cua-agent 0.4.5__tar.gz → 0.4.6__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of cua-agent might be problematic. Click here for more details.

Files changed (33) hide show
  1. {cua_agent-0.4.5 → cua_agent-0.4.6}/PKG-INFO +1 -1
  2. cua_agent-0.4.6/agent/callbacks/pii_anonymization.py +96 -0
  3. {cua_agent-0.4.5 → cua_agent-0.4.6}/pyproject.toml +1 -1
  4. cua_agent-0.4.5/agent/callbacks/pii_anonymization.py +0 -259
  5. {cua_agent-0.4.5 → cua_agent-0.4.6}/README.md +0 -0
  6. {cua_agent-0.4.5 → cua_agent-0.4.6}/agent/__init__.py +0 -0
  7. {cua_agent-0.4.5 → cua_agent-0.4.6}/agent/__main__.py +0 -0
  8. {cua_agent-0.4.5 → cua_agent-0.4.6}/agent/adapters/__init__.py +0 -0
  9. {cua_agent-0.4.5 → cua_agent-0.4.6}/agent/adapters/huggingfacelocal_adapter.py +0 -0
  10. {cua_agent-0.4.5 → cua_agent-0.4.6}/agent/agent.py +0 -0
  11. {cua_agent-0.4.5 → cua_agent-0.4.6}/agent/callbacks/__init__.py +0 -0
  12. {cua_agent-0.4.5 → cua_agent-0.4.6}/agent/callbacks/base.py +0 -0
  13. {cua_agent-0.4.5 → cua_agent-0.4.6}/agent/callbacks/budget_manager.py +0 -0
  14. {cua_agent-0.4.5 → cua_agent-0.4.6}/agent/callbacks/image_retention.py +0 -0
  15. {cua_agent-0.4.5 → cua_agent-0.4.6}/agent/callbacks/logging.py +0 -0
  16. {cua_agent-0.4.5 → cua_agent-0.4.6}/agent/callbacks/telemetry.py +0 -0
  17. {cua_agent-0.4.5 → cua_agent-0.4.6}/agent/callbacks/trajectory_saver.py +0 -0
  18. {cua_agent-0.4.5 → cua_agent-0.4.6}/agent/cli.py +0 -0
  19. {cua_agent-0.4.5 → cua_agent-0.4.6}/agent/computer_handler.py +0 -0
  20. {cua_agent-0.4.5 → cua_agent-0.4.6}/agent/decorators.py +0 -0
  21. {cua_agent-0.4.5 → cua_agent-0.4.6}/agent/loops/__init__.py +0 -0
  22. {cua_agent-0.4.5 → cua_agent-0.4.6}/agent/loops/anthropic.py +0 -0
  23. {cua_agent-0.4.5 → cua_agent-0.4.6}/agent/loops/omniparser.py +0 -0
  24. {cua_agent-0.4.5 → cua_agent-0.4.6}/agent/loops/openai.py +0 -0
  25. {cua_agent-0.4.5 → cua_agent-0.4.6}/agent/loops/uitars.py +0 -0
  26. {cua_agent-0.4.5 → cua_agent-0.4.6}/agent/responses.py +0 -0
  27. {cua_agent-0.4.5 → cua_agent-0.4.6}/agent/telemetry.py +0 -0
  28. {cua_agent-0.4.5 → cua_agent-0.4.6}/agent/types.py +0 -0
  29. {cua_agent-0.4.5 → cua_agent-0.4.6}/agent/ui/__init__.py +0 -0
  30. {cua_agent-0.4.5 → cua_agent-0.4.6}/agent/ui/__main__.py +0 -0
  31. {cua_agent-0.4.5 → cua_agent-0.4.6}/agent/ui/gradio/__init__.py +0 -0
  32. {cua_agent-0.4.5 → cua_agent-0.4.6}/agent/ui/gradio/app.py +0 -0
  33. {cua_agent-0.4.5 → cua_agent-0.4.6}/agent/ui/gradio/ui_components.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: cua-agent
3
- Version: 0.4.5
3
+ Version: 0.4.6
4
4
  Summary: CUA (Computer Use) Agent for AI-driven computer interaction
5
5
  Author-Email: TryCua <gh@trycua.com>
6
6
  Requires-Python: >=3.11
@@ -0,0 +1,96 @@
1
+ """
2
+ PII anonymization callback handler using Microsoft Presidio for text and image redaction.
3
+ """
4
+
5
+ from typing import List, Dict, Any, Optional, Tuple
6
+ from .base import AsyncCallbackHandler
7
+ import base64
8
+ import io
9
+ import logging
10
+
11
+ try:
12
+ # TODO: Add Presidio dependencies
13
+ from PIL import Image
14
+ PRESIDIO_AVAILABLE = True
15
+ except ImportError:
16
+ PRESIDIO_AVAILABLE = False
17
+
18
+ logger = logging.getLogger(__name__)
19
+
20
+ class PIIAnonymizationCallback(AsyncCallbackHandler):
21
+ """
22
+ Callback handler that anonymizes PII in text and images using Microsoft Presidio.
23
+
24
+ This handler:
25
+ 1. Anonymizes PII in messages before sending to the agent loop
26
+ 2. Deanonymizes PII in tool calls and message outputs after the agent loop
27
+ 3. Redacts PII from images in computer_call_output messages
28
+ """
29
+
30
+ def __init__(
31
+ self,
32
+ # TODO: Any extra kwargs if needed
33
+ ):
34
+ """
35
+ Initialize the PII anonymization callback.
36
+
37
+ Args:
38
+ anonymize_text: Whether to anonymize text content
39
+ anonymize_images: Whether to redact images
40
+ entities_to_anonymize: List of entity types to anonymize (None for all)
41
+ anonymization_operator: Presidio operator to use ("replace", "mask", "redact", etc.)
42
+ image_redaction_color: RGB color for image redaction
43
+ """
44
+ if not PRESIDIO_AVAILABLE:
45
+ raise ImportError(
46
+ "Presidio is not available. Install with: "
47
+ "pip install cua-agent[pii-anonymization]"
48
+ )
49
+
50
+ # TODO: Implement __init__
51
+
52
+ async def on_llm_start(self, messages: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
53
+ """
54
+ Anonymize PII in messages before sending to agent loop.
55
+
56
+ Args:
57
+ messages: List of message dictionaries
58
+
59
+ Returns:
60
+ List of messages with PII anonymized
61
+ """
62
+ anonymized_messages = []
63
+ for msg in messages:
64
+ anonymized_msg = await self._anonymize_message(msg)
65
+ anonymized_messages.append(anonymized_msg)
66
+
67
+ return anonymized_messages
68
+
69
+ async def on_llm_end(self, output: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
70
+ """
71
+ Deanonymize PII in tool calls and message outputs after agent loop.
72
+
73
+ Args:
74
+ output: List of output dictionaries
75
+
76
+ Returns:
77
+ List of output with PII deanonymized for tool calls
78
+ """
79
+ deanonymized_output = []
80
+ for item in output:
81
+ # Only deanonymize tool calls and computer_call messages
82
+ if item.get("type") in ["computer_call", "computer_call_output"]:
83
+ deanonymized_item = await self._deanonymize_item(item)
84
+ deanonymized_output.append(deanonymized_item)
85
+ else:
86
+ deanonymized_output.append(item)
87
+
88
+ return deanonymized_output
89
+
90
+ async def _anonymize_message(self, message: Dict[str, Any]) -> Dict[str, Any]:
91
+ # TODO: Implement _anonymize_message
92
+ return message
93
+
94
+ async def _deanonymize_item(self, item: Dict[str, Any]) -> Dict[str, Any]:
95
+ # TODO: Implement _deanonymize_item
96
+ return item
@@ -6,7 +6,7 @@ build-backend = "pdm.backend"
6
6
 
7
7
  [project]
8
8
  name = "cua-agent"
9
- version = "0.4.5"
9
+ version = "0.4.6"
10
10
  description = "CUA (Computer Use) Agent for AI-driven computer interaction"
11
11
  readme = "README.md"
12
12
  authors = [
@@ -1,259 +0,0 @@
1
- """
2
- PII anonymization callback handler using Microsoft Presidio for text and image redaction.
3
- """
4
-
5
- from typing import List, Dict, Any, Optional, Tuple
6
- from .base import AsyncCallbackHandler
7
- import base64
8
- import io
9
- import logging
10
-
11
- try:
12
- from presidio_analyzer import AnalyzerEngine
13
- from presidio_anonymizer import AnonymizerEngine, DeanonymizeEngine
14
- from presidio_anonymizer.entities import RecognizerResult, OperatorConfig
15
- from presidio_image_redactor import ImageRedactorEngine
16
- from PIL import Image
17
- PRESIDIO_AVAILABLE = True
18
- except ImportError:
19
- PRESIDIO_AVAILABLE = False
20
-
21
- logger = logging.getLogger(__name__)
22
-
23
- class PIIAnonymizationCallback(AsyncCallbackHandler):
24
- """
25
- Callback handler that anonymizes PII in text and images using Microsoft Presidio.
26
-
27
- This handler:
28
- 1. Anonymizes PII in messages before sending to the agent loop
29
- 2. Deanonymizes PII in tool calls and message outputs after the agent loop
30
- 3. Redacts PII from images in computer_call_output messages
31
- """
32
-
33
- def __init__(
34
- self,
35
- anonymize_text: bool = True,
36
- anonymize_images: bool = True,
37
- entities_to_anonymize: Optional[List[str]] = None,
38
- anonymization_operator: str = "replace",
39
- image_redaction_color: Tuple[int, int, int] = (255, 192, 203) # Pink
40
- ):
41
- """
42
- Initialize the PII anonymization callback.
43
-
44
- Args:
45
- anonymize_text: Whether to anonymize text content
46
- anonymize_images: Whether to redact images
47
- entities_to_anonymize: List of entity types to anonymize (None for all)
48
- anonymization_operator: Presidio operator to use ("replace", "mask", "redact", etc.)
49
- image_redaction_color: RGB color for image redaction
50
- """
51
- if not PRESIDIO_AVAILABLE:
52
- raise ImportError(
53
- "Presidio is not available. Install with: "
54
- "pip install presidio-analyzer presidio-anonymizer presidio-image-redactor"
55
- )
56
-
57
- self.anonymize_text = anonymize_text
58
- self.anonymize_images = anonymize_images
59
- self.entities_to_anonymize = entities_to_anonymize
60
- self.anonymization_operator = anonymization_operator
61
- self.image_redaction_color = image_redaction_color
62
-
63
- # Initialize Presidio engines
64
- self.analyzer = AnalyzerEngine()
65
- self.anonymizer = AnonymizerEngine()
66
- self.deanonymizer = DeanonymizeEngine()
67
- self.image_redactor = ImageRedactorEngine()
68
-
69
- # Store anonymization mappings for deanonymization
70
- self.anonymization_mappings: Dict[str, Any] = {}
71
-
72
- async def on_llm_start(self, messages: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
73
- """
74
- Anonymize PII in messages before sending to agent loop.
75
-
76
- Args:
77
- messages: List of message dictionaries
78
-
79
- Returns:
80
- List of messages with PII anonymized
81
- """
82
- if not self.anonymize_text and not self.anonymize_images:
83
- return messages
84
-
85
- anonymized_messages = []
86
- for msg in messages:
87
- anonymized_msg = await self._anonymize_message(msg)
88
- anonymized_messages.append(anonymized_msg)
89
-
90
- return anonymized_messages
91
-
92
- async def on_llm_end(self, output: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
93
- """
94
- Deanonymize PII in tool calls and message outputs after agent loop.
95
-
96
- Args:
97
- output: List of output dictionaries
98
-
99
- Returns:
100
- List of output with PII deanonymized for tool calls
101
- """
102
- if not self.anonymize_text:
103
- return output
104
-
105
- deanonymized_output = []
106
- for item in output:
107
- # Only deanonymize tool calls and computer_call messages
108
- if item.get("type") in ["computer_call", "computer_call_output"]:
109
- deanonymized_item = await self._deanonymize_item(item)
110
- deanonymized_output.append(deanonymized_item)
111
- else:
112
- deanonymized_output.append(item)
113
-
114
- return deanonymized_output
115
-
116
- async def _anonymize_message(self, message: Dict[str, Any]) -> Dict[str, Any]:
117
- """Anonymize PII in a single message."""
118
- msg_copy = message.copy()
119
-
120
- # Anonymize text content
121
- if self.anonymize_text:
122
- msg_copy = await self._anonymize_text_content(msg_copy)
123
-
124
- # Redact images in computer_call_output
125
- if self.anonymize_images and msg_copy.get("type") == "computer_call_output":
126
- msg_copy = await self._redact_image_content(msg_copy)
127
-
128
- return msg_copy
129
-
130
- async def _anonymize_text_content(self, message: Dict[str, Any]) -> Dict[str, Any]:
131
- """Anonymize text content in a message."""
132
- msg_copy = message.copy()
133
-
134
- # Handle content array
135
- content = msg_copy.get("content", [])
136
- if isinstance(content, str):
137
- anonymized_text, _ = await self._anonymize_text(content)
138
- msg_copy["content"] = anonymized_text
139
- elif isinstance(content, list):
140
- anonymized_content = []
141
- for item in content:
142
- if isinstance(item, dict) and item.get("type") == "text":
143
- text = item.get("text", "")
144
- anonymized_text, _ = await self._anonymize_text(text)
145
- item_copy = item.copy()
146
- item_copy["text"] = anonymized_text
147
- anonymized_content.append(item_copy)
148
- else:
149
- anonymized_content.append(item)
150
- msg_copy["content"] = anonymized_content
151
-
152
- return msg_copy
153
-
154
- async def _redact_image_content(self, message: Dict[str, Any]) -> Dict[str, Any]:
155
- """Redact PII from images in computer_call_output messages."""
156
- msg_copy = message.copy()
157
- output = msg_copy.get("output", {})
158
-
159
- if isinstance(output, dict) and "image_url" in output:
160
- try:
161
- # Extract base64 image data
162
- image_url = output["image_url"]
163
- if image_url.startswith("data:image/"):
164
- # Parse data URL
165
- header, data = image_url.split(",", 1)
166
- image_data = base64.b64decode(data)
167
-
168
- # Load image with PIL
169
- image = Image.open(io.BytesIO(image_data))
170
-
171
- # Redact PII from image
172
- redacted_image = self.image_redactor.redact(image, self.image_redaction_color)
173
-
174
- # Convert back to base64
175
- buffer = io.BytesIO()
176
- redacted_image.save(buffer, format="PNG")
177
- redacted_data = base64.b64encode(buffer.getvalue()).decode()
178
-
179
- # Update image URL
180
- output_copy = output.copy()
181
- output_copy["image_url"] = f"data:image/png;base64,{redacted_data}"
182
- msg_copy["output"] = output_copy
183
-
184
- except Exception as e:
185
- logger.warning(f"Failed to redact image: {e}")
186
-
187
- return msg_copy
188
-
189
- async def _deanonymize_item(self, item: Dict[str, Any]) -> Dict[str, Any]:
190
- """Deanonymize PII in tool calls and computer outputs."""
191
- item_copy = item.copy()
192
-
193
- # Handle computer_call arguments
194
- if item.get("type") == "computer_call":
195
- args = item_copy.get("args", {})
196
- if isinstance(args, dict):
197
- deanonymized_args = {}
198
- for key, value in args.items():
199
- if isinstance(value, str):
200
- deanonymized_value, _ = await self._deanonymize_text(value)
201
- deanonymized_args[key] = deanonymized_value
202
- else:
203
- deanonymized_args[key] = value
204
- item_copy["args"] = deanonymized_args
205
-
206
- return item_copy
207
-
208
- async def _anonymize_text(self, text: str) -> Tuple[str, List[RecognizerResult]]:
209
- """Anonymize PII in text and return the anonymized text and results."""
210
- if not text.strip():
211
- return text, []
212
-
213
- try:
214
- # Analyze text for PII
215
- analyzer_results = self.analyzer.analyze(
216
- text=text,
217
- entities=self.entities_to_anonymize,
218
- language="en"
219
- )
220
-
221
- if not analyzer_results:
222
- return text, []
223
-
224
- # Anonymize the text
225
- anonymized_result = self.anonymizer.anonymize(
226
- text=text,
227
- analyzer_results=analyzer_results,
228
- operators={entity_type: OperatorConfig(self.anonymization_operator)
229
- for entity_type in set(result.entity_type for result in analyzer_results)}
230
- )
231
-
232
- # Store mapping for deanonymization
233
- mapping_key = str(hash(text))
234
- self.anonymization_mappings[mapping_key] = {
235
- "original": text,
236
- "anonymized": anonymized_result.text,
237
- "results": analyzer_results
238
- }
239
-
240
- return anonymized_result.text, analyzer_results
241
-
242
- except Exception as e:
243
- logger.warning(f"Failed to anonymize text: {e}")
244
- return text, []
245
-
246
- async def _deanonymize_text(self, text: str) -> Tuple[str, bool]:
247
- """Attempt to deanonymize text using stored mappings."""
248
- try:
249
- # Look for matching anonymized text in mappings
250
- for mapping_key, mapping in self.anonymization_mappings.items():
251
- if mapping["anonymized"] == text:
252
- return mapping["original"], True
253
-
254
- # If no mapping found, return original text
255
- return text, False
256
-
257
- except Exception as e:
258
- logger.warning(f"Failed to deanonymize text: {e}")
259
- return text, False
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes