crewplus 0.2.27__tar.gz → 0.2.29__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of crewplus might be problematic. Click here for more details.

Files changed (23) hide show
  1. {crewplus-0.2.27 → crewplus-0.2.29}/PKG-INFO +9 -5
  2. {crewplus-0.2.27 → crewplus-0.2.29}/README.md +7 -4
  3. crewplus-0.2.29/crewplus/services/init_services.py +37 -0
  4. {crewplus-0.2.27 → crewplus-0.2.29}/crewplus/services/model_load_balancer.py +10 -3
  5. {crewplus-0.2.27 → crewplus-0.2.29}/crewplus/vectorstores/milvus/vdb_service.py +29 -3
  6. {crewplus-0.2.27 → crewplus-0.2.29}/pyproject.toml +2 -1
  7. crewplus-0.2.27/crewplus/services/init_services.py +0 -20
  8. {crewplus-0.2.27 → crewplus-0.2.29}/LICENSE +0 -0
  9. {crewplus-0.2.27 → crewplus-0.2.29}/crewplus/__init__.py +0 -0
  10. {crewplus-0.2.27 → crewplus-0.2.29}/crewplus/services/__init__.py +0 -0
  11. {crewplus-0.2.27 → crewplus-0.2.29}/crewplus/services/azure_chat_model.py +0 -0
  12. {crewplus-0.2.27 → crewplus-0.2.29}/crewplus/services/gemini_chat_model.py +0 -0
  13. {crewplus-0.2.27 → crewplus-0.2.29}/crewplus/services/tracing_manager.py +0 -0
  14. {crewplus-0.2.27 → crewplus-0.2.29}/crewplus/utils/__init__.py +0 -0
  15. {crewplus-0.2.27 → crewplus-0.2.29}/crewplus/utils/schema_action.py +0 -0
  16. {crewplus-0.2.27 → crewplus-0.2.29}/crewplus/utils/schema_document_updater.py +0 -0
  17. {crewplus-0.2.27 → crewplus-0.2.29}/crewplus/vectorstores/milvus/__init__.py +0 -0
  18. {crewplus-0.2.27 → crewplus-0.2.29}/crewplus/vectorstores/milvus/milvus_schema_manager.py +0 -0
  19. {crewplus-0.2.27 → crewplus-0.2.29}/crewplus/vectorstores/milvus/schema_milvus.py +0 -0
  20. {crewplus-0.2.27 → crewplus-0.2.29}/docs/GeminiChatModel.md +0 -0
  21. {crewplus-0.2.27 → crewplus-0.2.29}/docs/ModelLoadBalancer.md +0 -0
  22. {crewplus-0.2.27 → crewplus-0.2.29}/docs/VDBService.md +0 -0
  23. {crewplus-0.2.27 → crewplus-0.2.29}/docs/index.md +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: crewplus
3
- Version: 0.2.27
3
+ Version: 0.2.29
4
4
  Summary: Base services for CrewPlus AI applications
5
5
  Author-Email: Tim Liu <tim@opsmateai.com>
6
6
  License: MIT
@@ -14,6 +14,7 @@ Requires-Dist: langchain-openai==0.3.24
14
14
  Requires-Dist: google-genai==1.21.1
15
15
  Requires-Dist: langchain-milvus<0.3.0,>=0.2.1
16
16
  Requires-Dist: langfuse<4.0.0,>=3.1.3
17
+ Requires-Dist: langchain-mcp-adapters>=0.1.4
17
18
  Description-Content-Type: text/markdown
18
19
 
19
20
  # CrewPlus
@@ -34,16 +35,17 @@ This repository, `crewplus-base`, contains the core `crewplus` Python package. I
34
35
  CrewPlus is designed as a modular and extensible ecosystem of packages. This allows you to adopt only the components you need for your specific use case.
35
36
 
36
37
  - **`crewplus` (This package):** The core package containing foundational services for chat, model load balancing, and vector stores.
37
- - **`crewplus-agents`:** An extension for creating and managing autonomous AI agents.
38
+ - **`crewplus-agent`:** crewplus agent core: agentic task planner and executor, with context-aware memory.
38
39
  - **`crewplus-ingestion`:** Provides robust pipelines for knowledge ingestion and data processing.
39
40
  - **`crewplus-memory`:** Provides agent memory services for Crewplus AI Agents.
40
41
  - **`crewplus-integrations`:** A collection of third-party integrations to connect CrewPlus with other services and platforms.
41
42
 
42
43
  ## Features
43
44
 
44
- - **Chat Services:** A unified interface for interacting with various chat models (e.g., `GeminiChatModel`).
45
+ - **Chat Services:** A unified interface for interacting with various chat models (e.g., `GeminiChatModel`, `TracedAzureChatOpenAI`).
45
46
  - **Model Load Balancer:** Intelligently distribute requests across multiple LLM endpoints.
46
47
  - **Vector DB Services:** working with popular vector stores (e.g. Milvus, Zilliz Cloud) for retrieval-augmented generation (RAG) and agent memory.
48
+ - **Observability & Tracing:** Automatic integration with tracing tools like Langfuse, with an extensible design for adding others (e.g., Helicone, ...).
47
49
 
48
50
 
49
51
  ## Documentation
@@ -92,15 +94,17 @@ crewplus-base/ # GitHub repo name
92
94
  │ └── services/
93
95
  │ └── __init__.py
94
96
  │ └── gemini_chat_model.py
97
+ │ └── azure_chat_model.py
95
98
  │ └── model_load_balancer.py
99
+ │ └── tracing_manager.py
96
100
  │ └── ...
97
101
  │ └── vectorstores/milvus
98
102
  │ └── __init__.py
99
103
  │ └── schema_milvus.py
100
104
  │ └── vdb_service.py
101
- │ └── core/
105
+ │ └── utils/
102
106
  │ └── __init__.py
103
- │ └── config.py
107
+ │ └── schema_action.py
104
108
  │ └── ...
105
109
  ├── tests/
106
110
  │ └── ...
@@ -16,16 +16,17 @@ This repository, `crewplus-base`, contains the core `crewplus` Python package. I
16
16
  CrewPlus is designed as a modular and extensible ecosystem of packages. This allows you to adopt only the components you need for your specific use case.
17
17
 
18
18
  - **`crewplus` (This package):** The core package containing foundational services for chat, model load balancing, and vector stores.
19
- - **`crewplus-agents`:** An extension for creating and managing autonomous AI agents.
19
+ - **`crewplus-agent`:** crewplus agent core: agentic task planner and executor, with context-aware memory.
20
20
  - **`crewplus-ingestion`:** Provides robust pipelines for knowledge ingestion and data processing.
21
21
  - **`crewplus-memory`:** Provides agent memory services for Crewplus AI Agents.
22
22
  - **`crewplus-integrations`:** A collection of third-party integrations to connect CrewPlus with other services and platforms.
23
23
 
24
24
  ## Features
25
25
 
26
- - **Chat Services:** A unified interface for interacting with various chat models (e.g., `GeminiChatModel`).
26
+ - **Chat Services:** A unified interface for interacting with various chat models (e.g., `GeminiChatModel`, `TracedAzureChatOpenAI`).
27
27
  - **Model Load Balancer:** Intelligently distribute requests across multiple LLM endpoints.
28
28
  - **Vector DB Services:** working with popular vector stores (e.g. Milvus, Zilliz Cloud) for retrieval-augmented generation (RAG) and agent memory.
29
+ - **Observability & Tracing:** Automatic integration with tracing tools like Langfuse, with an extensible design for adding others (e.g., Helicone, ...).
29
30
 
30
31
 
31
32
  ## Documentation
@@ -74,15 +75,17 @@ crewplus-base/ # GitHub repo name
74
75
  │ └── services/
75
76
  │ └── __init__.py
76
77
  │ └── gemini_chat_model.py
78
+ │ └── azure_chat_model.py
77
79
  │ └── model_load_balancer.py
80
+ │ └── tracing_manager.py
78
81
  │ └── ...
79
82
  │ └── vectorstores/milvus
80
83
  │ └── __init__.py
81
84
  │ └── schema_milvus.py
82
85
  │ └── vdb_service.py
83
- │ └── core/
86
+ │ └── utils/
84
87
  │ └── __init__.py
85
- │ └── config.py
88
+ │ └── schema_action.py
86
89
  │ └── ...
87
90
  ├── tests/
88
91
  │ └── ...
@@ -0,0 +1,37 @@
1
+ import os
2
+ from .model_load_balancer import ModelLoadBalancer
3
+
4
+ model_balancer = None
5
+
6
+ def init_load_balancer(config_path: str = None):
7
+ """
8
+ Initializes the global ModelLoadBalancer instance.
9
+
10
+ This function is idempotent. If the balancer is already initialized,
11
+ it does nothing. It follows a safe initialization pattern where the
12
+ global instance is only assigned after successful configuration loading.
13
+ """
14
+ global model_balancer
15
+ if model_balancer is None:
16
+ # Use parameter if provided, otherwise check env var, then default
17
+ final_config_path = config_path or os.getenv(
18
+ "MODEL_CONFIG_PATH",
19
+ "config/models_config.json"
20
+ )
21
+ try:
22
+ # 1. Create a local instance first.
23
+ balancer = ModelLoadBalancer(final_config_path)
24
+ # 2. Attempt to load its configuration.
25
+ balancer.load_config()
26
+ # 3. Only assign to the global variable on full success.
27
+ model_balancer = balancer
28
+ except Exception as e:
29
+ # If any step fails, the global model_balancer remains None,
30
+ # allowing for another initialization attempt later.
31
+ # Re-raise the exception to notify the caller of the failure.
32
+ raise RuntimeError(f"Failed to initialize and configure ModelLoadBalancer from {final_config_path}: {e}") from e
33
+
34
+ def get_model_balancer() -> ModelLoadBalancer:
35
+ if model_balancer is None:
36
+ raise RuntimeError("ModelLoadBalancer not initialized. Please call init_load_balancer() first.")
37
+ return model_balancer
@@ -76,7 +76,7 @@ class ModelLoadBalancer:
76
76
  self.logger.error(f"Failed to load model configuration: {e}", exc_info=True)
77
77
  raise RuntimeError(f"Failed to load model configuration: {e}")
78
78
 
79
- def get_model(self, provider: str = None, model_type: str = None, deployment_name: str = None):
79
+ def get_model(self, provider: str = None, model_type: str = None, deployment_name: str = None, with_metadata: bool = False):
80
80
  """
81
81
  Get a model instance.
82
82
 
@@ -104,7 +104,11 @@ class ModelLoadBalancer:
104
104
  for model_config in self.models_config:
105
105
  if model_config.get('deployment_name') == deployment_name:
106
106
  model_id = model_config['id']
107
- return self.models[model_id]
107
+ model = self.models[model_id]
108
+ if with_metadata:
109
+ return model, deployment_name
110
+ return model
111
+
108
112
  self.logger.error(f"No model found for deployment name: {deployment_name}")
109
113
  raise ValueError(f"No model found for deployment name: {deployment_name}")
110
114
 
@@ -116,7 +120,10 @@ class ModelLoadBalancer:
116
120
 
117
121
  selected_model_config = self._round_robin_selection(candidates)
118
122
  model_id = selected_model_config['id']
119
- return self.models[model_id]
123
+ model = self.models[model_id]
124
+ if with_metadata:
125
+ return model, selected_model_config.get('deployment_name')
126
+ return model
120
127
 
121
128
  raise ValueError("Either 'deployment_name' or both 'provider' and 'model_type' must be provided.")
122
129
 
@@ -10,6 +10,7 @@ from langchain_milvus import Milvus
10
10
  from langchain_core.embeddings import Embeddings
11
11
  from langchain_openai import AzureOpenAIEmbeddings
12
12
  from pymilvus import MilvusClient
13
+ import time
13
14
 
14
15
  from ...services.init_services import get_model_balancer
15
16
  from .schema_milvus import SchemaMilvus, DEFAULT_SCHEMA
@@ -361,10 +362,9 @@ class VDBService(object):
361
362
  "params": {}
362
363
  }
363
364
 
364
- vdb = Milvus(
365
- embedding_function=embeddings,
365
+ vdb = self._create_milvus_instance_with_retry(
366
366
  collection_name=collection_name,
367
- connection_args=self.connection_args,
367
+ embeddings=embeddings,
368
368
  index_params=index_params
369
369
  )
370
370
 
@@ -373,6 +373,32 @@ class VDBService(object):
373
373
 
374
374
  return vdb
375
375
 
376
+ def _create_milvus_instance_with_retry(self, collection_name: str, embeddings: Embeddings, index_params: dict) -> Milvus:
377
+ """
378
+ Creates a Milvus instance with a retry mechanism for connection failures.
379
+ """
380
+ retries = 2
381
+ for attempt in range(retries + 1):
382
+ try:
383
+ vdb = Milvus(
384
+ embedding_function=embeddings,
385
+ collection_name=collection_name,
386
+ connection_args=self.connection_args,
387
+ index_params=index_params
388
+ )
389
+ self.logger.info(f"Successfully connected to Milvus for collection '{collection_name}' on attempt {attempt + 1}.")
390
+ return vdb # Return on success
391
+ except Exception as e:
392
+ self.logger.warning(
393
+ f"Attempt {attempt + 1}/{retries + 1} to connect to Milvus for collection '{collection_name}' failed: {e}"
394
+ )
395
+ if attempt < retries:
396
+ self.logger.info("Retrying in 3 seconds...")
397
+ time.sleep(3)
398
+ else:
399
+ self.logger.error(f"Failed to connect to Milvus for collection '{collection_name}' after {retries + 1} attempts.")
400
+ raise RuntimeError(f"Could not connect to Milvus after {retries + 1} attempts.") from e
401
+
376
402
  def drop_collection(self, collection_name: str) -> None:
377
403
  """
378
404
  Deletes a collection from the vector database and removes it from the cache.
@@ -6,7 +6,7 @@ build-backend = "pdm.backend"
6
6
 
7
7
  [project]
8
8
  name = "crewplus"
9
- version = "0.2.27"
9
+ version = "0.2.29"
10
10
  description = "Base services for CrewPlus AI applications"
11
11
  authors = [
12
12
  { name = "Tim Liu", email = "tim@opsmateai.com" },
@@ -19,6 +19,7 @@ dependencies = [
19
19
  "google-genai==1.21.1",
20
20
  "langchain-milvus (>=0.2.1,<0.3.0)",
21
21
  "langfuse (>=3.1.3,<4.0.0)",
22
+ "langchain-mcp-adapters>=0.1.4",
22
23
  ]
23
24
 
24
25
  [project.license]
@@ -1,20 +0,0 @@
1
- import os
2
- from .model_load_balancer import ModelLoadBalancer
3
-
4
- model_balancer = None
5
-
6
- def init_load_balancer(config_path: str = None):
7
- global model_balancer
8
- if model_balancer is None:
9
- # Use parameter if provided, otherwise check env var, then default
10
- final_config_path = config_path or os.getenv(
11
- "MODEL_CONFIG_PATH",
12
- "config/models_config.json" # Fixed default path
13
- )
14
- model_balancer = ModelLoadBalancer(final_config_path)
15
- model_balancer.load_config() # Load initial configuration synchronously
16
-
17
- def get_model_balancer() -> ModelLoadBalancer:
18
- if model_balancer is None:
19
- raise RuntimeError("ModelLoadBalancer not initialized")
20
- return model_balancer
File without changes
File without changes
File without changes