databricks-sqlalchemy 0.0.1b1__tar.gz → 1.0.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- databricks_sqlalchemy-1.0.1/CHANGELOG.md +5 -0
- databricks_sqlalchemy-1.0.1/LICENSE +201 -0
- databricks_sqlalchemy-1.0.1/PKG-INFO +204 -0
- databricks_sqlalchemy-1.0.1/README.md +182 -0
- databricks_sqlalchemy-1.0.1/pyproject.toml +36 -0
- databricks_sqlalchemy-1.0.1/src/databricks/sqlalchemy/__init__.py +1 -0
- databricks_sqlalchemy-1.0.1/src/databricks/sqlalchemy/dialect/__init__.py +340 -0
- databricks_sqlalchemy-1.0.1/src/databricks/sqlalchemy/dialect/base.py +17 -0
- databricks_sqlalchemy-1.0.1/src/databricks/sqlalchemy/dialect/compiler.py +38 -0
- databricks_sqlalchemy-0.0.1b1/PKG-INFO +0 -19
- databricks_sqlalchemy-0.0.1b1/README.md +0 -3
- databricks_sqlalchemy-0.0.1b1/databricks/__init__.py +0 -7
- databricks_sqlalchemy-0.0.1b1/databricks/sqlalchemy/__init__.py +0 -2
- databricks_sqlalchemy-0.0.1b1/pyproject.toml +0 -16
@@ -0,0 +1,201 @@
|
|
1
|
+
Apache License
|
2
|
+
Version 2.0, January 2004
|
3
|
+
http://www.apache.org/licenses/
|
4
|
+
|
5
|
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6
|
+
|
7
|
+
1. Definitions.
|
8
|
+
|
9
|
+
"License" shall mean the terms and conditions for use, reproduction,
|
10
|
+
and distribution as defined by Sections 1 through 9 of this document.
|
11
|
+
|
12
|
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13
|
+
the copyright owner that is granting the License.
|
14
|
+
|
15
|
+
"Legal Entity" shall mean the union of the acting entity and all
|
16
|
+
other entities that control, are controlled by, or are under common
|
17
|
+
control with that entity. For the purposes of this definition,
|
18
|
+
"control" means (i) the power, direct or indirect, to cause the
|
19
|
+
direction or management of such entity, whether by contract or
|
20
|
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21
|
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22
|
+
|
23
|
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24
|
+
exercising permissions granted by this License.
|
25
|
+
|
26
|
+
"Source" form shall mean the preferred form for making modifications,
|
27
|
+
including but not limited to software source code, documentation
|
28
|
+
source, and configuration files.
|
29
|
+
|
30
|
+
"Object" form shall mean any form resulting from mechanical
|
31
|
+
transformation or translation of a Source form, including but
|
32
|
+
not limited to compiled object code, generated documentation,
|
33
|
+
and conversions to other media types.
|
34
|
+
|
35
|
+
"Work" shall mean the work of authorship, whether in Source or
|
36
|
+
Object form, made available under the License, as indicated by a
|
37
|
+
copyright notice that is included in or attached to the work
|
38
|
+
(an example is provided in the Appendix below).
|
39
|
+
|
40
|
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41
|
+
form, that is based on (or derived from) the Work and for which the
|
42
|
+
editorial revisions, annotations, elaborations, or other modifications
|
43
|
+
represent, as a whole, an original work of authorship. For the purposes
|
44
|
+
of this License, Derivative Works shall not include works that remain
|
45
|
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46
|
+
the Work and Derivative Works thereof.
|
47
|
+
|
48
|
+
"Contribution" shall mean any work of authorship, including
|
49
|
+
the original version of the Work and any modifications or additions
|
50
|
+
to that Work or Derivative Works thereof, that is intentionally
|
51
|
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52
|
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53
|
+
the copyright owner. For the purposes of this definition, "submitted"
|
54
|
+
means any form of electronic, verbal, or written communication sent
|
55
|
+
to the Licensor or its representatives, including but not limited to
|
56
|
+
communication on electronic mailing lists, source code control systems,
|
57
|
+
and issue tracking systems that are managed by, or on behalf of, the
|
58
|
+
Licensor for the purpose of discussing and improving the Work, but
|
59
|
+
excluding communication that is conspicuously marked or otherwise
|
60
|
+
designated in writing by the copyright owner as "Not a Contribution."
|
61
|
+
|
62
|
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63
|
+
on behalf of whom a Contribution has been received by Licensor and
|
64
|
+
subsequently incorporated within the Work.
|
65
|
+
|
66
|
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67
|
+
this License, each Contributor hereby grants to You a perpetual,
|
68
|
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69
|
+
copyright license to reproduce, prepare Derivative Works of,
|
70
|
+
publicly display, publicly perform, sublicense, and distribute the
|
71
|
+
Work and such Derivative Works in Source or Object form.
|
72
|
+
|
73
|
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74
|
+
this License, each Contributor hereby grants to You a perpetual,
|
75
|
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76
|
+
(except as stated in this section) patent license to make, have made,
|
77
|
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78
|
+
where such license applies only to those patent claims licensable
|
79
|
+
by such Contributor that are necessarily infringed by their
|
80
|
+
Contribution(s) alone or by combination of their Contribution(s)
|
81
|
+
with the Work to which such Contribution(s) was submitted. If You
|
82
|
+
institute patent litigation against any entity (including a
|
83
|
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84
|
+
or a Contribution incorporated within the Work constitutes direct
|
85
|
+
or contributory patent infringement, then any patent licenses
|
86
|
+
granted to You under this License for that Work shall terminate
|
87
|
+
as of the date such litigation is filed.
|
88
|
+
|
89
|
+
4. Redistribution. You may reproduce and distribute copies of the
|
90
|
+
Work or Derivative Works thereof in any medium, with or without
|
91
|
+
modifications, and in Source or Object form, provided that You
|
92
|
+
meet the following conditions:
|
93
|
+
|
94
|
+
(a) You must give any other recipients of the Work or
|
95
|
+
Derivative Works a copy of this License; and
|
96
|
+
|
97
|
+
(b) You must cause any modified files to carry prominent notices
|
98
|
+
stating that You changed the files; and
|
99
|
+
|
100
|
+
(c) You must retain, in the Source form of any Derivative Works
|
101
|
+
that You distribute, all copyright, patent, trademark, and
|
102
|
+
attribution notices from the Source form of the Work,
|
103
|
+
excluding those notices that do not pertain to any part of
|
104
|
+
the Derivative Works; and
|
105
|
+
|
106
|
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107
|
+
distribution, then any Derivative Works that You distribute must
|
108
|
+
include a readable copy of the attribution notices contained
|
109
|
+
within such NOTICE file, excluding those notices that do not
|
110
|
+
pertain to any part of the Derivative Works, in at least one
|
111
|
+
of the following places: within a NOTICE text file distributed
|
112
|
+
as part of the Derivative Works; within the Source form or
|
113
|
+
documentation, if provided along with the Derivative Works; or,
|
114
|
+
within a display generated by the Derivative Works, if and
|
115
|
+
wherever such third-party notices normally appear. The contents
|
116
|
+
of the NOTICE file are for informational purposes only and
|
117
|
+
do not modify the License. You may add Your own attribution
|
118
|
+
notices within Derivative Works that You distribute, alongside
|
119
|
+
or as an addendum to the NOTICE text from the Work, provided
|
120
|
+
that such additional attribution notices cannot be construed
|
121
|
+
as modifying the License.
|
122
|
+
|
123
|
+
You may add Your own copyright statement to Your modifications and
|
124
|
+
may provide additional or different license terms and conditions
|
125
|
+
for use, reproduction, or distribution of Your modifications, or
|
126
|
+
for any such Derivative Works as a whole, provided Your use,
|
127
|
+
reproduction, and distribution of the Work otherwise complies with
|
128
|
+
the conditions stated in this License.
|
129
|
+
|
130
|
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131
|
+
any Contribution intentionally submitted for inclusion in the Work
|
132
|
+
by You to the Licensor shall be under the terms and conditions of
|
133
|
+
this License, without any additional terms or conditions.
|
134
|
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135
|
+
the terms of any separate license agreement you may have executed
|
136
|
+
with Licensor regarding such Contributions.
|
137
|
+
|
138
|
+
6. Trademarks. This License does not grant permission to use the trade
|
139
|
+
names, trademarks, service marks, or product names of the Licensor,
|
140
|
+
except as required for reasonable and customary use in describing the
|
141
|
+
origin of the Work and reproducing the content of the NOTICE file.
|
142
|
+
|
143
|
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144
|
+
agreed to in writing, Licensor provides the Work (and each
|
145
|
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147
|
+
implied, including, without limitation, any warranties or conditions
|
148
|
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149
|
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150
|
+
appropriateness of using or redistributing the Work and assume any
|
151
|
+
risks associated with Your exercise of permissions under this License.
|
152
|
+
|
153
|
+
8. Limitation of Liability. In no event and under no legal theory,
|
154
|
+
whether in tort (including negligence), contract, or otherwise,
|
155
|
+
unless required by applicable law (such as deliberate and grossly
|
156
|
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157
|
+
liable to You for damages, including any direct, indirect, special,
|
158
|
+
incidental, or consequential damages of any character arising as a
|
159
|
+
result of this License or out of the use or inability to use the
|
160
|
+
Work (including but not limited to damages for loss of goodwill,
|
161
|
+
work stoppage, computer failure or malfunction, or any and all
|
162
|
+
other commercial damages or losses), even if such Contributor
|
163
|
+
has been advised of the possibility of such damages.
|
164
|
+
|
165
|
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166
|
+
the Work or Derivative Works thereof, You may choose to offer,
|
167
|
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168
|
+
or other liability obligations and/or rights consistent with this
|
169
|
+
License. However, in accepting such obligations, You may act only
|
170
|
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171
|
+
of any other Contributor, and only if You agree to indemnify,
|
172
|
+
defend, and hold each Contributor harmless for any liability
|
173
|
+
incurred by, or claims asserted against, such Contributor by reason
|
174
|
+
of your accepting any such warranty or additional liability.
|
175
|
+
|
176
|
+
END OF TERMS AND CONDITIONS
|
177
|
+
|
178
|
+
APPENDIX: How to apply the Apache License to your work.
|
179
|
+
|
180
|
+
To apply the Apache License to your work, attach the following
|
181
|
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182
|
+
replaced with your own identifying information. (Don't include
|
183
|
+
the brackets!) The text should be enclosed in the appropriate
|
184
|
+
comment syntax for the file format. We also recommend that a
|
185
|
+
file or class name and description of purpose be included on the
|
186
|
+
same "printed page" as the copyright notice for easier
|
187
|
+
identification within third-party archives.
|
188
|
+
|
189
|
+
Copyright 2022 Databricks, Inc.
|
190
|
+
|
191
|
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192
|
+
you may not use this file except in compliance with the License.
|
193
|
+
You may obtain a copy of the License at
|
194
|
+
|
195
|
+
http://www.apache.org/licenses/LICENSE-2.0
|
196
|
+
|
197
|
+
Unless required by applicable law or agreed to in writing, software
|
198
|
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200
|
+
See the License for the specific language governing permissions and
|
201
|
+
limitations under the License.
|
@@ -0,0 +1,204 @@
|
|
1
|
+
Metadata-Version: 2.1
|
2
|
+
Name: databricks-sqlalchemy
|
3
|
+
Version: 1.0.1
|
4
|
+
Summary: Databricks SQLAlchemy plugin for Python
|
5
|
+
License: Apache-2.0
|
6
|
+
Author: Databricks
|
7
|
+
Author-email: databricks-sql-connector-maintainers@databricks.com
|
8
|
+
Requires-Python: >=3.8.0,<4.0.0
|
9
|
+
Classifier: License :: OSI Approved :: Apache Software License
|
10
|
+
Classifier: Programming Language :: Python :: 3
|
11
|
+
Classifier: Programming Language :: Python :: 3.8
|
12
|
+
Classifier: Programming Language :: Python :: 3.9
|
13
|
+
Classifier: Programming Language :: Python :: 3.10
|
14
|
+
Classifier: Programming Language :: Python :: 3.11
|
15
|
+
Classifier: Programming Language :: Python :: 3.12
|
16
|
+
Requires-Dist: databricks_sql_connector_core (>=4.0.0)
|
17
|
+
Requires-Dist: sqlalchemy (>=1.3.24,<2.0.0)
|
18
|
+
Project-URL: Bug Tracker, https://github.com/databricks/databricks-sqlalchemy/issues
|
19
|
+
Project-URL: Homepage, https://github.com/databricks/databricks-sqlalchemy
|
20
|
+
Description-Content-Type: text/markdown
|
21
|
+
|
22
|
+
## Databricks dialect for SQLALchemy 1.0
|
23
|
+
|
24
|
+
The Databricks dialect for SQLAlchemy serves as bridge between [SQLAlchemy](https://www.sqlalchemy.org/) and the Databricks SQL Python driver. A working example demonstrating usage can be found in `example.py`.
|
25
|
+
|
26
|
+
|
27
|
+
## Installation
|
28
|
+
|
29
|
+
To install the dialect and its dependencies:
|
30
|
+
|
31
|
+
```shell
|
32
|
+
pip install databricks-sqlalchemy~=1.0
|
33
|
+
```
|
34
|
+
|
35
|
+
If you also plan to use `alembic` you can alternatively run:
|
36
|
+
|
37
|
+
```shell
|
38
|
+
pip install alembic
|
39
|
+
```
|
40
|
+
|
41
|
+
## Connection String
|
42
|
+
|
43
|
+
Every SQLAlchemy application that connects to a database needs to use an [Engine](https://docs.sqlalchemy.org/en/20/tutorial/engine.html#tutorial-engine), which you can create by passing a connection string to `create_engine`. The connection string must include these components:
|
44
|
+
|
45
|
+
1. Host
|
46
|
+
2. HTTP Path for a compute resource
|
47
|
+
3. API access token
|
48
|
+
4. Initial catalog for the connection
|
49
|
+
5. Initial schema for the connection
|
50
|
+
|
51
|
+
**Note: Our dialect is built and tested on workspaces with Unity Catalog enabled. Support for the `hive_metastore` catalog is untested.**
|
52
|
+
|
53
|
+
For example:
|
54
|
+
|
55
|
+
```python
|
56
|
+
import os
|
57
|
+
from sqlalchemy import create_engine
|
58
|
+
|
59
|
+
host = os.getenv("DATABRICKS_SERVER_HOSTNAME")
|
60
|
+
http_path = os.getenv("DATABRICKS_HTTP_PATH")
|
61
|
+
access_token = os.getenv("DATABRICKS_TOKEN")
|
62
|
+
catalog = os.getenv("DATABRICKS_CATALOG")
|
63
|
+
schema = os.getenv("DATABRICKS_SCHEMA")
|
64
|
+
|
65
|
+
if sqlalchemy.__version__.startswith("1.3"):
|
66
|
+
# SQLAlchemy 1.3.x fails to parse the http_path, catalog, and schema from our connection string
|
67
|
+
# Pass these in as connect_args instead
|
68
|
+
|
69
|
+
conn_string = f"databricks://token:{access_token}@{host}"
|
70
|
+
connect_args = dict(catalog=catalog, schema=schema, http_path=http_path)
|
71
|
+
all_connect_args = {**extra_connect_args, **connect_args}
|
72
|
+
engine = create_engine(conn_string, connect_args=all_connect_args)
|
73
|
+
else:
|
74
|
+
engine = create_engine(
|
75
|
+
f"databricks://token:{access_token}@{host}?http_path={http_path}&catalog={catalog}&schema={schema}",
|
76
|
+
connect_args=extra_connect_args,
|
77
|
+
)
|
78
|
+
|
79
|
+
```
|
80
|
+
|
81
|
+
## Types
|
82
|
+
|
83
|
+
The [SQLAlchemy type hierarchy](https://docs.sqlalchemy.org/en/13/core/type_basics.html) contains backend-agnostic type implementations (represented in CamelCase) and backend-specific types (represented in UPPERCASE). The majority of SQLAlchemy's [CamelCase](https://docs.sqlalchemy.org/en/13/core/type_basics.html#the-camelcase-datatypes) types are supported. This means that a SQLAlchemy application using these types should "just work" with Databricks.
|
84
|
+
|
85
|
+
|SQLAlchemy Type|Databricks SQL Type|
|
86
|
+
|-|-|
|
87
|
+
[`BigInteger`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.BigInteger)| [`BIGINT`](https://docs.databricks.com/en/sql/language-manual/data-types/bigint-type.html)
|
88
|
+
[`LargeBinary`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.LargeBinary)| (not supported)|
|
89
|
+
[`Boolean`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Boolean)| [`BOOLEAN`](https://docs.databricks.com/en/sql/language-manual/data-types/boolean-type.html)
|
90
|
+
[`Date`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Date)| [`DATE`](https://docs.databricks.com/en/sql/language-manual/data-types/date-type.html)
|
91
|
+
[`DateTime`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.DateTime)| [`TIMESTAMP_NTZ`](https://docs.databricks.com/en/sql/language-manual/data-types/timestamp-ntz-type.html)|
|
92
|
+
[`Enum`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Enum)| (not supported)|
|
93
|
+
[`Float`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Float)| [`FLOAT`](https://docs.databricks.com/en/sql/language-manual/data-types/float-type.html)
|
94
|
+
[`Integer`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Integer)| [`INT`](https://docs.databricks.com/en/sql/language-manual/data-types/int-type.html)
|
95
|
+
[`Numeric`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Numeric)| [`DECIMAL`](https://docs.databricks.com/en/sql/language-manual/data-types/decimal-type.html)|
|
96
|
+
[`PickleType`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.PickleType)| (not supported)|
|
97
|
+
[`SmallInteger`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.SmallInteger)| [`SMALLINT`](https://docs.databricks.com/en/sql/language-manual/data-types/smallint-type.html)
|
98
|
+
[`String`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.String)| [`STRING`](https://docs.databricks.com/en/sql/language-manual/data-types/string-type.html)|
|
99
|
+
[`Text`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Text)| [`STRING`](https://docs.databricks.com/en/sql/language-manual/data-types/string-type.html)|
|
100
|
+
[`Time`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Time)| [`STRING`](https://docs.databricks.com/en/sql/language-manual/data-types/string-type.html)|
|
101
|
+
[`Unicode`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Unicode)| [`STRING`](https://docs.databricks.com/en/sql/language-manual/data-types/string-type.html)|
|
102
|
+
[`UnicodeText`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.UnicodeText)| [`STRING`](https://docs.databricks.com/en/sql/language-manual/data-types/string-type.html)|
|
103
|
+
[`Uuid`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Uuid)| [`STRING`](https://docs.databricks.com/en/sql/language-manual/data-types/string-type.html)
|
104
|
+
|
105
|
+
|
106
|
+
### `LargeBinary()` and `PickleType()`
|
107
|
+
|
108
|
+
Databricks Runtime doesn't currently support binding of binary values in SQL queries, which is a pre-requisite for this functionality in SQLAlchemy.
|
109
|
+
|
110
|
+
## `Enum()` and `CHECK` constraints
|
111
|
+
|
112
|
+
Support for `CHECK` constraints is not implemented in this dialect. Support is planned for a future release.
|
113
|
+
|
114
|
+
SQLAlchemy's `Enum()` type depends on `CHECK` constraints and is therefore not yet supported.
|
115
|
+
|
116
|
+
|
117
|
+
### `String()`, `Text()`, `Unicode()`, and `UnicodeText()`
|
118
|
+
|
119
|
+
Databricks Runtime doesn't support length limitations for `STRING` fields. Therefore `String()` or `String(1)` or `String(255)` will all produce identical DDL. Since `Text()`, `Unicode()`, `UnicodeText()` all use the same underlying type in Databricks SQL, they will generate equivalent DDL.
|
120
|
+
|
121
|
+
### `Time()`
|
122
|
+
|
123
|
+
Databricks Runtime doesn't have a native time-like data type. To implement this type in SQLAlchemy, our dialect stores SQLAlchemy `Time()` values in a `STRING` field. Unlike `DateTime` above, this type can optionally support timezone awareness (since the dialect is in complete control of the strings that we write to the Delta table).
|
124
|
+
|
125
|
+
```python
|
126
|
+
from sqlalchemy import Time
|
127
|
+
|
128
|
+
class SomeModel(Base):
|
129
|
+
time_tz = Time(timezone=True)
|
130
|
+
time_ntz = Time()
|
131
|
+
```
|
132
|
+
|
133
|
+
|
134
|
+
# Usage Notes
|
135
|
+
|
136
|
+
## `Identity()` and `autoincrement`
|
137
|
+
|
138
|
+
Identity and generated value support is currently limited in this dialect.
|
139
|
+
|
140
|
+
When defining models, SQLAlchemy types can accept an [`autoincrement`](https://docs.sqlalchemy.org/en/13/core/metadata.html#sqlalchemy.schema.Column.params.autoincrement) argument. In our dialect, this argument is currently ignored. To create an auto-incrementing field in your model you can pass in an explicit [`Identity()`](https://docs.sqlalchemy.org/en/13/core/defaults.html#identity-ddl) instead.
|
141
|
+
|
142
|
+
Furthermore, in Databricks Runtime, only `BIGINT` fields can be configured to auto-increment. So in SQLAlchemy, you must use the `BigInteger()` type.
|
143
|
+
|
144
|
+
```python
|
145
|
+
from sqlalchemy import Identity, String
|
146
|
+
|
147
|
+
class SomeModel(Base):
|
148
|
+
id = BigInteger(Identity())
|
149
|
+
value = String()
|
150
|
+
```
|
151
|
+
|
152
|
+
When calling `Base.metadata.create_all()`, the executed DDL will include `GENERATED ALWAYS AS IDENTITY` for the `id` column. This is useful when using SQLAlchemy to generate tables. However, as of this writing, `Identity()` constructs are not captured when SQLAlchemy reflects a table's metadata (support for this is planned).
|
153
|
+
|
154
|
+
## Usage with pandas
|
155
|
+
|
156
|
+
Use [`pandas.DataFrame.to_sql`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_sql.html) and [`pandas.read_sql`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_sql.html#pandas.read_sql) to write and read from Databricks SQL. These methods both accept a SQLAlchemy connection to interact with Databricks.
|
157
|
+
|
158
|
+
### Read from Databricks SQL into pandas
|
159
|
+
```python
|
160
|
+
from sqlalchemy import create_engine
|
161
|
+
import pandas as pd
|
162
|
+
|
163
|
+
engine = create_engine("databricks://token:dapi***@***.cloud.databricks.com?http_path=***&catalog=main&schema=test")
|
164
|
+
with engine.connect() as conn:
|
165
|
+
# This will read the contents of `main.test.some_table`
|
166
|
+
df = pd.read_sql("some_table", conn)
|
167
|
+
```
|
168
|
+
|
169
|
+
### Write to Databricks SQL from pandas
|
170
|
+
|
171
|
+
```python
|
172
|
+
from sqlalchemy import create_engine
|
173
|
+
import pandas as pd
|
174
|
+
|
175
|
+
engine = create_engine("databricks://token:dapi***@***.cloud.databricks.com?http_path=***&catalog=main&schema=test")
|
176
|
+
squares = [(i, i * i) for i in range(100)]
|
177
|
+
df = pd.DataFrame(data=squares,columns=['x','x_squared'])
|
178
|
+
|
179
|
+
with engine.connect() as conn:
|
180
|
+
# This will write the contents of `df` to `main.test.squares`
|
181
|
+
df.to_sql('squares',conn)
|
182
|
+
```
|
183
|
+
|
184
|
+
## [`PrimaryKey()`](https://docs.sqlalchemy.org/en/13/core/constraints.html#sqlalchemy.schema.PrimaryKeyConstraint) and [`ForeignKey()`](https://docs.sqlalchemy.org/en/13/core/constraints.html#defining-foreign-keys)
|
185
|
+
|
186
|
+
Unity Catalog workspaces in Databricks support PRIMARY KEY and FOREIGN KEY constraints. _Note that Databricks Runtime does not enforce the integrity of FOREIGN KEY constraints_. You can establish a primary key by setting `primary_key=True` when defining a column.
|
187
|
+
|
188
|
+
When building `ForeignKey` or `ForeignKeyConstraint` objects, you must specify a `name` for the constraint.
|
189
|
+
|
190
|
+
If your model definition requires a self-referential FOREIGN KEY constraint, you must include `use_alter=True` when defining the relationship.
|
191
|
+
|
192
|
+
```python
|
193
|
+
from sqlalchemy import Table, Column, ForeignKey, BigInteger, String
|
194
|
+
|
195
|
+
users = Table(
|
196
|
+
"users",
|
197
|
+
metadata_obj,
|
198
|
+
Column("id", BigInteger, primary_key=True),
|
199
|
+
Column("name", String(), nullable=False),
|
200
|
+
Column("email", String()),
|
201
|
+
Column("manager_id", ForeignKey("users.id", name="fk_users_manager_id_x_users_id", use_alter=True))
|
202
|
+
)
|
203
|
+
```
|
204
|
+
|
@@ -0,0 +1,182 @@
|
|
1
|
+
## Databricks dialect for SQLALchemy 1.0
|
2
|
+
|
3
|
+
The Databricks dialect for SQLAlchemy serves as bridge between [SQLAlchemy](https://www.sqlalchemy.org/) and the Databricks SQL Python driver. A working example demonstrating usage can be found in `example.py`.
|
4
|
+
|
5
|
+
|
6
|
+
## Installation
|
7
|
+
|
8
|
+
To install the dialect and its dependencies:
|
9
|
+
|
10
|
+
```shell
|
11
|
+
pip install databricks-sqlalchemy~=1.0
|
12
|
+
```
|
13
|
+
|
14
|
+
If you also plan to use `alembic` you can alternatively run:
|
15
|
+
|
16
|
+
```shell
|
17
|
+
pip install alembic
|
18
|
+
```
|
19
|
+
|
20
|
+
## Connection String
|
21
|
+
|
22
|
+
Every SQLAlchemy application that connects to a database needs to use an [Engine](https://docs.sqlalchemy.org/en/20/tutorial/engine.html#tutorial-engine), which you can create by passing a connection string to `create_engine`. The connection string must include these components:
|
23
|
+
|
24
|
+
1. Host
|
25
|
+
2. HTTP Path for a compute resource
|
26
|
+
3. API access token
|
27
|
+
4. Initial catalog for the connection
|
28
|
+
5. Initial schema for the connection
|
29
|
+
|
30
|
+
**Note: Our dialect is built and tested on workspaces with Unity Catalog enabled. Support for the `hive_metastore` catalog is untested.**
|
31
|
+
|
32
|
+
For example:
|
33
|
+
|
34
|
+
```python
|
35
|
+
import os
|
36
|
+
from sqlalchemy import create_engine
|
37
|
+
|
38
|
+
host = os.getenv("DATABRICKS_SERVER_HOSTNAME")
|
39
|
+
http_path = os.getenv("DATABRICKS_HTTP_PATH")
|
40
|
+
access_token = os.getenv("DATABRICKS_TOKEN")
|
41
|
+
catalog = os.getenv("DATABRICKS_CATALOG")
|
42
|
+
schema = os.getenv("DATABRICKS_SCHEMA")
|
43
|
+
|
44
|
+
if sqlalchemy.__version__.startswith("1.3"):
|
45
|
+
# SQLAlchemy 1.3.x fails to parse the http_path, catalog, and schema from our connection string
|
46
|
+
# Pass these in as connect_args instead
|
47
|
+
|
48
|
+
conn_string = f"databricks://token:{access_token}@{host}"
|
49
|
+
connect_args = dict(catalog=catalog, schema=schema, http_path=http_path)
|
50
|
+
all_connect_args = {**extra_connect_args, **connect_args}
|
51
|
+
engine = create_engine(conn_string, connect_args=all_connect_args)
|
52
|
+
else:
|
53
|
+
engine = create_engine(
|
54
|
+
f"databricks://token:{access_token}@{host}?http_path={http_path}&catalog={catalog}&schema={schema}",
|
55
|
+
connect_args=extra_connect_args,
|
56
|
+
)
|
57
|
+
|
58
|
+
```
|
59
|
+
|
60
|
+
## Types
|
61
|
+
|
62
|
+
The [SQLAlchemy type hierarchy](https://docs.sqlalchemy.org/en/13/core/type_basics.html) contains backend-agnostic type implementations (represented in CamelCase) and backend-specific types (represented in UPPERCASE). The majority of SQLAlchemy's [CamelCase](https://docs.sqlalchemy.org/en/13/core/type_basics.html#the-camelcase-datatypes) types are supported. This means that a SQLAlchemy application using these types should "just work" with Databricks.
|
63
|
+
|
64
|
+
|SQLAlchemy Type|Databricks SQL Type|
|
65
|
+
|-|-|
|
66
|
+
[`BigInteger`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.BigInteger)| [`BIGINT`](https://docs.databricks.com/en/sql/language-manual/data-types/bigint-type.html)
|
67
|
+
[`LargeBinary`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.LargeBinary)| (not supported)|
|
68
|
+
[`Boolean`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Boolean)| [`BOOLEAN`](https://docs.databricks.com/en/sql/language-manual/data-types/boolean-type.html)
|
69
|
+
[`Date`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Date)| [`DATE`](https://docs.databricks.com/en/sql/language-manual/data-types/date-type.html)
|
70
|
+
[`DateTime`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.DateTime)| [`TIMESTAMP_NTZ`](https://docs.databricks.com/en/sql/language-manual/data-types/timestamp-ntz-type.html)|
|
71
|
+
[`Enum`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Enum)| (not supported)|
|
72
|
+
[`Float`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Float)| [`FLOAT`](https://docs.databricks.com/en/sql/language-manual/data-types/float-type.html)
|
73
|
+
[`Integer`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Integer)| [`INT`](https://docs.databricks.com/en/sql/language-manual/data-types/int-type.html)
|
74
|
+
[`Numeric`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Numeric)| [`DECIMAL`](https://docs.databricks.com/en/sql/language-manual/data-types/decimal-type.html)|
|
75
|
+
[`PickleType`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.PickleType)| (not supported)|
|
76
|
+
[`SmallInteger`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.SmallInteger)| [`SMALLINT`](https://docs.databricks.com/en/sql/language-manual/data-types/smallint-type.html)
|
77
|
+
[`String`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.String)| [`STRING`](https://docs.databricks.com/en/sql/language-manual/data-types/string-type.html)|
|
78
|
+
[`Text`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Text)| [`STRING`](https://docs.databricks.com/en/sql/language-manual/data-types/string-type.html)|
|
79
|
+
[`Time`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Time)| [`STRING`](https://docs.databricks.com/en/sql/language-manual/data-types/string-type.html)|
|
80
|
+
[`Unicode`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Unicode)| [`STRING`](https://docs.databricks.com/en/sql/language-manual/data-types/string-type.html)|
|
81
|
+
[`UnicodeText`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.UnicodeText)| [`STRING`](https://docs.databricks.com/en/sql/language-manual/data-types/string-type.html)|
|
82
|
+
[`Uuid`](https://docs.sqlalchemy.org/en/13/core/type_basics.html#sqlalchemy.types.Uuid)| [`STRING`](https://docs.databricks.com/en/sql/language-manual/data-types/string-type.html)
|
83
|
+
|
84
|
+
|
85
|
+
### `LargeBinary()` and `PickleType()`
|
86
|
+
|
87
|
+
Databricks Runtime doesn't currently support binding of binary values in SQL queries, which is a pre-requisite for this functionality in SQLAlchemy.
|
88
|
+
|
89
|
+
## `Enum()` and `CHECK` constraints
|
90
|
+
|
91
|
+
Support for `CHECK` constraints is not implemented in this dialect. Support is planned for a future release.
|
92
|
+
|
93
|
+
SQLAlchemy's `Enum()` type depends on `CHECK` constraints and is therefore not yet supported.
|
94
|
+
|
95
|
+
|
96
|
+
### `String()`, `Text()`, `Unicode()`, and `UnicodeText()`
|
97
|
+
|
98
|
+
Databricks Runtime doesn't support length limitations for `STRING` fields. Therefore `String()` or `String(1)` or `String(255)` will all produce identical DDL. Since `Text()`, `Unicode()`, `UnicodeText()` all use the same underlying type in Databricks SQL, they will generate equivalent DDL.
|
99
|
+
|
100
|
+
### `Time()`
|
101
|
+
|
102
|
+
Databricks Runtime doesn't have a native time-like data type. To implement this type in SQLAlchemy, our dialect stores SQLAlchemy `Time()` values in a `STRING` field. Unlike `DateTime` above, this type can optionally support timezone awareness (since the dialect is in complete control of the strings that we write to the Delta table).
|
103
|
+
|
104
|
+
```python
|
105
|
+
from sqlalchemy import Time
|
106
|
+
|
107
|
+
class SomeModel(Base):
|
108
|
+
time_tz = Time(timezone=True)
|
109
|
+
time_ntz = Time()
|
110
|
+
```
|
111
|
+
|
112
|
+
|
113
|
+
# Usage Notes
|
114
|
+
|
115
|
+
## `Identity()` and `autoincrement`
|
116
|
+
|
117
|
+
Identity and generated value support is currently limited in this dialect.
|
118
|
+
|
119
|
+
When defining models, SQLAlchemy types can accept an [`autoincrement`](https://docs.sqlalchemy.org/en/13/core/metadata.html#sqlalchemy.schema.Column.params.autoincrement) argument. In our dialect, this argument is currently ignored. To create an auto-incrementing field in your model you can pass in an explicit [`Identity()`](https://docs.sqlalchemy.org/en/13/core/defaults.html#identity-ddl) instead.
|
120
|
+
|
121
|
+
Furthermore, in Databricks Runtime, only `BIGINT` fields can be configured to auto-increment. So in SQLAlchemy, you must use the `BigInteger()` type.
|
122
|
+
|
123
|
+
```python
|
124
|
+
from sqlalchemy import Identity, String
|
125
|
+
|
126
|
+
class SomeModel(Base):
|
127
|
+
id = BigInteger(Identity())
|
128
|
+
value = String()
|
129
|
+
```
|
130
|
+
|
131
|
+
When calling `Base.metadata.create_all()`, the executed DDL will include `GENERATED ALWAYS AS IDENTITY` for the `id` column. This is useful when using SQLAlchemy to generate tables. However, as of this writing, `Identity()` constructs are not captured when SQLAlchemy reflects a table's metadata (support for this is planned).
|
132
|
+
|
133
|
+
## Usage with pandas
|
134
|
+
|
135
|
+
Use [`pandas.DataFrame.to_sql`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_sql.html) and [`pandas.read_sql`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_sql.html#pandas.read_sql) to write and read from Databricks SQL. These methods both accept a SQLAlchemy connection to interact with Databricks.
|
136
|
+
|
137
|
+
### Read from Databricks SQL into pandas
|
138
|
+
```python
|
139
|
+
from sqlalchemy import create_engine
|
140
|
+
import pandas as pd
|
141
|
+
|
142
|
+
engine = create_engine("databricks://token:dapi***@***.cloud.databricks.com?http_path=***&catalog=main&schema=test")
|
143
|
+
with engine.connect() as conn:
|
144
|
+
# This will read the contents of `main.test.some_table`
|
145
|
+
df = pd.read_sql("some_table", conn)
|
146
|
+
```
|
147
|
+
|
148
|
+
### Write to Databricks SQL from pandas
|
149
|
+
|
150
|
+
```python
|
151
|
+
from sqlalchemy import create_engine
|
152
|
+
import pandas as pd
|
153
|
+
|
154
|
+
engine = create_engine("databricks://token:dapi***@***.cloud.databricks.com?http_path=***&catalog=main&schema=test")
|
155
|
+
squares = [(i, i * i) for i in range(100)]
|
156
|
+
df = pd.DataFrame(data=squares,columns=['x','x_squared'])
|
157
|
+
|
158
|
+
with engine.connect() as conn:
|
159
|
+
# This will write the contents of `df` to `main.test.squares`
|
160
|
+
df.to_sql('squares',conn)
|
161
|
+
```
|
162
|
+
|
163
|
+
## [`PrimaryKey()`](https://docs.sqlalchemy.org/en/13/core/constraints.html#sqlalchemy.schema.PrimaryKeyConstraint) and [`ForeignKey()`](https://docs.sqlalchemy.org/en/13/core/constraints.html#defining-foreign-keys)
|
164
|
+
|
165
|
+
Unity Catalog workspaces in Databricks support PRIMARY KEY and FOREIGN KEY constraints. _Note that Databricks Runtime does not enforce the integrity of FOREIGN KEY constraints_. You can establish a primary key by setting `primary_key=True` when defining a column.
|
166
|
+
|
167
|
+
When building `ForeignKey` or `ForeignKeyConstraint` objects, you must specify a `name` for the constraint.
|
168
|
+
|
169
|
+
If your model definition requires a self-referential FOREIGN KEY constraint, you must include `use_alter=True` when defining the relationship.
|
170
|
+
|
171
|
+
```python
|
172
|
+
from sqlalchemy import Table, Column, ForeignKey, BigInteger, String
|
173
|
+
|
174
|
+
users = Table(
|
175
|
+
"users",
|
176
|
+
metadata_obj,
|
177
|
+
Column("id", BigInteger, primary_key=True),
|
178
|
+
Column("name", String(), nullable=False),
|
179
|
+
Column("email", String()),
|
180
|
+
Column("manager_id", ForeignKey("users.id", name="fk_users_manager_id_x_users_id", use_alter=True))
|
181
|
+
)
|
182
|
+
```
|
@@ -0,0 +1,36 @@
|
|
1
|
+
[tool.poetry]
|
2
|
+
name = "databricks-sqlalchemy"
|
3
|
+
version = "1.0.1"
|
4
|
+
description = "Databricks SQLAlchemy plugin for Python"
|
5
|
+
authors = ["Databricks <databricks-sql-connector-maintainers@databricks.com>"]
|
6
|
+
license = "Apache-2.0"
|
7
|
+
readme = "README.md"
|
8
|
+
packages = [{ include = "databricks", from = "src" }]
|
9
|
+
include = ["CHANGELOG.md"]
|
10
|
+
|
11
|
+
[tool.poetry.dependencies]
|
12
|
+
python = "^3.8.0"
|
13
|
+
databricks_sql_connector_core = { version = ">=4.0.0"}
|
14
|
+
sqlalchemy = { version = "^1.3.24" }
|
15
|
+
|
16
|
+
[tool.poetry.dev-dependencies]
|
17
|
+
pytest = "^7.1.2"
|
18
|
+
mypy = "^1.10.1"
|
19
|
+
pylint = ">=2.12.0"
|
20
|
+
black = "^22.3.0"
|
21
|
+
pytest-dotenv = "^0.5.2"
|
22
|
+
|
23
|
+
[tool.poetry.urls]
|
24
|
+
"Homepage" = "https://github.com/databricks/databricks-sqlalchemy"
|
25
|
+
"Bug Tracker" = "https://github.com/databricks/databricks-sqlalchemy/issues"
|
26
|
+
|
27
|
+
[tool.poetry.plugins."sqlalchemy.dialects"]
|
28
|
+
"databricks" = "databricks.sqlalchemy:DatabricksDialect"
|
29
|
+
|
30
|
+
[build-system]
|
31
|
+
requires = ["poetry-core>=1.0.0"]
|
32
|
+
build-backend = "poetry.core.masonry.api"
|
33
|
+
|
34
|
+
[tool.black]
|
35
|
+
exclude = '/(\.eggs|\.git|\.hg|\.mypy_cache|\.nox|\.tox|\.venv|\.svn|_build|buck-out|build|dist|thrift_api)/'
|
36
|
+
|
@@ -0,0 +1 @@
|
|
1
|
+
from databricks.sqlalchemy.dialect import DatabricksDialect
|
@@ -0,0 +1,340 @@
|
|
1
|
+
"""This module's layout loosely follows example of SQLAlchemy's postgres dialect
|
2
|
+
"""
|
3
|
+
|
4
|
+
import decimal, re, datetime
|
5
|
+
from dateutil.parser import parse
|
6
|
+
|
7
|
+
import sqlalchemy
|
8
|
+
from sqlalchemy import types, event
|
9
|
+
from sqlalchemy.engine import default, Engine
|
10
|
+
from sqlalchemy.exc import DatabaseError, SQLAlchemyError
|
11
|
+
from sqlalchemy.engine import reflection
|
12
|
+
|
13
|
+
from databricks import sql
|
14
|
+
|
15
|
+
|
16
|
+
from databricks.sqlalchemy.dialect.base import (
|
17
|
+
DatabricksDDLCompiler,
|
18
|
+
DatabricksIdentifierPreparer,
|
19
|
+
)
|
20
|
+
from databricks.sqlalchemy.dialect.compiler import DatabricksTypeCompiler
|
21
|
+
|
22
|
+
try:
|
23
|
+
import alembic
|
24
|
+
except ImportError:
|
25
|
+
pass
|
26
|
+
else:
|
27
|
+
from alembic.ddl import DefaultImpl
|
28
|
+
|
29
|
+
class DatabricksImpl(DefaultImpl):
|
30
|
+
__dialect__ = "databricks"
|
31
|
+
|
32
|
+
|
33
|
+
class DatabricksDecimal(types.TypeDecorator):
|
34
|
+
"""Translates strings to decimals"""
|
35
|
+
|
36
|
+
impl = types.DECIMAL
|
37
|
+
|
38
|
+
def process_result_value(self, value, dialect):
|
39
|
+
if value is not None:
|
40
|
+
return decimal.Decimal(value)
|
41
|
+
else:
|
42
|
+
return None
|
43
|
+
|
44
|
+
|
45
|
+
class DatabricksTimestamp(types.TypeDecorator):
|
46
|
+
"""Translates timestamp strings to datetime objects"""
|
47
|
+
|
48
|
+
impl = types.TIMESTAMP
|
49
|
+
|
50
|
+
def process_result_value(self, value, dialect):
|
51
|
+
return value
|
52
|
+
|
53
|
+
def adapt(self, impltype, **kwargs):
|
54
|
+
return self.impl
|
55
|
+
|
56
|
+
|
57
|
+
class DatabricksDate(types.TypeDecorator):
|
58
|
+
"""Translates date strings to date objects"""
|
59
|
+
|
60
|
+
impl = types.DATE
|
61
|
+
|
62
|
+
def process_result_value(self, value, dialect):
|
63
|
+
return value
|
64
|
+
|
65
|
+
def adapt(self, impltype, **kwargs):
|
66
|
+
return self.impl
|
67
|
+
|
68
|
+
|
69
|
+
class DatabricksDialect(default.DefaultDialect):
|
70
|
+
"""This dialect implements only those methods required to pass our e2e tests"""
|
71
|
+
|
72
|
+
# Possible attributes are defined here: https://docs.sqlalchemy.org/en/14/core/internals.html#sqlalchemy.engine.Dialect
|
73
|
+
name: str = "databricks"
|
74
|
+
driver: str = "databricks-sql-python"
|
75
|
+
default_schema_name: str = "default"
|
76
|
+
|
77
|
+
preparer = DatabricksIdentifierPreparer # type: ignore
|
78
|
+
type_compiler = DatabricksTypeCompiler
|
79
|
+
ddl_compiler = DatabricksDDLCompiler
|
80
|
+
supports_statement_cache: bool = True
|
81
|
+
supports_multivalues_insert: bool = True
|
82
|
+
supports_native_decimal: bool = True
|
83
|
+
supports_sane_rowcount: bool = False
|
84
|
+
non_native_boolean_check_constraint: bool = False
|
85
|
+
|
86
|
+
@classmethod
|
87
|
+
def dbapi(cls):
|
88
|
+
return sql
|
89
|
+
|
90
|
+
def create_connect_args(self, url):
|
91
|
+
# TODO: can schema be provided after HOST?
|
92
|
+
# Expected URI format is: databricks+thrift://token:dapi***@***.cloud.databricks.com?http_path=/sql/***
|
93
|
+
|
94
|
+
kwargs = {
|
95
|
+
"server_hostname": url.host,
|
96
|
+
"access_token": url.password,
|
97
|
+
"http_path": url.query.get("http_path"),
|
98
|
+
"catalog": url.query.get("catalog"),
|
99
|
+
"schema": url.query.get("schema"),
|
100
|
+
}
|
101
|
+
|
102
|
+
self.schema = kwargs["schema"]
|
103
|
+
self.catalog = kwargs["catalog"]
|
104
|
+
|
105
|
+
return [], kwargs
|
106
|
+
|
107
|
+
def get_columns(self, connection, table_name, schema=None, **kwargs):
|
108
|
+
"""Return information about columns in `table_name`.
|
109
|
+
|
110
|
+
Given a :class:`_engine.Connection`, a string
|
111
|
+
`table_name`, and an optional string `schema`, return column
|
112
|
+
information as a list of dictionaries with these keys:
|
113
|
+
|
114
|
+
name
|
115
|
+
the column's name
|
116
|
+
|
117
|
+
type
|
118
|
+
[sqlalchemy.types#TypeEngine]
|
119
|
+
|
120
|
+
nullable
|
121
|
+
boolean
|
122
|
+
|
123
|
+
default
|
124
|
+
the column's default value
|
125
|
+
|
126
|
+
autoincrement
|
127
|
+
boolean
|
128
|
+
|
129
|
+
sequence
|
130
|
+
a dictionary of the form
|
131
|
+
{'name' : str, 'start' :int, 'increment': int, 'minvalue': int,
|
132
|
+
'maxvalue': int, 'nominvalue': bool, 'nomaxvalue': bool,
|
133
|
+
'cycle': bool, 'cache': int, 'order': bool}
|
134
|
+
|
135
|
+
Additional column attributes may be present.
|
136
|
+
"""
|
137
|
+
|
138
|
+
_type_map = {
|
139
|
+
"boolean": types.Boolean,
|
140
|
+
"smallint": types.SmallInteger,
|
141
|
+
"int": types.Integer,
|
142
|
+
"bigint": types.BigInteger,
|
143
|
+
"float": types.Float,
|
144
|
+
"double": types.Float,
|
145
|
+
"string": types.String,
|
146
|
+
"varchar": types.String,
|
147
|
+
"char": types.String,
|
148
|
+
"binary": types.String,
|
149
|
+
"array": types.String,
|
150
|
+
"map": types.String,
|
151
|
+
"struct": types.String,
|
152
|
+
"uniontype": types.String,
|
153
|
+
"decimal": DatabricksDecimal,
|
154
|
+
"timestamp": DatabricksTimestamp,
|
155
|
+
"date": DatabricksDate,
|
156
|
+
}
|
157
|
+
|
158
|
+
with self.get_connection_cursor(connection) as cur:
|
159
|
+
resp = cur.columns(
|
160
|
+
catalog_name=self.catalog,
|
161
|
+
schema_name=schema or self.schema,
|
162
|
+
table_name=table_name,
|
163
|
+
).fetchall()
|
164
|
+
|
165
|
+
columns = []
|
166
|
+
|
167
|
+
for col in resp:
|
168
|
+
|
169
|
+
# Taken from PyHive. This removes added type info from decimals and maps
|
170
|
+
_col_type = re.search(r"^\w+", col.TYPE_NAME).group(0)
|
171
|
+
this_column = {
|
172
|
+
"name": col.COLUMN_NAME,
|
173
|
+
"type": _type_map[_col_type.lower()],
|
174
|
+
"nullable": bool(col.NULLABLE),
|
175
|
+
"default": col.COLUMN_DEF,
|
176
|
+
"autoincrement": False if col.IS_AUTO_INCREMENT == "NO" else True,
|
177
|
+
}
|
178
|
+
columns.append(this_column)
|
179
|
+
|
180
|
+
return columns
|
181
|
+
|
182
|
+
def get_pk_constraint(self, connection, table_name, schema=None, **kw):
|
183
|
+
"""Return information about the primary key constraint on
|
184
|
+
table_name`.
|
185
|
+
|
186
|
+
Given a :class:`_engine.Connection`, a string
|
187
|
+
`table_name`, and an optional string `schema`, return primary
|
188
|
+
key information as a dictionary with these keys:
|
189
|
+
|
190
|
+
constrained_columns
|
191
|
+
a list of column names that make up the primary key
|
192
|
+
|
193
|
+
name
|
194
|
+
optional name of the primary key constraint.
|
195
|
+
|
196
|
+
"""
|
197
|
+
# TODO: implement this behaviour
|
198
|
+
return {"constrained_columns": []}
|
199
|
+
|
200
|
+
def get_foreign_keys(self, connection, table_name, schema=None, **kw):
|
201
|
+
"""Return information about foreign_keys in `table_name`.
|
202
|
+
|
203
|
+
Given a :class:`_engine.Connection`, a string
|
204
|
+
`table_name`, and an optional string `schema`, return foreign
|
205
|
+
key information as a list of dicts with these keys:
|
206
|
+
|
207
|
+
name
|
208
|
+
the constraint's name
|
209
|
+
|
210
|
+
constrained_columns
|
211
|
+
a list of column names that make up the foreign key
|
212
|
+
|
213
|
+
referred_schema
|
214
|
+
the name of the referred schema
|
215
|
+
|
216
|
+
referred_table
|
217
|
+
the name of the referred table
|
218
|
+
|
219
|
+
referred_columns
|
220
|
+
a list of column names in the referred table that correspond to
|
221
|
+
constrained_columns
|
222
|
+
"""
|
223
|
+
# TODO: Implement this behaviour
|
224
|
+
return []
|
225
|
+
|
226
|
+
def get_indexes(self, connection, table_name, schema=None, **kw):
|
227
|
+
"""Return information about indexes in `table_name`.
|
228
|
+
|
229
|
+
Given a :class:`_engine.Connection`, a string
|
230
|
+
`table_name` and an optional string `schema`, return index
|
231
|
+
information as a list of dictionaries with these keys:
|
232
|
+
|
233
|
+
name
|
234
|
+
the index's name
|
235
|
+
|
236
|
+
column_names
|
237
|
+
list of column names in order
|
238
|
+
|
239
|
+
unique
|
240
|
+
boolean
|
241
|
+
"""
|
242
|
+
# TODO: Implement this behaviour
|
243
|
+
return []
|
244
|
+
|
245
|
+
def get_table_names(self, connection, schema=None, **kwargs):
|
246
|
+
TABLE_NAME = 1
|
247
|
+
with self.get_connection_cursor(connection) as cur:
|
248
|
+
sql_str = "SHOW TABLES FROM {}".format(
|
249
|
+
".".join([self.catalog, schema or self.schema])
|
250
|
+
)
|
251
|
+
data = cur.execute(sql_str).fetchall()
|
252
|
+
_tables = [i[TABLE_NAME] for i in data]
|
253
|
+
|
254
|
+
return _tables
|
255
|
+
|
256
|
+
def get_view_names(self, connection, schema=None, **kwargs):
|
257
|
+
VIEW_NAME = 1
|
258
|
+
with self.get_connection_cursor(connection) as cur:
|
259
|
+
sql_str = "SHOW VIEWS FROM {}".format(
|
260
|
+
".".join([self.catalog, schema or self.schema])
|
261
|
+
)
|
262
|
+
data = cur.execute(sql_str).fetchall()
|
263
|
+
_tables = [i[VIEW_NAME] for i in data]
|
264
|
+
|
265
|
+
return _tables
|
266
|
+
|
267
|
+
def do_rollback(self, dbapi_connection):
|
268
|
+
# Databricks SQL Does not support transactions
|
269
|
+
pass
|
270
|
+
|
271
|
+
def has_table(
|
272
|
+
self, connection, table_name, schema=None, catalog=None, **kwargs
|
273
|
+
) -> bool:
|
274
|
+
"""SQLAlchemy docstrings say dialect providers must implement this method"""
|
275
|
+
|
276
|
+
_schema = schema or self.schema
|
277
|
+
_catalog = catalog or self.catalog
|
278
|
+
|
279
|
+
# DBR >12.x uses underscores in error messages
|
280
|
+
DBR_LTE_12_NOT_FOUND_STRING = "Table or view not found"
|
281
|
+
DBR_GT_12_NOT_FOUND_STRING = "TABLE_OR_VIEW_NOT_FOUND"
|
282
|
+
|
283
|
+
try:
|
284
|
+
res = connection.execute(
|
285
|
+
f"DESCRIBE TABLE {_catalog}.{_schema}.{table_name}"
|
286
|
+
)
|
287
|
+
return True
|
288
|
+
except DatabaseError as e:
|
289
|
+
if DBR_GT_12_NOT_FOUND_STRING in str(
|
290
|
+
e
|
291
|
+
) or DBR_LTE_12_NOT_FOUND_STRING in str(e):
|
292
|
+
return False
|
293
|
+
else:
|
294
|
+
raise e
|
295
|
+
|
296
|
+
def get_connection_cursor(self, connection):
|
297
|
+
"""Added for backwards compatibility with 1.3.x"""
|
298
|
+
if hasattr(connection, "_dbapi_connection"):
|
299
|
+
return connection._dbapi_connection.dbapi_connection.cursor()
|
300
|
+
elif hasattr(connection, "raw_connection"):
|
301
|
+
return connection.raw_connection().cursor()
|
302
|
+
elif hasattr(connection, "connection"):
|
303
|
+
return connection.connection.cursor()
|
304
|
+
|
305
|
+
raise SQLAlchemyError(
|
306
|
+
"Databricks dialect can't obtain a cursor context manager from the dbapi"
|
307
|
+
)
|
308
|
+
|
309
|
+
@reflection.cache
|
310
|
+
def get_schema_names(self, connection, **kw):
|
311
|
+
# Equivalent to SHOW DATABASES
|
312
|
+
|
313
|
+
# TODO: replace with call to cursor.schemas() once its performance matches raw SQL
|
314
|
+
return [row[0] for row in connection.execute("SHOW SCHEMAS")]
|
315
|
+
|
316
|
+
|
317
|
+
@event.listens_for(Engine, "do_connect")
|
318
|
+
def receive_do_connect(dialect, conn_rec, cargs, cparams):
|
319
|
+
"""Helpful for DS on traffic from clients using SQLAlchemy in particular"""
|
320
|
+
|
321
|
+
# Ignore connect invocations that don't use our dialect
|
322
|
+
if not dialect.name == "databricks":
|
323
|
+
return
|
324
|
+
|
325
|
+
if "_user_agent_entry" in cparams:
|
326
|
+
new_user_agent = f"sqlalchemy + {cparams['_user_agent_entry']}"
|
327
|
+
else:
|
328
|
+
new_user_agent = "sqlalchemy"
|
329
|
+
|
330
|
+
cparams["_user_agent_entry"] = new_user_agent
|
331
|
+
|
332
|
+
if sqlalchemy.__version__.startswith("1.3"):
|
333
|
+
# SQLAlchemy 1.3.x fails to parse the http_path, catalog, and schema from our connection string
|
334
|
+
# These should be passed in as connect_args when building the Engine
|
335
|
+
|
336
|
+
if "schema" in cparams:
|
337
|
+
dialect.schema = cparams["schema"]
|
338
|
+
|
339
|
+
if "catalog" in cparams:
|
340
|
+
dialect.catalog = cparams["catalog"]
|
@@ -0,0 +1,17 @@
|
|
1
|
+
import re
|
2
|
+
from sqlalchemy.sql import compiler
|
3
|
+
|
4
|
+
|
5
|
+
class DatabricksIdentifierPreparer(compiler.IdentifierPreparer):
|
6
|
+
# SparkSQL identifier specification:
|
7
|
+
# ref: https://spark.apache.org/docs/latest/sql-ref-identifier.html
|
8
|
+
|
9
|
+
legal_characters = re.compile(r"^[A-Z0-9_]+$", re.I)
|
10
|
+
|
11
|
+
def __init__(self, dialect):
|
12
|
+
super().__init__(dialect, initial_quote="`")
|
13
|
+
|
14
|
+
|
15
|
+
class DatabricksDDLCompiler(compiler.DDLCompiler):
|
16
|
+
def post_create_table(self, table):
|
17
|
+
return " USING DELTA"
|
@@ -0,0 +1,38 @@
|
|
1
|
+
from sqlalchemy.sql import compiler
|
2
|
+
|
3
|
+
|
4
|
+
class DatabricksTypeCompiler(compiler.GenericTypeCompiler):
|
5
|
+
"""Originally forked from pyhive"""
|
6
|
+
|
7
|
+
def visit_INTEGER(self, type_):
|
8
|
+
return "INT"
|
9
|
+
|
10
|
+
def visit_NUMERIC(self, type_):
|
11
|
+
return "DECIMAL"
|
12
|
+
|
13
|
+
def visit_CHAR(self, type_):
|
14
|
+
return "STRING"
|
15
|
+
|
16
|
+
def visit_VARCHAR(self, type_):
|
17
|
+
return "STRING"
|
18
|
+
|
19
|
+
def visit_NCHAR(self, type_):
|
20
|
+
return "STRING"
|
21
|
+
|
22
|
+
def visit_TEXT(self, type_):
|
23
|
+
return "STRING"
|
24
|
+
|
25
|
+
def visit_CLOB(self, type_):
|
26
|
+
return "STRING"
|
27
|
+
|
28
|
+
def visit_BLOB(self, type_):
|
29
|
+
return "BINARY"
|
30
|
+
|
31
|
+
def visit_TIME(self, type_):
|
32
|
+
return "TIMESTAMP"
|
33
|
+
|
34
|
+
def visit_DATE(self, type_):
|
35
|
+
return "DATE"
|
36
|
+
|
37
|
+
def visit_DATETIME(self, type_):
|
38
|
+
return "TIMESTAMP"
|
@@ -1,19 +0,0 @@
|
|
1
|
-
Metadata-Version: 2.1
|
2
|
-
Name: databricks-sqlalchemy
|
3
|
-
Version: 0.0.1b1
|
4
|
-
Summary: SQLAlchemy dialect for Databricks
|
5
|
-
License: Apache-2.0
|
6
|
-
Author: Databricks
|
7
|
-
Author-email: databricks-sql-connector-maintainers@databricks.com
|
8
|
-
Requires-Python: >=3.8.0,<4.0.0
|
9
|
-
Classifier: License :: OSI Approved :: Apache Software License
|
10
|
-
Classifier: Programming Language :: Python :: 3
|
11
|
-
Classifier: Programming Language :: Python :: 3.8
|
12
|
-
Classifier: Programming Language :: Python :: 3.9
|
13
|
-
Classifier: Programming Language :: Python :: 3.10
|
14
|
-
Classifier: Programming Language :: Python :: 3.11
|
15
|
-
Description-Content-Type: text/markdown
|
16
|
-
|
17
|
-
# SQLAlchemy Dialect for Databricks
|
18
|
-
|
19
|
-
To install the SQLAlchemy dialect for Databricks, see [here](https://github.com/databricks/databricks-sql-python/blob/main/src/databricks/sqlalchemy/README.sqlalchemy.md).
|
@@ -1,7 +0,0 @@
|
|
1
|
-
# See: https://packaging.python.org/guides/packaging-namespace-packages/#pkgutil-style-namespace-packages
|
2
|
-
#
|
3
|
-
# This file must only contain the following line, or other packages in the databricks.* namespace
|
4
|
-
# may not be importable. The contents of this file must be byte-for-byte equivalent across all packages.
|
5
|
-
# If they are not, parallel package installation may lead to clobbered and invalid files.
|
6
|
-
# Also see https://github.com/databricks/databricks-sdk-py/issues/343.
|
7
|
-
__path__ = __import__("pkgutil").extend_path(__path__, __name__)
|
@@ -1,16 +0,0 @@
|
|
1
|
-
[tool.poetry]
|
2
|
-
name = "databricks-sqlalchemy"
|
3
|
-
version = "0.0.1b1"
|
4
|
-
description = "SQLAlchemy dialect for Databricks"
|
5
|
-
authors = ["Databricks <databricks-sql-connector-maintainers@databricks.com>"]
|
6
|
-
license = "Apache-2.0"
|
7
|
-
readme = "README.md"
|
8
|
-
packages = [{include = "databricks"}]
|
9
|
-
|
10
|
-
[tool.poetry.dependencies]
|
11
|
-
python = "^3.8.0"
|
12
|
-
|
13
|
-
|
14
|
-
[build-system]
|
15
|
-
requires = ["poetry-core"]
|
16
|
-
build-backend = "poetry.core.masonry.api"
|