dao-ai 0.1.12__tar.gz → 0.1.14__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {dao_ai-0.1.12 → dao_ai-0.1.14}/PKG-INFO +4 -3
- {dao_ai-0.1.12 → dao_ai-0.1.14}/README.md +3 -2
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/15_complete_applications/hardware_store_lakebase.yaml +3 -2
- {dao_ai-0.1.12 → dao_ai-0.1.14}/docs/key-capabilities.md +69 -14
- {dao_ai-0.1.12 → dao_ai-0.1.14}/notebooks/07_run_evaluation.py +2 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/pyproject.toml +1 -1
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/apps/handlers.py +22 -1
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/config.py +55 -32
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/tools/genie.py +72 -20
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/tools/mcp.py +36 -13
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/tools/slack.py +13 -2
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/tools/sql.py +7 -3
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/tools/unity_catalog.py +32 -10
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/tools/vector_search.py +61 -35
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_databricks.py +38 -40
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_reranking.py +8 -5
- {dao_ai-0.1.12 → dao_ai-0.1.14}/.gitignore +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/.python-version +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/CHANGELOG.md +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/CONTRIBUTING.md +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/LICENSE +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/Makefile +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/app.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/01_getting_started/README.md +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/01_getting_started/minimal.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/02_mcp/README.md +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/02_mcp/custom_mcp.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/02_mcp/external_mcp.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/02_mcp/filtered_mcp.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/02_mcp/managed_mcp.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/02_mcp/slack_integration.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/03_reranking/README.md +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/03_reranking/vector_search_with_reranking.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/04_genie/README.md +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/04_genie/genie_basic.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/04_genie/genie_lru_cache.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/04_genie/genie_semantic_cache.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/04_genie/genie_with_conversation_id.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/05_memory/README.md +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/05_memory/conversation_summarization.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/05_memory/in_memory_basic.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/05_memory/lakebase_persistence.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/05_memory/postgres_persistence.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/06_on_behalf_of_user/README.md +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/06_on_behalf_of_user/obo_basic.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/07_human_in_the_loop/README.md +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/07_human_in_the_loop/human_in_the_loop.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/08_guardrails/README.md +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/08_guardrails/guardrails_basic.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/09_structured_output/README.md +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/09_structured_output/structured_output.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/10_agent_integrations/README.md +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/10_agent_integrations/agent_bricks.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/10_agent_integrations/kasal.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/11_prompt_engineering/README.md +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/11_prompt_engineering/prompt_optimization.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/11_prompt_engineering/prompt_registry.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/12_middleware/README.md +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/12_middleware/combined_middleware.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/12_middleware/context_management.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/12_middleware/custom_field_validation.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/12_middleware/limit_middleware.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/12_middleware/logging_middleware.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/12_middleware/pii_middleware.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/12_middleware/retry_middleware.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/12_middleware/tool_selector_middleware.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/13_orchestration/README.md +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/13_orchestration/supervisor_pattern.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/13_orchestration/swarm_pattern.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/14_basic_tools/README.md +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/14_basic_tools/sql_tool_example.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/15_complete_applications/README.md +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/15_complete_applications/brick_store.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/15_complete_applications/deep_research.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/15_complete_applications/executive_assistant.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/15_complete_applications/genie_and_genie_mcp.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/15_complete_applications/genie_vector_search_hybrid.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/15_complete_applications/hardware_store.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/15_complete_applications/hardware_store_swarm.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/15_complete_applications/quick_serve_restaurant.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/15_complete_applications/reservations_system.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/config/examples/README.md +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/data/dais2025/appointments.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/data/dais2025/appointments_data.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/data/dais2025/brand_rep_demo_data.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/data/dais2025/brand_rep_demo_queries.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/data/dais2025/brand_rep_demo_tables.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/data/dais2025/brand_rep_demo_validation.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/data/dais2025/customers.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/data/dais2025/customers_data.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/data/dais2025/dim_stores.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/data/dais2025/dim_stores_data.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/data/dais2025/employee_performance.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/data/dais2025/employee_performance_data.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/data/dais2025/employee_tasks.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/data/dais2025/employee_tasks_data.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/data/dais2025/inventory.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/data/dais2025/inventory_data.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/data/dais2025/managers.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/data/dais2025/managers_data.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/data/dais2025/product_data.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/data/dais2025/products.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/data/dais2025/task_assignments.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/data/hardware_store/inventory.snappy.parquet +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/data/hardware_store/inventory.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/data/hardware_store/products.snappy.parquet +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/data/hardware_store/products.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/data/quick_serve_restaurant/.gitkeep +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/data/quick_serve_restaurant/fulfil_item_orders.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/data/quick_serve_restaurant/items_description.csv +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/data/quick_serve_restaurant/items_description.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/data/quick_serve_restaurant/items_raw.csv +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/data/quick_serve_restaurant/items_raw.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/data/quick_serve_restaurant/orders_raw.csv +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/data/quick_serve_restaurant/orders_raw.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/databricks.yaml.template +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/docs/architecture.md +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/docs/cli-reference.md +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/docs/configuration-reference.md +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/docs/contributing.md +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/docs/examples.md +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/docs/faq.md +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/docs/hardware_store/README.md +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/docs/hardware_store/retail_supervisor.png +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/docs/hardware_store/retail_swarm.png +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/docs/images/genie.png +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/docs/python-api.md +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/docs/quick_serve_restaurant/.gitkeep +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/docs/quick_serve_restaurant/quick-serve-restaurant.png +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/docs/why-dao.md +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/environment.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/examples/dais2025/examples.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/examples/deep_research/examples.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/examples/executive_assistant/examples.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/examples/hardware_store/examples.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/examples/quick_serve_restaurant/.gitkeep +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/examples/quick_serve_restaurant/examples.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/functions/dais2025/extract_store_numbers.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/functions/dais2025/find_inventory_by_sku.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/functions/dais2025/find_inventory_by_upc.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/functions/dais2025/find_product_by_sku.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/functions/dais2025/find_product_by_upc.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/functions/dais2025/find_store_by_number.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/functions/dais2025/find_store_inventory_by_sku.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/functions/dais2025/find_store_inventory_by_upc.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/functions/hardware_store/find_inventory_by_sku.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/functions/hardware_store/find_inventory_by_upc.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/functions/hardware_store/find_product_by_sku.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/functions/hardware_store/find_product_by_upc.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/functions/hardware_store/find_store_inventory_by_sku.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/functions/hardware_store/find_store_inventory_by_upc.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/functions/quick_serve_restaurant/.gitkeep +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/functions/quick_serve_restaurant/insert_coffee_order.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/functions/quick_serve_restaurant/lookup_items_by_descriptions.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/functions/quick_serve_restaurant/match_historical_item_order_by_date.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/functions/quick_serve_restaurant/match_item_by_description_and_price.sql +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/notebooks/01_ingest_and_transform.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/notebooks/02_provision_vector_search.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/notebooks/03_provision_lakebase.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/notebooks/04_unity_catalog_tools.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/notebooks/05_deploy_agent.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/notebooks/06_generate_evaluation_data.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/notebooks/08_run_examples.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/notebooks/09_evaluate_inferences.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/notebooks/10_optimize_prompts.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/notebooks/99_scratchpad.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/requirements.txt +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/schemas/bundle_config_schema.json +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/schemas/model_config_schema.json +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dais2025/__init__.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dais2025/models.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dais2025/tools/__init__.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dais2025/tools/customer.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dais2025/tools/employee.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dais2025/tools/executive.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dais2025/tools/genie.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dais2025/tools/inventory.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dais2025/tools/models.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dais2025/tools/store.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/__init__.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/apps/__init__.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/apps/model_serving.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/apps/resources.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/apps/server.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/catalog.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/cli.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/genie/__init__.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/genie/cache/__init__.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/genie/cache/base.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/genie/cache/core.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/genie/cache/lru.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/genie/cache/semantic.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/genie/core.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/graph.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/hooks/__init__.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/hooks/core.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/logging.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/memory/__init__.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/memory/base.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/memory/core.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/memory/databricks.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/memory/postgres.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/messages.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/middleware/__init__.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/middleware/assertions.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/middleware/base.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/middleware/context_editing.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/middleware/core.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/middleware/guardrails.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/middleware/human_in_the_loop.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/middleware/message_validation.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/middleware/model_call_limit.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/middleware/model_retry.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/middleware/pii.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/middleware/summarization.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/middleware/tool_call_limit.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/middleware/tool_retry.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/middleware/tool_selector.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/models.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/nodes.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/optimization.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/orchestration/__init__.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/orchestration/core.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/orchestration/supervisor.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/orchestration/swarm.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/prompts.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/providers/__init__.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/providers/base.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/providers/databricks.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/state.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/tools/__init__.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/tools/agent.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/tools/core.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/tools/email.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/tools/memory.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/tools/python.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/tools/search.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/tools/time.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/types.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/utils.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/src/dao_ai/vector_search.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/config/test_model_config.yaml +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/conftest.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/middleware/test_context_editing.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/middleware/test_model_call_limit.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/middleware/test_model_retry.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/middleware/test_pii.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/middleware/test_tool_call_limit.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/middleware/test_tool_retry.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/middleware/test_tool_selector.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_agent_response_format.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_assertions_middleware.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_catalog.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_chat_history.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_config.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_function_parsing.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_genie.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_genie_conversation_ids_in_outputs.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_genie_databricks_integration.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_genie_room_model.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_guardrail_retry.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_hitl_config_model.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_hitl_responses_agent.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_hooks.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_human_in_the_loop.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_inference.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_inference_integration.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_input_output_structure.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_interrupt_type.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_llm_interrupt_handling.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_mcp.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_mcp_filtering.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_mcp_filtering_integration.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_mcp_function_model.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_message_validation_middleware.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_messages.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_models.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_optimization.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_postgres_integration.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_prompt_optimizations.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_prompts.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_reranking_integration.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_resources_model_genie_integration.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_response_format.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_responses_agent_structured_output_unit.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_semantic_cache_context.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_sql_tool.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_sql_tool_integration.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_state.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_summarization_inference.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_swarm_middleware.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_tools.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_types.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_unity_catalog.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_utils.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_utils_type_from_fqn.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_vector_search.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/test_warehouse_model.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/dao_ai/weather_server_mcp.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/hardware_store/.gitkeep +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/hardware_store/test_graph.py +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/images/doritos_upc.png +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/images/lays_upc.png +0 -0
- {dao_ai-0.1.12 → dao_ai-0.1.14}/tests/quick_serve_restaurant/.gitkeep +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: dao-ai
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.14
|
|
4
4
|
Summary: DAO AI: A modular, multi-agent orchestration framework for complex AI workflows. Supports agent handoff, tool integration, and dynamic configuration via YAML.
|
|
5
5
|
Project-URL: Homepage, https://github.com/natefleming/dao-ai
|
|
6
6
|
Project-URL: Documentation, https://natefleming.github.io/dao-ai
|
|
@@ -125,7 +125,7 @@ DAO AI Builder generates valid YAML configurations that work seamlessly with thi
|
|
|
125
125
|
- **[Architecture](docs/architecture.md)** - Understand how DAO works under the hood
|
|
126
126
|
|
|
127
127
|
### Core Concepts
|
|
128
|
-
- **[Key Capabilities](docs/key-capabilities.md)** - Explore
|
|
128
|
+
- **[Key Capabilities](docs/key-capabilities.md)** - Explore 15 powerful features for production agents
|
|
129
129
|
- **[Configuration Reference](docs/configuration-reference.md)** - Complete YAML configuration guide
|
|
130
130
|
- **[Examples](docs/examples.md)** - Ready-to-use example configurations
|
|
131
131
|
|
|
@@ -148,7 +148,7 @@ Before you begin, you'll need:
|
|
|
148
148
|
- **Python 3.11 or newer** installed on your computer ([download here](https://www.python.org/downloads/))
|
|
149
149
|
- **A Databricks workspace** (ask your IT team or see [Databricks docs](https://docs.databricks.com/))
|
|
150
150
|
- Access to **Unity Catalog** (your organization's data catalog)
|
|
151
|
-
- **Model Serving** enabled (for deploying AI agents)
|
|
151
|
+
- **Model Serving** or **Databricks Apps** enabled (for deploying AI agents)
|
|
152
152
|
- *Optional*: Vector Search, Genie (for advanced features)
|
|
153
153
|
|
|
154
154
|
**Not sure if you have access?** Your Databricks administrator can grant you permissions.
|
|
@@ -345,6 +345,7 @@ DAO provides powerful capabilities for building production-ready AI agents:
|
|
|
345
345
|
|
|
346
346
|
| Feature | Description |
|
|
347
347
|
|---------|-------------|
|
|
348
|
+
| **Dual Deployment Targets** | Deploy to Databricks Model Serving or Databricks Apps with a single config |
|
|
348
349
|
| **Multi-Tool Support** | Python functions, Unity Catalog, MCP, Agent Endpoints |
|
|
349
350
|
| **On-Behalf-Of User** | Per-user permissions and governance |
|
|
350
351
|
| **Advanced Caching** | Two-tier (LRU + Semantic) caching for cost optimization |
|
|
@@ -46,7 +46,7 @@ DAO AI Builder generates valid YAML configurations that work seamlessly with thi
|
|
|
46
46
|
- **[Architecture](docs/architecture.md)** - Understand how DAO works under the hood
|
|
47
47
|
|
|
48
48
|
### Core Concepts
|
|
49
|
-
- **[Key Capabilities](docs/key-capabilities.md)** - Explore
|
|
49
|
+
- **[Key Capabilities](docs/key-capabilities.md)** - Explore 15 powerful features for production agents
|
|
50
50
|
- **[Configuration Reference](docs/configuration-reference.md)** - Complete YAML configuration guide
|
|
51
51
|
- **[Examples](docs/examples.md)** - Ready-to-use example configurations
|
|
52
52
|
|
|
@@ -69,7 +69,7 @@ Before you begin, you'll need:
|
|
|
69
69
|
- **Python 3.11 or newer** installed on your computer ([download here](https://www.python.org/downloads/))
|
|
70
70
|
- **A Databricks workspace** (ask your IT team or see [Databricks docs](https://docs.databricks.com/))
|
|
71
71
|
- Access to **Unity Catalog** (your organization's data catalog)
|
|
72
|
-
- **Model Serving** enabled (for deploying AI agents)
|
|
72
|
+
- **Model Serving** or **Databricks Apps** enabled (for deploying AI agents)
|
|
73
73
|
- *Optional*: Vector Search, Genie (for advanced features)
|
|
74
74
|
|
|
75
75
|
**Not sure if you have access?** Your Databricks administrator can grant you permissions.
|
|
@@ -266,6 +266,7 @@ DAO provides powerful capabilities for building production-ready AI agents:
|
|
|
266
266
|
|
|
267
267
|
| Feature | Description |
|
|
268
268
|
|---------|-------------|
|
|
269
|
+
| **Dual Deployment Targets** | Deploy to Databricks Model Serving or Databricks Apps with a single config |
|
|
269
270
|
| **Multi-Tool Support** | Python functions, Unity Catalog, MCP, Agent Endpoints |
|
|
270
271
|
| **On-Behalf-Of User** | Per-user permissions and governance |
|
|
271
272
|
| **Advanced Caching** | Two-tier (LRU + Semantic) caching for cost optimization |
|
|
@@ -15,14 +15,15 @@
|
|
|
15
15
|
variables:
|
|
16
16
|
client_id: &client_id
|
|
17
17
|
options:
|
|
18
|
-
- env: RETAIL_AI_DATABRICKS_CLIENT_ID # Service principal client ID
|
|
19
18
|
- scope: retail_consumer_goods
|
|
20
19
|
secret: RETAIL_AI_DATABRICKS_CLIENT_ID
|
|
20
|
+
- env: RETAIL_AI_DATABRICKS_CLIENT_ID # Service principal client ID
|
|
21
|
+
|
|
21
22
|
client_secret: &client_secret
|
|
22
23
|
options:
|
|
23
|
-
- env: RETAIL_AI_DATABRICKS_CLIENT_SECRET # Service principal secret
|
|
24
24
|
- scope: retail_consumer_goods
|
|
25
25
|
secret: RETAIL_AI_DATABRICKS_CLIENT_SECRET
|
|
26
|
+
- env: RETAIL_AI_DATABRICKS_CLIENT_SECRET # Service principal secret
|
|
26
27
|
|
|
27
28
|
schemas:
|
|
28
29
|
retail_schema: &retail_schema
|
|
@@ -2,7 +2,62 @@
|
|
|
2
2
|
|
|
3
3
|
These are the powerful features that make DAO production-ready. Don't worry if some seem complex — you can start simple and add these capabilities as you need them.
|
|
4
4
|
|
|
5
|
-
## 1.
|
|
5
|
+
## 1. Dual Deployment Targets
|
|
6
|
+
|
|
7
|
+
**What is this?** DAO agents can be deployed to either **Databricks Model Serving** or **Databricks Apps** using the same configuration, giving you flexibility in how you expose your agent.
|
|
8
|
+
|
|
9
|
+
**Why this matters:**
|
|
10
|
+
- **Model Serving**: Traditional endpoint for inference workloads, autoscaling, pay-per-token pricing
|
|
11
|
+
- **Databricks Apps**: Full web applications with custom UI, background jobs, and richer integrations
|
|
12
|
+
- **Single Configuration**: Switch deployment targets with one line change — no code rewrite needed
|
|
13
|
+
- **Environment Consistency**: Same YAML config works in both environments
|
|
14
|
+
|
|
15
|
+
**Comparison:**
|
|
16
|
+
|
|
17
|
+
| Feature | Model Serving | Databricks Apps |
|
|
18
|
+
|---------|--------------|-----------------|
|
|
19
|
+
| **Use Case** | Inference API endpoint | Full web application |
|
|
20
|
+
| **Scaling** | Auto-scales based on load | Manual scaling configuration |
|
|
21
|
+
| **UI** | API only | Custom web UI possible |
|
|
22
|
+
| **Pricing** | Pay per token/request | Compute-based |
|
|
23
|
+
| **Deployment Speed** | ~2-5 minutes | ~2-5 minutes |
|
|
24
|
+
| **Best For** | API integrations, high throughput | Interactive apps, custom UX |
|
|
25
|
+
|
|
26
|
+
**How to configure:**
|
|
27
|
+
|
|
28
|
+
```yaml
|
|
29
|
+
app:
|
|
30
|
+
name: my_agent
|
|
31
|
+
deployment_target: model_serving # or 'apps'
|
|
32
|
+
|
|
33
|
+
# Model Serving specific options (only used when deployment_target: model_serving)
|
|
34
|
+
endpoint_name: my_agent_endpoint
|
|
35
|
+
workload_size: Small
|
|
36
|
+
scale_to_zero: true
|
|
37
|
+
|
|
38
|
+
agents:
|
|
39
|
+
- *my_agent
|
|
40
|
+
```
|
|
41
|
+
|
|
42
|
+
**Deploy to Model Serving:**
|
|
43
|
+
```bash
|
|
44
|
+
dao-ai deploy -c config.yaml --target model_serving
|
|
45
|
+
```
|
|
46
|
+
|
|
47
|
+
**Deploy to Databricks Apps:**
|
|
48
|
+
```bash
|
|
49
|
+
dao-ai deploy -c config.yaml --target apps
|
|
50
|
+
```
|
|
51
|
+
|
|
52
|
+
**CLI override:** The `--target` flag always takes precedence over the YAML config, making it easy to deploy the same config to different environments.
|
|
53
|
+
|
|
54
|
+
**Behind the scenes:**
|
|
55
|
+
- Model Serving deployments create an MLflow model and serving endpoint
|
|
56
|
+
- Apps deployments create a Databricks App with MLflow experiment tracking
|
|
57
|
+
- Both share the same agent code, tools, and orchestration logic
|
|
58
|
+
- Environment variables and secrets are automatically configured for each platform
|
|
59
|
+
|
|
60
|
+
## 2. Multi-Tool Support
|
|
6
61
|
|
|
7
62
|
**What are tools?** Tools are actions an agent can perform — like querying a database, calling an API, or running custom code.
|
|
8
63
|
|
|
@@ -57,7 +112,7 @@ tools:
|
|
|
57
112
|
connection: *github_connection
|
|
58
113
|
```
|
|
59
114
|
|
|
60
|
-
##
|
|
115
|
+
## 3. On-Behalf-Of User Support
|
|
61
116
|
|
|
62
117
|
**What is this?** Many Databricks resources (like SQL warehouses, Genie spaces, and LLMs) can operate "on behalf of" the end user, using their permissions instead of the agent's service account credentials.
|
|
63
118
|
|
|
@@ -104,7 +159,7 @@ The same agent code enforces different permissions for each user automatically.
|
|
|
104
159
|
- The user must have the necessary permissions on the underlying resources
|
|
105
160
|
- Not all Databricks resources support on-behalf-of functionality
|
|
106
161
|
|
|
107
|
-
##
|
|
162
|
+
## 4. Advanced Caching (Genie Queries)
|
|
108
163
|
|
|
109
164
|
**Why caching matters:** When users ask similar questions repeatedly, you don't want to pay for the same AI processing over and over. Caching stores results so you can reuse them.
|
|
110
165
|
|
|
@@ -234,7 +289,7 @@ This works by embedding both the current question *and* recent conversation turn
|
|
|
234
289
|
|
|
235
290
|
For more details on semantic cache configuration, see [docs/semantic_cache_weight_configuration.md](semantic_cache_weight_configuration.md).
|
|
236
291
|
|
|
237
|
-
##
|
|
292
|
+
## 5. Vector Search Reranking
|
|
238
293
|
|
|
239
294
|
**The problem:** Vector search (semantic similarity) is fast but sometimes returns loosely related results. It's like a librarian who quickly grabs 50 books that *might* be relevant.
|
|
240
295
|
|
|
@@ -321,7 +376,7 @@ rerank:
|
|
|
321
376
|
|
|
322
377
|
**Note:** Model weights are downloaded automatically on first use (~34MB for MiniLM-L-12-v2).
|
|
323
378
|
|
|
324
|
-
##
|
|
379
|
+
## 6. Human-in-the-Loop Approvals
|
|
325
380
|
|
|
326
381
|
**Why this matters:** Some actions are too important to automate completely. For example, you might want human approval before an agent:
|
|
327
382
|
- Deletes data
|
|
@@ -343,7 +398,7 @@ tools:
|
|
|
343
398
|
review_prompt: "This operation will modify production data. Approve?"
|
|
344
399
|
```
|
|
345
400
|
|
|
346
|
-
##
|
|
401
|
+
## 7. Memory & State Persistence
|
|
347
402
|
|
|
348
403
|
**What is memory?** Your agent needs to remember past conversations. When a user asks "What about size XL?" the agent should remember they were talking about shirts.
|
|
349
404
|
|
|
@@ -395,7 +450,7 @@ memory:
|
|
|
395
450
|
- **PostgreSQL**: When you need external database features or already have PostgreSQL infrastructure
|
|
396
451
|
- **Lakebase**: When you want Databricks-native persistence with Unity Catalog governance
|
|
397
452
|
|
|
398
|
-
##
|
|
453
|
+
## 8. MLflow Prompt Registry Integration
|
|
399
454
|
|
|
400
455
|
**The problem:** Prompts (instructions you give to AI models) need constant refinement. Hardcoding them in YAML means every change requires redeployment.
|
|
401
456
|
|
|
@@ -427,7 +482,7 @@ agents:
|
|
|
427
482
|
prompt: *product_expert_prompt # Loaded from MLflow registry
|
|
428
483
|
```
|
|
429
484
|
|
|
430
|
-
##
|
|
485
|
+
## 9. Automated Prompt Optimization
|
|
431
486
|
|
|
432
487
|
**What is this?** Instead of manually tweaking prompts through trial and error, DAO can automatically test variations and find the best one.
|
|
433
488
|
|
|
@@ -452,7 +507,7 @@ optimizations:
|
|
|
452
507
|
num_candidates: 5
|
|
453
508
|
```
|
|
454
509
|
|
|
455
|
-
##
|
|
510
|
+
## 10. Guardrails & Response Quality Middleware
|
|
456
511
|
|
|
457
512
|
**What are guardrails?** Safety and quality controls that validate agent responses before they reach users. Think of them as quality assurance checkpoints.
|
|
458
513
|
|
|
@@ -670,7 +725,7 @@ agents:
|
|
|
670
725
|
prompt: *professional_tone_prompt
|
|
671
726
|
```
|
|
672
727
|
|
|
673
|
-
##
|
|
728
|
+
## 11. Conversation Summarization
|
|
674
729
|
|
|
675
730
|
**The problem:** AI models have a maximum amount of text they can process (the "context window"). Long conversations eventually exceed this limit.
|
|
676
731
|
|
|
@@ -697,7 +752,7 @@ The `LoggingSummarizationMiddleware` provides detailed observability:
|
|
|
697
752
|
INFO | Summarization: BEFORE 25 messages (~12500 tokens) → AFTER 3 messages (~2100 tokens) | Reduced by ~10400 tokens
|
|
698
753
|
```
|
|
699
754
|
|
|
700
|
-
##
|
|
755
|
+
## 12. Structured Output (Response Format)
|
|
701
756
|
|
|
702
757
|
**What is this?** A way to force your agent to return data in a specific JSON structure, making responses machine-readable and predictable.
|
|
703
758
|
|
|
@@ -749,7 +804,7 @@ See `config/examples/09_structured_output/structured_output.yaml` for a complete
|
|
|
749
804
|
|
|
750
805
|
---
|
|
751
806
|
|
|
752
|
-
##
|
|
807
|
+
## 13. Custom Input & Custom Output Support
|
|
753
808
|
|
|
754
809
|
**What is this?** A flexible system for passing custom configuration values to your agents and receiving enriched output with runtime state.
|
|
755
810
|
|
|
@@ -829,7 +884,7 @@ When invoked with the `custom_inputs` above, the prompt automatically populates:
|
|
|
829
884
|
- `session` state is automatically maintained and returned in `custom_outputs`
|
|
830
885
|
- Backward compatible with legacy flat custom_inputs format
|
|
831
886
|
|
|
832
|
-
##
|
|
887
|
+
## 14. Middleware (Input Validation, Logging, Monitoring)
|
|
833
888
|
|
|
834
889
|
**What is middleware?** Middleware are functions that wrap around agent execution to add cross-cutting concerns like validation, logging, authentication, and monitoring. They run before and after the agent processes requests.
|
|
835
890
|
|
|
@@ -1049,7 +1104,7 @@ agents:
|
|
|
1049
1104
|
|
|
1050
1105
|
---
|
|
1051
1106
|
|
|
1052
|
-
##
|
|
1107
|
+
## 15. Hook System
|
|
1053
1108
|
|
|
1054
1109
|
**What are hooks?** Hooks let you run custom code at specific moments in your agent's lifecycle — like "before starting" or "when shutting down".
|
|
1055
1110
|
|
|
@@ -4,7 +4,7 @@ build-backend = "hatchling.build"
|
|
|
4
4
|
|
|
5
5
|
[project]
|
|
6
6
|
name = "dao-ai"
|
|
7
|
-
version = "0.1.
|
|
7
|
+
version = "0.1.14"
|
|
8
8
|
description = "DAO AI: A modular, multi-agent orchestration framework for complex AI workflows. Supports agent handoff, tool integration, and dynamic configuration via YAML."
|
|
9
9
|
readme = "README.md"
|
|
10
10
|
license = { text = "MIT" }
|
|
@@ -14,7 +14,7 @@ from typing import AsyncGenerator
|
|
|
14
14
|
|
|
15
15
|
import mlflow
|
|
16
16
|
from dotenv import load_dotenv
|
|
17
|
-
from mlflow.genai.agent_server import invoke, stream
|
|
17
|
+
from mlflow.genai.agent_server import get_request_headers, invoke, stream
|
|
18
18
|
from mlflow.types.responses import (
|
|
19
19
|
ResponsesAgentRequest,
|
|
20
20
|
ResponsesAgentResponse,
|
|
@@ -25,6 +25,23 @@ from dao_ai.config import AppConfig
|
|
|
25
25
|
from dao_ai.logging import configure_logging
|
|
26
26
|
from dao_ai.models import LanggraphResponsesAgent
|
|
27
27
|
|
|
28
|
+
|
|
29
|
+
def _inject_headers_into_request(request: ResponsesAgentRequest) -> None:
|
|
30
|
+
"""Inject request headers into custom_inputs for Context propagation.
|
|
31
|
+
|
|
32
|
+
Captures headers from the MLflow AgentServer context (where they're available)
|
|
33
|
+
and injects them into request.custom_inputs.configurable.headers so they
|
|
34
|
+
flow through to Context and can be used for OBO authentication.
|
|
35
|
+
"""
|
|
36
|
+
headers: dict[str, str] = get_request_headers()
|
|
37
|
+
if headers:
|
|
38
|
+
if request.custom_inputs is None:
|
|
39
|
+
request.custom_inputs = {}
|
|
40
|
+
if "configurable" not in request.custom_inputs:
|
|
41
|
+
request.custom_inputs["configurable"] = {}
|
|
42
|
+
request.custom_inputs["configurable"]["headers"] = headers
|
|
43
|
+
|
|
44
|
+
|
|
28
45
|
# Load environment variables from .env.local if it exists
|
|
29
46
|
load_dotenv(dotenv_path=".env.local", override=True)
|
|
30
47
|
|
|
@@ -61,6 +78,8 @@ async def non_streaming(request: ResponsesAgentRequest) -> ResponsesAgentRespons
|
|
|
61
78
|
Returns:
|
|
62
79
|
ResponsesAgentResponse with the complete output
|
|
63
80
|
"""
|
|
81
|
+
# Capture headers while in the AgentServer async context (before they're lost)
|
|
82
|
+
_inject_headers_into_request(request)
|
|
64
83
|
return await _responses_agent.apredict(request)
|
|
65
84
|
|
|
66
85
|
|
|
@@ -80,5 +99,7 @@ async def streaming(
|
|
|
80
99
|
Yields:
|
|
81
100
|
ResponsesAgentStreamEvent objects as they are generated
|
|
82
101
|
"""
|
|
102
|
+
# Capture headers while in the AgentServer async context (before they're lost)
|
|
103
|
+
_inject_headers_into_request(request)
|
|
83
104
|
async for event in _responses_agent.apredict_stream(request):
|
|
84
105
|
yield event
|
|
@@ -7,6 +7,7 @@ from enum import Enum
|
|
|
7
7
|
from os import PathLike
|
|
8
8
|
from pathlib import Path
|
|
9
9
|
from typing import (
|
|
10
|
+
TYPE_CHECKING,
|
|
10
11
|
Any,
|
|
11
12
|
Callable,
|
|
12
13
|
Iterator,
|
|
@@ -18,6 +19,9 @@ from typing import (
|
|
|
18
19
|
Union,
|
|
19
20
|
)
|
|
20
21
|
|
|
22
|
+
if TYPE_CHECKING:
|
|
23
|
+
from dao_ai.state import Context
|
|
24
|
+
|
|
21
25
|
from databricks.sdk import WorkspaceClient
|
|
22
26
|
from databricks.sdk.credentials_provider import (
|
|
23
27
|
CredentialsStrategy,
|
|
@@ -284,8 +288,8 @@ class IsDatabricksResource(ABC, BaseModel):
|
|
|
284
288
|
|
|
285
289
|
Authentication priority:
|
|
286
290
|
1. On-Behalf-Of User (on_behalf_of_user=True):
|
|
287
|
-
-
|
|
288
|
-
-
|
|
291
|
+
- Uses ModelServingUserCredentials (Model Serving)
|
|
292
|
+
- For Databricks Apps with headers, use workspace_client_from(context)
|
|
289
293
|
2. Service Principal (client_id + client_secret + workspace_host)
|
|
290
294
|
3. PAT (pat + workspace_host)
|
|
291
295
|
4. Ambient/default authentication
|
|
@@ -294,36 +298,6 @@ class IsDatabricksResource(ABC, BaseModel):
|
|
|
294
298
|
|
|
295
299
|
# Check for OBO first (highest priority)
|
|
296
300
|
if self.on_behalf_of_user:
|
|
297
|
-
# NEW: In Databricks Apps, use forwarded headers for per-user auth
|
|
298
|
-
try:
|
|
299
|
-
from mlflow.genai.agent_server import get_request_headers
|
|
300
|
-
|
|
301
|
-
headers = get_request_headers()
|
|
302
|
-
forwarded_token = headers.get("x-forwarded-access-token")
|
|
303
|
-
|
|
304
|
-
if forwarded_token:
|
|
305
|
-
forwarded_user = headers.get("x-forwarded-user", "unknown")
|
|
306
|
-
logger.debug(
|
|
307
|
-
f"Creating WorkspaceClient for {self.__class__.__name__} "
|
|
308
|
-
f"with OBO using forwarded token from Databricks Apps",
|
|
309
|
-
forwarded_user=forwarded_user,
|
|
310
|
-
)
|
|
311
|
-
# Use workspace_host if configured, otherwise SDK will auto-detect
|
|
312
|
-
workspace_host_value: str | None = (
|
|
313
|
-
normalize_host(value_of(self.workspace_host))
|
|
314
|
-
if self.workspace_host
|
|
315
|
-
else None
|
|
316
|
-
)
|
|
317
|
-
return WorkspaceClient(
|
|
318
|
-
host=workspace_host_value,
|
|
319
|
-
token=forwarded_token,
|
|
320
|
-
auth_type="pat",
|
|
321
|
-
)
|
|
322
|
-
except (ImportError, LookupError):
|
|
323
|
-
# mlflow not available or headers not set - fall through to Model Serving
|
|
324
|
-
pass
|
|
325
|
-
|
|
326
|
-
# Fall back to Model Serving OBO (existing behavior)
|
|
327
301
|
credentials_strategy: CredentialsStrategy = ModelServingUserCredentials()
|
|
328
302
|
logger.debug(
|
|
329
303
|
f"Creating WorkspaceClient for {self.__class__.__name__} "
|
|
@@ -382,6 +356,55 @@ class IsDatabricksResource(ABC, BaseModel):
|
|
|
382
356
|
)
|
|
383
357
|
return WorkspaceClient()
|
|
384
358
|
|
|
359
|
+
def workspace_client_from(self, context: "Context | None") -> WorkspaceClient:
|
|
360
|
+
"""
|
|
361
|
+
Get a WorkspaceClient using headers from the provided Context.
|
|
362
|
+
|
|
363
|
+
Use this method from tools that have access to ToolRuntime[Context].
|
|
364
|
+
This allows OBO authentication to work in Databricks Apps where headers
|
|
365
|
+
are captured at request entry and passed through the Context.
|
|
366
|
+
|
|
367
|
+
Args:
|
|
368
|
+
context: Runtime context containing headers for OBO auth.
|
|
369
|
+
If None or no headers, falls back to workspace_client property.
|
|
370
|
+
|
|
371
|
+
Returns:
|
|
372
|
+
WorkspaceClient configured with appropriate authentication.
|
|
373
|
+
"""
|
|
374
|
+
from dao_ai.utils import normalize_host
|
|
375
|
+
|
|
376
|
+
# Check if we have headers in context for OBO
|
|
377
|
+
if context and context.headers and self.on_behalf_of_user:
|
|
378
|
+
headers = context.headers
|
|
379
|
+
# Try both lowercase and title-case header names (HTTP headers are case-insensitive)
|
|
380
|
+
forwarded_token = headers.get("x-forwarded-access-token") or headers.get(
|
|
381
|
+
"X-Forwarded-Access-Token"
|
|
382
|
+
)
|
|
383
|
+
|
|
384
|
+
if forwarded_token:
|
|
385
|
+
forwarded_user = headers.get("x-forwarded-user") or headers.get(
|
|
386
|
+
"X-Forwarded-User", "unknown"
|
|
387
|
+
)
|
|
388
|
+
logger.debug(
|
|
389
|
+
f"Creating WorkspaceClient for {self.__class__.__name__} "
|
|
390
|
+
f"with OBO using forwarded token from Context",
|
|
391
|
+
forwarded_user=forwarded_user,
|
|
392
|
+
)
|
|
393
|
+
# Use workspace_host if configured, otherwise SDK will auto-detect
|
|
394
|
+
workspace_host_value: str | None = (
|
|
395
|
+
normalize_host(value_of(self.workspace_host))
|
|
396
|
+
if self.workspace_host
|
|
397
|
+
else None
|
|
398
|
+
)
|
|
399
|
+
return WorkspaceClient(
|
|
400
|
+
host=workspace_host_value,
|
|
401
|
+
token=forwarded_token,
|
|
402
|
+
auth_type="pat",
|
|
403
|
+
)
|
|
404
|
+
|
|
405
|
+
# Fall back to existing workspace_client property
|
|
406
|
+
return self.workspace_client
|
|
407
|
+
|
|
385
408
|
|
|
386
409
|
class DeploymentTarget(str, Enum):
|
|
387
410
|
"""Target platform for agent deployment."""
|
|
@@ -139,29 +139,53 @@ Returns:
|
|
|
139
139
|
GenieResponse: A response object containing the conversation ID and result from Genie."""
|
|
140
140
|
tool_description = tool_description + function_docs
|
|
141
141
|
|
|
142
|
-
genie
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
)
|
|
142
|
+
# Cache for genie service - created lazily on first call
|
|
143
|
+
# This allows us to use workspace_client_from with runtime context for OBO
|
|
144
|
+
_cached_genie_service: GenieServiceBase | None = None
|
|
145
|
+
|
|
146
|
+
def _get_genie_service(context: Context | None) -> GenieServiceBase:
|
|
147
|
+
"""Get or create the Genie service, using context for OBO auth if available."""
|
|
148
|
+
nonlocal _cached_genie_service
|
|
149
|
+
|
|
150
|
+
# Use cached service if available (for non-OBO or after first call)
|
|
151
|
+
# For OBO, we need fresh workspace client each time to use the user's token
|
|
152
|
+
if _cached_genie_service is not None and not genie_room.on_behalf_of_user:
|
|
153
|
+
return _cached_genie_service
|
|
154
|
+
|
|
155
|
+
# Get workspace client using context for OBO support
|
|
156
|
+
from databricks.sdk import WorkspaceClient
|
|
147
157
|
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
parameters=semantic_cache_parameters,
|
|
155
|
-
workspace_client=genie_room.workspace_client, # Pass workspace client for conversation history
|
|
156
|
-
).initialize() # Eagerly initialize to fail fast and create table
|
|
157
|
-
|
|
158
|
-
# Wrap with LRU cache last (checked first - fast O(1) exact match)
|
|
159
|
-
if lru_cache_parameters is not None:
|
|
160
|
-
genie_service = LRUCacheService(
|
|
161
|
-
impl=genie_service,
|
|
162
|
-
parameters=lru_cache_parameters,
|
|
158
|
+
workspace_client: WorkspaceClient = genie_room.workspace_client_from(context)
|
|
159
|
+
|
|
160
|
+
genie: Genie = Genie(
|
|
161
|
+
space_id=space_id,
|
|
162
|
+
client=workspace_client,
|
|
163
|
+
truncate_results=truncate_results,
|
|
163
164
|
)
|
|
164
165
|
|
|
166
|
+
genie_service: GenieServiceBase = GenieService(genie)
|
|
167
|
+
|
|
168
|
+
# Wrap with semantic cache first (checked second due to decorator pattern)
|
|
169
|
+
if semantic_cache_parameters is not None:
|
|
170
|
+
genie_service = SemanticCacheService(
|
|
171
|
+
impl=genie_service,
|
|
172
|
+
parameters=semantic_cache_parameters,
|
|
173
|
+
workspace_client=workspace_client,
|
|
174
|
+
).initialize()
|
|
175
|
+
|
|
176
|
+
# Wrap with LRU cache last (checked first - fast O(1) exact match)
|
|
177
|
+
if lru_cache_parameters is not None:
|
|
178
|
+
genie_service = LRUCacheService(
|
|
179
|
+
impl=genie_service,
|
|
180
|
+
parameters=lru_cache_parameters,
|
|
181
|
+
)
|
|
182
|
+
|
|
183
|
+
# Cache for non-OBO scenarios
|
|
184
|
+
if not genie_room.on_behalf_of_user:
|
|
185
|
+
_cached_genie_service = genie_service
|
|
186
|
+
|
|
187
|
+
return genie_service
|
|
188
|
+
|
|
165
189
|
@tool(
|
|
166
190
|
name_or_callable=tool_name,
|
|
167
191
|
description=tool_description,
|
|
@@ -177,6 +201,10 @@ GenieResponse: A response object containing the conversation ID and result from
|
|
|
177
201
|
# Access state through runtime
|
|
178
202
|
state: AgentState = runtime.state
|
|
179
203
|
tool_call_id: str = runtime.tool_call_id
|
|
204
|
+
context: Context | None = runtime.context
|
|
205
|
+
|
|
206
|
+
# Get genie service with OBO support via context
|
|
207
|
+
genie_service: GenieServiceBase = _get_genie_service(context)
|
|
180
208
|
|
|
181
209
|
# Ensure space_id is a string for state keys
|
|
182
210
|
space_id_str: str = str(space_id)
|
|
@@ -194,6 +222,14 @@ GenieResponse: A response object containing the conversation ID and result from
|
|
|
194
222
|
conversation_id=existing_conversation_id,
|
|
195
223
|
)
|
|
196
224
|
|
|
225
|
+
# Log the prompt being sent to Genie
|
|
226
|
+
logger.trace(
|
|
227
|
+
"Sending prompt to Genie",
|
|
228
|
+
space_id=space_id_str,
|
|
229
|
+
conversation_id=existing_conversation_id,
|
|
230
|
+
prompt=question[:500] + "..." if len(question) > 500 else question,
|
|
231
|
+
)
|
|
232
|
+
|
|
197
233
|
# Call ask_question which always returns CacheResult with cache metadata
|
|
198
234
|
cache_result: CacheResult = genie_service.ask_question(
|
|
199
235
|
question, conversation_id=existing_conversation_id
|
|
@@ -211,6 +247,22 @@ GenieResponse: A response object containing the conversation ID and result from
|
|
|
211
247
|
cache_key=cache_key,
|
|
212
248
|
)
|
|
213
249
|
|
|
250
|
+
# Log truncated response for debugging
|
|
251
|
+
result_preview: str = str(genie_response.result)
|
|
252
|
+
if len(result_preview) > 500:
|
|
253
|
+
result_preview = result_preview[:500] + "..."
|
|
254
|
+
logger.trace(
|
|
255
|
+
"Genie response content",
|
|
256
|
+
question=question[:100] + "..." if len(question) > 100 else question,
|
|
257
|
+
query=genie_response.query,
|
|
258
|
+
description=(
|
|
259
|
+
genie_response.description[:200] + "..."
|
|
260
|
+
if genie_response.description and len(genie_response.description) > 200
|
|
261
|
+
else genie_response.description
|
|
262
|
+
),
|
|
263
|
+
result_preview=result_preview,
|
|
264
|
+
)
|
|
265
|
+
|
|
214
266
|
# Update session state with cache information
|
|
215
267
|
if persist_conversation:
|
|
216
268
|
session.genie.update_space(
|