cryptodatapy 0.2.3__tar.gz → 0.2.4__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/PKG-INFO +4 -1
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/pyproject.toml +4 -1
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/setup.py +4 -1
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/transform/clean.py +43 -7
- cryptodatapy-0.2.4/src/cryptodatapy/transform/clean_perp_futures_ohlcv.ipynb +1025 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/transform/filter.py +32 -4
- cryptodatapy-0.2.3/src/cryptodatapy/transform/clean_perp_futures_ohlcv.ipynb +0 -1639
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/LICENSE +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/README.md +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/.DS_Store +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/.idea/.gitignore +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/.idea/cryptodatapy.iml +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/.idea/csv-plugin.xml +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/.idea/inspectionProfiles/Project_Default.xml +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/.idea/inspectionProfiles/profiles_settings.xml +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/.idea/misc.xml +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/.idea/modules.xml +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/.idea/vcs.xml +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/__init__.py +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/conf/__init__.py +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/conf/fields.csv +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/conf/fx_tickers.csv +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/conf/tickers.csv +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/datasets/__init__.py +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/datasets/br_econ_calendar.csv +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/datasets/ca_econ_calendar.csv +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/datasets/cn_econ_calendar.csv +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/datasets/de_econ_calendar.csv +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/datasets/ez_econ_calendar.csv +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/datasets/fr_econ_calendar.csv +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/datasets/gb_econ_calendar.csv +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/datasets/get_econ_calendars.py +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/datasets/id_econ_calendar.csv +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/datasets/in_econ_calendar.csv +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/datasets/it_econ_calendar.csv +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/datasets/jp_econ_calendar.csv +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/datasets/kr_econ_calendar.csv +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/datasets/mx_econ_calendar.csv +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/datasets/ru_econ_calendar.csv +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/datasets/tr_econ_calendar.csv +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/datasets/us_econ_calendar.csv +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/extract/__init__.py +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/extract/data_vendors/.ipynb_checkpoints/CCXT-checkpoint.ipynb +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/extract/data_vendors/.ipynb_checkpoints/DBNomics-checkpoint.ipynb +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/extract/data_vendors/.ipynb_checkpoints/InvestPy-checkpoint.ipynb +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/extract/data_vendors/.ipynb_checkpoints/NasdaqDataLink-checkpoint.ipynb +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/extract/data_vendors/.ipynb_checkpoints/PandasDataReader-checkpoint.ipynb +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/extract/data_vendors/__init__.py +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/extract/data_vendors/coinmetrics_api.py +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/extract/data_vendors/cryptocompare_api.py +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/extract/data_vendors/datavendor.py +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/extract/data_vendors/glassnode_api.py +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/extract/data_vendors/tiingo_api.py +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/extract/datarequest.py +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/extract/getdata.py +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/extract/libraries/__init__.py +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/extract/libraries/ccxt_api.py +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/extract/libraries/dbnomics_api.py +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/extract/libraries/investpy_api.py +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/extract/libraries/library.py +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/extract/libraries/pandasdr_api.py +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/extract/web/__init__.py +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/extract/web/aqr.py +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/extract/web/web.py +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/transform/__init__.py +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/transform/convertparams.py +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/transform/impute.py +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/transform/od.py +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/transform/wrangle.py +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/util/__init__.py +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/util/datacatalog.py +0 -0
- {cryptodatapy-0.2.3 → cryptodatapy-0.2.4}/src/cryptodatapy/util/datacredentials.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: cryptodatapy
|
3
|
-
Version: 0.2.
|
3
|
+
Version: 0.2.4
|
4
4
|
Summary: Cryptoasset data library
|
5
5
|
License: Apache-2.0
|
6
6
|
Author: Systamental
|
@@ -13,6 +13,7 @@ Classifier: Programming Language :: Python :: 3.9
|
|
13
13
|
Requires-Dist: DBnomics (>=1.2.3)
|
14
14
|
Requires-Dist: ccxt (>=1.91.52)
|
15
15
|
Requires-Dist: coinmetrics-api-client (>=2022.6.17); python_version >= "3.7"
|
16
|
+
Requires-Dist: fsspec (>=2024.6.1)
|
16
17
|
Requires-Dist: investpy (>=1.0.8)
|
17
18
|
Requires-Dist: matplotlib (>=3.5.2)
|
18
19
|
Requires-Dist: numpy (>=1.23.2)
|
@@ -20,8 +21,10 @@ Requires-Dist: openpyxl (>=3.1.2)
|
|
20
21
|
Requires-Dist: pandas (>=1.4.4)
|
21
22
|
Requires-Dist: pandas-datareader (>=0.10.0)
|
22
23
|
Requires-Dist: prophet (>=1.1); python_version >= "3.7"
|
24
|
+
Requires-Dist: pyarrow (>=17.0.0)
|
23
25
|
Requires-Dist: requests (>=2.28.0); python_version >= "3.7"
|
24
26
|
Requires-Dist: responses (>=0.21.0)
|
27
|
+
Requires-Dist: s3fs (>=2024.6.1,<2025.0.0)
|
25
28
|
Requires-Dist: selenium (>=4.4.3)
|
26
29
|
Requires-Dist: statsmodels (>=0.13.2)
|
27
30
|
Requires-Dist: webdriver-manager (>=3.8.3)
|
@@ -1,6 +1,6 @@
|
|
1
1
|
[tool.poetry]
|
2
2
|
name = "cryptodatapy"
|
3
|
-
version = "0.2.
|
3
|
+
version = "0.2.4"
|
4
4
|
description = "Cryptoasset data library"
|
5
5
|
authors = ["Systamental"]
|
6
6
|
license = "Apache License 2.0"
|
@@ -25,6 +25,9 @@ responses = ">=0.21.0"
|
|
25
25
|
yfinance = ">=0.2.14"
|
26
26
|
openpyxl = ">=3.1.2"
|
27
27
|
xlrd = ">=2.0.1"
|
28
|
+
fsspec = ">=2024.6.1"
|
29
|
+
pyarrow = ">=17.0.0"
|
30
|
+
s3fs = "^2024.6.1"
|
28
31
|
|
29
32
|
[tool.poetry.dev-dependencies]
|
30
33
|
pytest = ">=7.1.2"
|
@@ -83,13 +83,16 @@ package_data = \
|
|
83
83
|
install_requires = \
|
84
84
|
['DBnomics>=1.2.3',
|
85
85
|
'ccxt>=1.91.52',
|
86
|
+
'fsspec>=2024.6.1',
|
86
87
|
'investpy>=1.0.8',
|
87
88
|
'matplotlib>=3.5.2',
|
88
89
|
'numpy>=1.23.2',
|
89
90
|
'openpyxl>=3.1.2',
|
90
91
|
'pandas-datareader>=0.10.0',
|
91
92
|
'pandas>=1.4.4',
|
93
|
+
'pyarrow>=17.0.0',
|
92
94
|
'responses>=0.21.0',
|
95
|
+
's3fs>=2024.6.1,<2025.0.0',
|
93
96
|
'selenium>=4.4.3',
|
94
97
|
'statsmodels>=0.13.2',
|
95
98
|
'webdriver-manager>=3.8.3',
|
@@ -103,7 +106,7 @@ extras_require = \
|
|
103
106
|
|
104
107
|
setup_kwargs = {
|
105
108
|
'name': 'cryptodatapy',
|
106
|
-
'version': '0.2.
|
109
|
+
'version': '0.2.4',
|
107
110
|
'description': 'Cryptoasset data library',
|
108
111
|
'long_description': "\n\n# CryptoDataPy\n### _Better data beats fancier algorithms_\n<br/>\n\n**CryptoDataPy** is a python library which makes it easy to build high quality data pipelines \nfor the analysis of digital assets. By providing easy access to over 100,000 time series for thousands of assets, \nit facilitates the pre-processing of a wide range of data from different sources.\n\nCryptoassets generate a huge amount of market, on-chain and off-chain data. \nBut unlike legacy financial markets, this data is often fragmented, \nunstructured and dirty. By extracting data from various sources, \npre-processing it into a user-friendly (tidy) format, detecting and repairing 'bad' data,\nand allowing for easy storage and retrieval, CryptoDataPy allows you to spend less time gathering \nand cleaning data, and more time analyzing it.\n\nOur data includes:\n\n- **Market:** market prices of varying granularity (e.g. tick, trade and bar data, aka OHLC),\nfor spot, futures and options markets, as well as funding rates for the analysis of \ncryptoasset returns.\n- **On-chain:** network health and usage data, circulating supply, asset holder positions and \ncost-basis, for the analysis of underlying crypto network fundamentals.\n- **Off-chain:** news, social media, developer activity, web traffic and search for project interest and \nsentiment, as well as traditional financial market and macroeconomic data for broader financial and \neconomic conditions.\n\nThe library's intuitive interface facilitates each step of the ETL/ETL (extract-transform-load) process:\n\n- **Extract**: Extracting data from a wide range of data sources and file formats.\n- **Transform**: \n - Wrangling data into a pandas DataFrame in a structured and user-friendly format, \n a.k.a [tidy data](https://www.jstatsoft.org/article/view/v059i10). \n - Detecting, scrubbing and repairing 'bad' data (e.g. outliers, missing values, 0s, etc.) to improve the accuracy and reliability\nof machine learning/predictive models.\n- **Load**: Storing clean and ready-for-analysis data and metadata for easy access.\n\n## Installation\n\n```bash\n$ pip install cryptodatapy\n```\n\n## Usage\n\n**CryptoDataPy** allows you to pull ready-to-analyze data from a variety of sources \nwith only a few lines of code.\n\nFirst specify which data you want with a `DataRequest`:\n\n```python\n# import DataRequest\nfrom cryptodatapy.extract.datarequest import DataRequest\n# specify parameters for data request: tickers, fields, start date, end_date, etc.\ndata_req = DataRequest(\n source='glassnode', # name of data source\n tickers=['btc', 'eth'], # list of asset tickers, in CryptoDataPy format, defaults to 'btc'\n fields=['close', 'add_act', 'hashrate'], # list of fields, in CryptoDataPy, defaults to 'close'\n freq=None, # data frequency, defaults to daily \n quote_ccy=None, # defaults to USD/USDT\n exch=None, # defaults to exchange weighted average or Binance\n mkt_type= 'spot', # defaults to spot\n start_date=None, # defaults to start date for longest series\n end_date=None, # defaults to most recent \n tz=None, # defaults to UTC time\n cat=None, # optional, should be specified when asset class is not crypto, eg. 'fx', 'rates', 'macro', etc.\n)\n```\nThen get the data :\n\n```python\n# import GetData\nfrom cryptodatapy.extract.getdata import GetData\n# get data\nGetData(data_req).get_series()\n```\n\nWith the same data request parameters, you can retrieve the same data from a different source:\n\n```python\n# modify data source parameter\ndata_req = DataRequest(\n source='coinmetrics', \n tickers=['btc', 'eth'], \n fields=['close', 'add_act', 'hashrate'], \n req='d',\n start_date='2016-01-01')\n# get data\nGetData(data_req).get_series()\n```\n\nFor more detailed code examples and interactive tutorials \nsee [here](https://github.com/systamental/cryptodatapy/blob/main/docs/example.ipynb).\n## Supported Data Sources\n\n- [CryptoCompare](https://min-api.cryptocompare.com/documentation)\n- [CCXT](https://docs.ccxt.com/en/latest/)\n- [Glassnode](https://docs.glassnode.com/)\n- [Coin Metrics](https://docs.coinmetrics.io/api/v4/)\n- [Tiingo](https://api.tiingo.com/documentation/general/overview)\n- [Yahoo Finance](https://github.com/ranaroussi/yfinance)\n- [Fama-French Data](http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html)\n- [AQR](https://www.aqr.com/Insights/Datasets)\n- [Federal Reserve Economic Data (FRED)](https://fred.stlouisfed.org/docs/api/fred/)\n- [DBnomics](https://db.nomics.world/docs/)\n- [WorldBank](https://documents.worldbank.org/en/publication/documents-reports/api)\n- [Pandas-datareader](https://pandas-datareader.readthedocs.io/en/latest/)\n\n## Contributing\n\nInterested in contributing? Check out the contributing guidelines and \ncontact us at info@systamental.com. Please note that this project is s\nreleased with a Code of Conduct. By contributing to this project, you agree \nto abide by its terms.\n\n## License\n\n`cryptodatapy` was created by Systamental. \nIt is licensed under the terms of the Apache License 2.0 license.\n\n",
|
109
112
|
'author': 'Systamental',
|
@@ -131,7 +131,7 @@ class CleanData:
|
|
131
131
|
).values * 100
|
132
132
|
|
133
133
|
# filtered df
|
134
|
-
self.df = self.filtered_df
|
134
|
+
self.df = self.filtered_df.sort_index()
|
135
135
|
|
136
136
|
return self
|
137
137
|
|
@@ -161,11 +161,12 @@ class CleanData:
|
|
161
161
|
|
162
162
|
# repaired df
|
163
163
|
if self.excluded_cols is not None:
|
164
|
-
self.df = pd.concat([self.repaired_df, self.raw_df[self.excluded_cols]], join="
|
164
|
+
self.df = pd.concat([self.repaired_df, self.raw_df[self.excluded_cols]], join="inner", axis=1)
|
165
165
|
else:
|
166
166
|
self.df = self.repaired_df
|
167
|
+
|
167
168
|
# reorder cols
|
168
|
-
self.df = self.df[self.raw_df.columns]
|
169
|
+
self.df = self.df[self.raw_df.columns].sort_index()
|
169
170
|
|
170
171
|
return self
|
171
172
|
|
@@ -196,7 +197,7 @@ class CleanData:
|
|
196
197
|
).values * 100
|
197
198
|
|
198
199
|
# filtered df
|
199
|
-
self.df = self.filtered_df
|
200
|
+
self.df = self.filtered_df.sort_index()
|
200
201
|
|
201
202
|
return self
|
202
203
|
|
@@ -226,7 +227,7 @@ class CleanData:
|
|
226
227
|
).values * 100
|
227
228
|
|
228
229
|
# filtered df
|
229
|
-
self.df = self.filtered_df
|
230
|
+
self.df = self.filtered_df.sort_index()
|
230
231
|
|
231
232
|
return self
|
232
233
|
|
@@ -260,7 +261,41 @@ class CleanData:
|
|
260
261
|
self.summary.loc["n_tickers_below_min_obs", self.df.unstack().columns] = len(self.filtered_tickers)
|
261
262
|
|
262
263
|
# filtered df
|
263
|
-
self.df = self.filtered_df
|
264
|
+
self.df = self.filtered_df.sort_index()
|
265
|
+
|
266
|
+
return self
|
267
|
+
|
268
|
+
def filter_delisted_tickers(self, field: str = 'close', n_unch_vals: int = 30) -> CleanData:
|
269
|
+
"""
|
270
|
+
Removes delisted tickers from dataframe.
|
271
|
+
|
272
|
+
Parameters
|
273
|
+
----------
|
274
|
+
field: str, default 'close'
|
275
|
+
Field/column to use for detecting delisted tickers.
|
276
|
+
n_unch_vals: int, default 30
|
277
|
+
Number of consecutive unchanged values to consider a ticker as delisted.
|
278
|
+
|
279
|
+
Returns
|
280
|
+
-------
|
281
|
+
CleanData
|
282
|
+
CleanData object
|
283
|
+
"""
|
284
|
+
# filter tickers
|
285
|
+
self.filtered_df = Filter(self.df).remove_delisted(field=field, n_unch_vals=n_unch_vals)
|
286
|
+
|
287
|
+
# tickers < min obs
|
288
|
+
self.filtered_tickers = list(
|
289
|
+
set(self.filtered_df.index.droplevel(0).unique()).symmetric_difference(
|
290
|
+
set(self.df.index.droplevel(0).unique())
|
291
|
+
)
|
292
|
+
)
|
293
|
+
|
294
|
+
# add to summary
|
295
|
+
self.summary.loc["n_filtered_tickers", self.df.unstack().columns] = len(self.filtered_tickers)
|
296
|
+
|
297
|
+
# filtered df
|
298
|
+
self.df = self.filtered_df.sort_index()
|
264
299
|
|
265
300
|
return self
|
266
301
|
|
@@ -283,6 +318,7 @@ class CleanData:
|
|
283
318
|
self.filtered_df = Filter(self.df).tickers(tickers_list)
|
284
319
|
|
285
320
|
# tickers < min obs
|
321
|
+
|
286
322
|
self.filtered_tickers = list(
|
287
323
|
set(self.filtered_df.index.droplevel(0).unique()).symmetric_difference(
|
288
324
|
set(self.df.index.droplevel(0).unique())
|
@@ -293,7 +329,7 @@ class CleanData:
|
|
293
329
|
self.summary.loc["n_filtered_tickers", self.df.unstack().columns] = len(self.filtered_tickers)
|
294
330
|
|
295
331
|
# filtered df
|
296
|
-
self.df = self.filtered_df
|
332
|
+
self.df = self.filtered_df.sort_index()
|
297
333
|
|
298
334
|
return self
|
299
335
|
|