part of `databricks-sql-connector==3.0.0`. To continue using the dialect with SQLAlchemy 1.x, you can use `databricks-sql-connector^2.4.0`.
|
23
|
+
The Databricks dialect for SQLAlchemy serves as bridge between [SQLAlchemy](https://www.sqlalchemy.org/) and the Databricks SQL Python driver. A working example demonstrating usage can be found in `example.py`.
|
28
24
|
|
29
25
|
|
30
26
|
## Installation
|
@@ -32,7 +28,7 @@ A SQLAlchemy 1.4 compatible dialect was first released in connector [version 2.4
|
|
32
28
|
To install the dialect and its dependencies:
|
33
29
|
|
34
30
|
```shell
|
35
|
-
pip install databricks-sqlalchemy
|
31
|
+
pip install databricks-sqlalchemy~=1.0
|
36
32
|
```
|
37
33
|
|
38
34
|
If you also plan to use `alembic` you can alternatively run:
|
@@ -65,41 +61,45 @@ access_token = os.getenv("DATABRICKS_TOKEN")
|
|
65
61
|
catalog = os.getenv("DATABRICKS_CATALOG")
|
66
62
|
schema = os.getenv("DATABRICKS_SCHEMA")
|
67
63
|
|
68
|
-
|
69
|
-
|
70
|
-
|
64
|
+
if sqlalchemy.__version__.startswith("1.3"):
|
65
|
+
# SQLAlchemy 1.3.x fails to parse the http_path, catalog, and schema from our connection string
|
66
|
+
# Pass these in as connect_args instead
|
67
|
+
|
68
|
+
conn_string = f"databricks://token:{access_token}@{host}"
|
69
|
+
connect_args = dict(catalog=catalog, schema=schema, http_path=http_path)
|
70
|
+
all_connect_args = {**extra_connect_args, **connect_args}
|
71
|
+
engine = create_engine(conn_string, connect_args=all_connect_args)
|
72
|
+
else:
|
73
|
+
engine = create_engine(
|
74
|
+
f"databricks://token:{access_token}@{host}?http_path={http_path}&catalog={catalog}&schema={schema}",
|
75
|
+
connect_args=extra_connect_args,
|
76
|
+
)
|
77
|
+
|
71
78
|
```
|
72
79
|
|
73
80
|
## Types
|
74
81
|
|
75
|
-
The [SQLAlchemy type hierarchy](https://docs.sqlalchemy.org/en/
|
82
|
+
The [SQLAlchemy type hierarchy](https://docs.sqlalchemy.org/en/13/core/type_basics.html) contains backend-agnostic type implementations (represented in CamelCase) and backend-specific types (represented in UPPERCASE). The majority of SQLAlchemy's [CamelCase](https://docs.sqlalchemy.org/en/13/core/type_basics.html#the-camelcase-datatypes) types are supported. This means that a SQLAlchemy application using these types should "just work" with Databricks.
|
76
83
|
|
77
84
|
|SQLAlchemy Type|Databricks SQL Type|
|
78
85
|
|-|-|
|
79
|
-
[`BigInteger`](https://docs.sqlalchemy.org/en/
|
80
|
-
[`LargeBinary`](https://docs.sqlalchemy.org/en/
|
81
|
-
[`Boolean`](https://docs.sqlalchemy.org/en/
|
82
|
-
[`Date`](https://docs.sqlalchemy.org/en/
|
83
|
-
[`DateTime`](https://docs.sqlalchemy.org/en/
|
84
|
-
[`
|
85
|
-
[`
|
86
|
-
[`
|
87
|
-
[`
|
88
|
-
[`
|
89
|
-
[`
|
90
|
-
[`
|
91
|
-
[`
|
92
|
-
[`
|
93
|
-
[`
|
94
|
-
[`
|
95
|
-
[`
|
96
|
-
[`Uuid`](https://docs.sqlalchemy.org/en/20/core/type_basics.html#sqlalchemy.types.Uuid)| [`STRING`](https://docs.databricks.com/en/sql/language-manual/data-types/string-type.html)
|
97
|
-
|
98
|
-
In addition, the dialect exposes three UPPERCASE SQLAlchemy types which are specific to Databricks:
|
99
|
-
|
100
|
-
- [`databricks.sqlalchemy.TINYINT`](https://docs.databricks.com/en/sql/language-manual/data-types/tinyint-type.html)
|
101
|
-
- [`databricks.sqlalchemy.TIMESTAMP`](https://docs.databricks.com/en/sql/language-manual/data-types/timestamp-type.html)
|
102
|
-
- [`databricks.sqlalchemy.TIMESTAMP_NTZ`](https://docs.databricks.com/en/sql/language-manual/data-types/timestamp-ntz-type.html)
|
86
|
+
[`BigInteger`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.BigInteger)| [`BIGINT`](https://docs.databricks.com/en/sql/language-manual/data-types/bigint-type.html)
|
87
|
+
[`LargeBinary`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.LargeBinary)| (not supported)|
|
88
|
+
[`Boolean`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Boolean)| [`BOOLEAN`](https://docs.databricks.com/en/sql/language-manual/data-types/boolean-type.html)
|
89
|
+
[`Date`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Date)| [`DATE`](https://docs.databricks.com/en/sql/language-manual/data-types/date-type.html)
|
90
|
+
[`DateTime`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.DateTime)| [`TIMESTAMP_NTZ`](https://docs.databricks.com/en/sql/language-manual/data-types/timestamp-ntz-type.html)|
|
91
|
+
[`Enum`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Enum)| (not supported)|
|
92
|
+
[`Float`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Float)| [`FLOAT`](https://docs.databricks.com/en/sql/language-manual/data-types/float-type.html)
|
93
|
+
[`Integer`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Integer)| [`INT`](https://docs.databricks.com/en/sql/language-manual/data-types/int-type.html)
|
94
|
+
[`Numeric`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Numeric)| [`DECIMAL`](https://docs.databricks.com/en/sql/language-manual/data-types/decimal-type.html)|
|
95
|
+
[`PickleType`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.PickleType)| (not supported)|
|
96
|
+
[`SmallInteger`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.SmallInteger)| [`SMALLINT`](https://docs.databricks.com/en/sql/language-manual/data-types/smallint-type.html)
|
97
|
+
[`String`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.String)| [`STRING`](https://docs.databricks.com/en/sql/language-manual/data-types/string-type.html)|
|
98
|
+
[`Text`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Text)| [`STRING`](https://docs.databricks.com/en/sql/language-manual/data-types/string-type.html)|
|
99
|
+
[`Time`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Time)| [`STRING`](https://docs.databricks.com/en/sql/language-manual/data-types/string-type.html)|
|
100
|
+
[`Unicode`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Unicode)| [`STRING`](https://docs.databricks.com/en/sql/language-manual/data-types/string-type.html)|
|
101
|
+
[`UnicodeText`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.UnicodeText)| [`STRING`](https://docs.databricks.com/en/sql/language-manual/data-types/string-type.html)|
|
102
|
+
[`Uuid`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Uuid)| [`STRING`](https://docs.databricks.com/en/sql/language-manual/data-types/string-type.html)
|
103
103
|
|
104
104
|
|
105
105
|
### `LargeBinary()` and `PickleType()`
|
@@ -112,24 +112,6 @@ Support for `CHECK` constraints is not implemented in this dialect. Support is p
|
|
112
112
|
|
113
113
|
SQLAlchemy's `Enum()` type depends on `CHECK` constraints and is therefore not yet supported.
|
114
114
|
|
115
|
-
### `DateTime()`, `TIMESTAMP_NTZ()`, and `TIMESTAMP()`
|
116
|
-
|
117
|
-
Databricks Runtime provides two datetime-like types: `TIMESTAMP` which is always timezone-aware and `TIMESTAMP_NTZ` which is timezone agnostic. Both types can be imported from `databricks.sqlalchemy` and used in your models.
|
118
|
-
|
119
|
-
The SQLAlchemy documentation indicates that `DateTime()` is not timezone-aware by default. So our dialect maps this type to `TIMESTAMP_NTZ()`. In practice, you should never need to use `TIMESTAMP_NTZ()` directly. Just use `DateTime()`.
|
120
|
-
|
121
|
-
If you need your field to be timezone-aware, you can import `TIMESTAMP()` and use it instead.
|
122
|
-
|
123
|
-
_Note that SQLAlchemy documentation suggests that you can declare a `DateTime()` with `timezone=True` on supported backends. However, if you do this with the Databricks dialect, the `timezone` argument will be ignored._
|
124
|
-
|
125
|
-
```python
|
126
|
-
from sqlalchemy import DateTime
|
127
|
-
from databricks.sqlalchemy import TIMESTAMP
|
128
|
-
|
129
|
-
class SomeModel(Base):
|
130
|
-
some_date_without_timezone = DateTime()
|
131
|
-
some_date_with_timezone = TIMESTAMP()
|
132
|
-
```
|
133
115
|
|
134
116
|
### `String()`, `Text()`, `Unicode()`, and `UnicodeText()`
|
135
117
|
|
@@ -154,7 +136,7 @@ class SomeModel(Base):
|
|
154
136
|
|
155
137
|
Identity and generated value support is currently limited in this dialect.
|
156
138
|
|
157
|
-
When defining models, SQLAlchemy types can accept an [`autoincrement`](https://docs.sqlalchemy.org/en/
|
139
|
+
When defining models, SQLAlchemy types can accept an [`autoincrement`](https://docs.sqlalchemy.org/en/13/core/metadata.html#sqlalchemy.schema.Column.params.autoincrement) argument. In our dialect, this argument is currently ignored. To create an auto-incrementing field in your model you can pass in an explicit [`Identity()`](https://docs.sqlalchemy.org/en/13/core/defaults.html#identity-ddl) instead.
|
158
140
|
|
159
141
|
Furthermore, in Databricks Runtime, only `BIGINT` fields can be configured to auto-increment. So in SQLAlchemy, you must use the `BigInteger()` type.
|
160
142
|
|
@@ -168,10 +150,6 @@ class SomeModel(Base):
|
|
168
150
|
|
169
151
|
When calling `Base.metadata.create_all()`, the executed DDL will include `GENERATED ALWAYS AS IDENTITY` for the `id` column. This is useful when using SQLAlchemy to generate tables. However, as of this writing, `Identity()` constructs are not captured when SQLAlchemy reflects a table's metadata (support for this is planned).
|
170
152
|
|
171
|
-
## Parameters
|
172
|
-
|
173
|
-
`databricks-sql-connector` supports two approaches to parameterizing SQL queries: native and inline. Our SQLAlchemy 2.0 dialect always uses the native approach and is therefore limited to DBR 14.2 and above. If you are writing parameterized queries to be executed by SQLAlchemy, you must use the "named" paramstyle (`:param`). Read more about parameterization in `docs/parameters.md`.
|
174
|
-
|
175
153
|
## Usage with pandas
|
176
154
|
|
177
155
|
Use [`pandas.DataFrame.to_sql`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_sql.html) and [`pandas.read_sql`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_sql.html#pandas.read_sql) to write and read from Databricks SQL. These methods both accept a SQLAlchemy connection to interact with Databricks.
|
@@ -202,7 +180,7 @@ with engine.connect() as conn:
|
|
202
180
|
df.to_sql('squares',conn)
|
203
181
|
```
|
204
182
|
|
205
|
-
## [`PrimaryKey()`](https://docs.sqlalchemy.org/en/
|
183
|
+
## [`PrimaryKey()`](https://docs.sqlalchemy.org/en/13/core/constraints.html#sqlalchemy.schema.PrimaryKeyConstraint) and [`ForeignKey()`](https://docs.sqlalchemy.org/en/13/core/constraints.html#defining-foreign-keys)
|
206
184
|
|
207
185
|
Unity Catalog workspaces in Databricks support PRIMARY KEY and FOREIGN KEY constraints. _Note that Databricks Runtime does not enforce the integrity of FOREIGN KEY constraints_. You can establish a primary key by setting `primary_key=True` when defining a column.
|
208
186
|
|
@@ -1,9 +1,6 @@
|
|
1
|
-
## Databricks dialect for SQLALchemy
|
1
|
+
## Databricks dialect for SQLALchemy 1.0
|
2
2
|
|
3
|
-
The Databricks dialect for SQLAlchemy serves as bridge between [SQLAlchemy](https://www.sqlalchemy.org/) and the Databricks SQL Python driver. A working example demonstrating usage can be found in `
|
4
|
-
|
5
|
-
## Usage with SQLAlchemy <= 2.0
|
6
|
-
A SQLAlchemy 1.4 compatible dialect was first released in connector [version 2.4](https://github.com/databricks/databricks-sql-python/releases/tag/v2.4.0). Support for SQLAlchemy 1.4 was dropped from the dialect as part of `databricks-sql-connector==3.0.0`. To continue using the dialect with SQLAlchemy 1.x, you can use `databricks-sql-connector^2.4.0`.
|
3
|
+
The Databricks dialect for SQLAlchemy serves as bridge between [SQLAlchemy](https://www.sqlalchemy.org/) and the Databricks SQL Python driver. A working example demonstrating usage can be found in `example.py`.
|
7
4
|
|
8
5
|
|
9
6
|
## Installation
|
@@ -11,7 +8,7 @@ A SQLAlchemy 1.4 compatible dialect was first released in connector [version 2.4
|
|
11
8
|
To install the dialect and its dependencies:
|
12
9
|
|
13
10
|
```shell
|
14
|
-
pip install databricks-sqlalchemy
|
11
|
+
pip install databricks-sqlalchemy~=1.0
|
15
12
|
```
|
16
13
|
|
17
14
|
If you also plan to use `alembic` you can alternatively run:
|
@@ -44,41 +41,45 @@ access_token = os.getenv("DATABRICKS_TOKEN")
|
|
44
41
|
catalog = os.getenv("DATABRICKS_CATALOG")
|
45
42
|
schema = os.getenv("DATABRICKS_SCHEMA")
|
46
43
|
|
47
|
-
|
48
|
-
|
49
|
-
|
44
|
+
if sqlalchemy.__version__.startswith("1.3"):
|
45
|
+
# SQLAlchemy 1.3.x fails to parse the http_path, catalog, and schema from our connection string
|
46
|
+
# Pass these in as connect_args instead
|
47
|
+
|
48
|
+
conn_string = f"databricks://token:{access_token}@{host}"
|
49
|
+
connect_args = dict(catalog=catalog, schema=schema, http_path=http_path)
|
50
|
+
all_connect_args = {**extra_connect_args, **connect_args}
|
51
|
+
engine = create_engine(conn_string, connect_args=all_connect_args)
|
52
|
+
else:
|
53
|
+
engine = create_engine(
|
54
|
+
f"databricks://token:{access_token}@{host}?http_path={http_path}&catalog={catalog}&schema={schema}",
|
55
|
+
connect_args=extra_connect_args,
|
56
|
+
)
|
57
|
+
|
50
58
|
```
|
51
59
|
|
52
60
|
## Types
|
53
61
|
|
54
|
-
The [SQLAlchemy type hierarchy](https://docs.sqlalchemy.org/en/
|
62
|
+
The [SQLAlchemy type hierarchy](https://docs.sqlalchemy.org/en/13/core/type_basics.html) contains backend-agnostic type implementations (represented in CamelCase) and backend-specific types (represented in UPPERCASE). The majority of SQLAlchemy's [CamelCase](https://docs.sqlalchemy.org/en/13/core/type_basics.html#the-camelcase-datatypes) types are supported. This means that a SQLAlchemy application using these types should "just work" with Databricks.
|
55
63
|
|
56
64
|
|SQLAlchemy Type|Databricks SQL Type|
|
57
65
|
|-|-|
|
58
|
-
[`BigInteger`](https://docs.sqlalchemy.org/en/
|
59
|
-
[`LargeBinary`](https://docs.sqlalchemy.org/en/
|
60
|
-
[`Boolean`](https://docs.sqlalchemy.org/en/
|
61
|
-
[`Date`](https://docs.sqlalchemy.org/en/
|
62
|
-
[`DateTime`](https://docs.sqlalchemy.org/en/
|
63
|
-
[`
|
64
|
-
[`
|
65
|
-
[`
|
66
|
-
[`
|
67
|
-
[`
|
68
|
-
[`
|
69
|
-
[`
|
70
|
-
[`
|
71
|
-
[`
|
72
|
-
[`
|
73
|
-
[`
|
74
|
-
[`
|
75
|
-
[`Uuid`](https://docs.sqlalchemy.org/en/20/core/type_basics.html#sqlalchemy.types.Uuid)| [`STRING`](https://docs.databricks.com/en/sql/language-manual/data-types/string-type.html)
|
76
|
-
|
77
|
-
In addition, the dialect exposes three UPPERCASE SQLAlchemy types which are specific to Databricks:
|
78
|
-
|
79
|
-
- [`databricks.sqlalchemy.TINYINT`](https://docs.databricks.com/en/sql/language-manual/data-types/tinyint-type.html)
|
80
|
-
- [`databricks.sqlalchemy.TIMESTAMP`](https://docs.databricks.com/en/sql/language-manual/data-types/timestamp-type.html)
|
81
|
-
- [`databricks.sqlalchemy.TIMESTAMP_NTZ`](https://docs.databricks.com/en/sql/language-manual/data-types/timestamp-ntz-type.html)
|
66
|
+
[`BigInteger`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.BigInteger)| [`BIGINT`](https://docs.databricks.com/en/sql/language-manual/data-types/bigint-type.html)
|
67
|
+
[`LargeBinary`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.LargeBinary)| (not supported)|
|
68
|
+
[`Boolean`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Boolean)| [`BOOLEAN`](https://docs.databricks.com/en/sql/language-manual/data-types/boolean-type.html)
|
69
|
+
[`Date`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Date)| [`DATE`](https://docs.databricks.com/en/sql/language-manual/data-types/date-type.html)
|
70
|
+
[`DateTime`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.DateTime)| [`TIMESTAMP_NTZ`](https://docs.databricks.com/en/sql/language-manual/data-types/timestamp-ntz-type.html)|
|
71
|
+
[`Enum`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Enum)| (not supported)|
|
72
|
+
[`Float`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Float)| [`FLOAT`](https://docs.databricks.com/en/sql/language-manual/data-types/float-type.html)
|
73
|
+
[`Integer`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Integer)| [`INT`](https://docs.databricks.com/en/sql/language-manual/data-types/int-type.html)
|
74
|
+
[`Numeric`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Numeric)| [`DECIMAL`](https://docs.databricks.com/en/sql/language-manual/data-types/decimal-type.html)|
|
75
|
+
[`PickleType`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.PickleType)| (not supported)|
|
76
|
+
[`SmallInteger`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.SmallInteger)| [`SMALLINT`](https://docs.databricks.com/en/sql/language-manual/data-types/smallint-type.html)
|
77
|
+
[`String`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.String)| [`STRING`](https://docs.databricks.com/en/sql/language-manual/data-types/string-type.html)|
|
78
|
+
[`Text`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Text)| [`STRING`](https://docs.databricks.com/en/sql/language-manual/data-types/string-type.html)|
|
79
|
+
[`Time`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Time)| [`STRING`](https://docs.databricks.com/en/sql/language-manual/data-types/string-type.html)|
|
80
|
+
[`Unicode`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Unicode)| [`STRING`](https://docs.databricks.com/en/sql/language-manual/data-types/string-type.html)|
|
81
|
+
[`UnicodeText`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.UnicodeText)| [`STRING`](https://docs.databricks.com/en/sql/language-manual/data-types/string-type.html)|
|
82
|
+
[`Uuid`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Uuid)| [`STRING`](https://docs.databricks.com/en/sql/language-manual/data-types/string-type.html)
|
82
83
|
|
83
84
|
|
84
85
|
### `LargeBinary()` and `PickleType()`
|
@@ -91,24 +92,6 @@ Support for `CHECK` constraints is not implemented in this dialect. Support is p
|
|
91
92
|
|
92
93
|
SQLAlchemy's `Enum()` type depends on `CHECK` constraints and is therefore not yet supported.
|
93
94
|
|
94
|
-
### `DateTime()`, `TIMESTAMP_NTZ()`, and `TIMESTAMP()`
|
95
|
-
|
96
|
-
Databricks Runtime provides two datetime-like types: `TIMESTAMP` which is always timezone-aware and `TIMESTAMP_NTZ` which is timezone agnostic. Both types can be imported from `databricks.sqlalchemy` and used in your models.
|
97
|
-
|
98
|
-
The SQLAlchemy documentation indicates that `DateTime()` is not timezone-aware by default. So our dialect maps this type to `TIMESTAMP_NTZ()`. In practice, you should never need to use `TIMESTAMP_NTZ()` directly. Just use `DateTime()`.
|
99
|
-
|
100
|
-
If you need your field to be timezone-aware, you can import `TIMESTAMP()` and use it instead.
|
101
|
-
|
102
|
-
_Note that SQLAlchemy documentation suggests that you can declare a `DateTime()` with `timezone=True` on supported backends. However, if you do this with the Databricks dialect, the `timezone` argument will be ignored._
|
103
|
-
|
104
|
-
```python
|
105
|
-
from sqlalchemy import DateTime
|
106
|
-
from databricks.sqlalchemy import TIMESTAMP
|
107
|
-
|
108
|
-
class SomeModel(Base):
|
109
|
-
some_date_without_timezone = DateTime()
|
110
|
-
some_date_with_timezone = TIMESTAMP()
|
111
|
-
```
|
112
95
|
|
113
96
|
### `String()`, `Text()`, `Unicode()`, and `UnicodeText()`
|
114
97
|
|
@@ -133,7 +116,7 @@ class SomeModel(Base):
|
|
133
116
|
|
134
117
|
Identity and generated value support is currently limited in this dialect.
|
135
118
|
|
136
|
-
When defining models, SQLAlchemy types can accept an [`autoincrement`](https://docs.sqlalchemy.org/en/
|
119
|
+
When defining models, SQLAlchemy types can accept an [`autoincrement`](https://docs.sqlalchemy.org/en/13/core/metadata.html#sqlalchemy.schema.Column.params.autoincrement) argument. In our dialect, this argument is currently ignored. To create an auto-incrementing field in your model you can pass in an explicit [`Identity()`](https://docs.sqlalchemy.org/en/13/core/defaults.html#identity-ddl) instead.
|
137
120
|
|
138
121
|
Furthermore, in Databricks Runtime, only `BIGINT` fields can be configured to auto-increment. So in SQLAlchemy, you must use the `BigInteger()` type.
|
139
122
|
|
@@ -147,10 +130,6 @@ class SomeModel(Base):
|
|
147
130
|
|
148
131
|
When calling `Base.metadata.create_all()`, the executed DDL will include `GENERATED ALWAYS AS IDENTITY` for the `id` column. This is useful when using SQLAlchemy to generate tables. However, as of this writing, `Identity()` constructs are not captured when SQLAlchemy reflects a table's metadata (support for this is planned).
|
149
132
|
|
150
|
-
## Parameters
|
151
|
-
|
152
|
-
`databricks-sql-connector` supports two approaches to parameterizing SQL queries: native and inline. Our SQLAlchemy 2.0 dialect always uses the native approach and is therefore limited to DBR 14.2 and above. If you are writing parameterized queries to be executed by SQLAlchemy, you must use the "named" paramstyle (`:param`). Read more about parameterization in `docs/parameters.md`.
|
153
|
-
|
154
133
|
## Usage with pandas
|
155
134
|
|
156
135
|
Use [`pandas.DataFrame.to_sql`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_sql.html) and [`pandas.read_sql`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_sql.html#pandas.read_sql) to write and read from Databricks SQL. These methods both accept a SQLAlchemy connection to interact with Databricks.
|
@@ -181,7 +160,7 @@ with engine.connect() as conn:
|
|
181
160
|
df.to_sql('squares',conn)
|
182
161
|
```
|
183
162
|
|
184
|
-
## [`PrimaryKey()`](https://docs.sqlalchemy.org/en/
|
163
|
+
## [`PrimaryKey()`](https://docs.sqlalchemy.org/en/13/core/constraints.html#sqlalchemy.schema.PrimaryKeyConstraint) and [`ForeignKey()`](https://docs.sqlalchemy.org/en/13/core/constraints.html#defining-foreign-keys)
|
185
164
|
|
186
165
|
Unity Catalog workspaces in Databricks support PRIMARY KEY and FOREIGN KEY constraints. _Note that Databricks Runtime does not enforce the integrity of FOREIGN KEY constraints_. You can establish a primary key by setting `primary_key=True` when defining a column.
|
187
166
|
|
@@ -1,6 +1,6 @@
|
|
1
1
|
[tool.poetry]
|
2
2
|
name = "databricks-sqlalchemy"
|
3
|
-
version = "1.0.
|
3
|
+
version = "1.0.2"
|
4
4
|
description = "Databricks SQLAlchemy plugin for Python"
|
5
5
|
authors = ["Databricks <databricks-sql-connector-maintainers@databricks.com>"]
|
6
6
|
license = "Apache-2.0"
|
@@ -10,8 +10,7 @@ include = ["CHANGELOG.md"]
|
|
10
10
|
|
11
11
|
[tool.poetry.dependencies]
|
12
12
|
python = "^3.8.0"
|
13
|
-
|
14
|
-
sqlalchemy = { version = ">=2.0.21" }
|
13
|
+
sqlalchemy = { version = "^1.3.24" }
|
15
14
|
|
16
15
|
[tool.poetry.dev-dependencies]
|
17
16
|
pytest = "^7.1.2"
|
@@ -33,11 +32,4 @@ build-backend = "poetry.core.masonry.api"
|
|
33
32
|
|
34
33
|
[tool.black]
|
35
34
|
exclude = '/(\.eggs|\.git|\.hg|\.mypy_cache|\.nox|\.tox|\.venv|\.svn|_build|buck-out|build|dist|thrift_api)/'
|
36
|
-
|
37
|
-
[tool.pytest.ini_options]
|
38
|
-
markers = {"reviewed" = "Test case has been reviewed by Databricks"}
|
39
|
-
minversion = "6.0"
|
40
|
-
log_cli = "false"
|
41
|
-
log_cli_level = "INFO"
|
42
|
-
testpaths = ["tests", "src/databricks/sqlalchemy/test_local"]
|
43
|
-
env_files = ["test.env"]
|
35
|
+
|
@@ -0,0 +1 @@
|
|
1
|
+
from databricks.sqlalchemy.dialect import DatabricksDialect
|