coordinate-system 6.0.5__tar.gz → 7.0.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (22) hide show
  1. {coordinate_system-6.0.5/coordinate_system.egg-info → coordinate_system-7.0.0}/PKG-INFO +86 -18
  2. {coordinate_system-6.0.5 → coordinate_system-7.0.0}/README.md +77 -11
  3. {coordinate_system-6.0.5 → coordinate_system-7.0.0}/coordinate_system/__init__.py +25 -2
  4. coordinate_system-7.0.0/coordinate_system/complex_geometric_physics.py +519 -0
  5. {coordinate_system-6.0.5 → coordinate_system-7.0.0}/coordinate_system/u3_frame.py +231 -231
  6. {coordinate_system-6.0.5 → coordinate_system-7.0.0/coordinate_system.egg-info}/PKG-INFO +86 -18
  7. {coordinate_system-6.0.5 → coordinate_system-7.0.0}/coordinate_system.egg-info/SOURCES.txt +2 -0
  8. {coordinate_system-6.0.5 → coordinate_system-7.0.0}/pmsys_minimal.hpp +4 -15
  9. coordinate_system-7.0.0/pyproject.toml +56 -0
  10. {coordinate_system-6.0.5 → coordinate_system-7.0.0}/setup.py +12 -3
  11. {coordinate_system-6.0.5 → coordinate_system-7.0.0}/LICENSE +0 -0
  12. {coordinate_system-6.0.5 → coordinate_system-7.0.0}/MANIFEST.in +0 -0
  13. {coordinate_system-6.0.5 → coordinate_system-7.0.0}/coordinate_system/curve_interpolation.py +0 -0
  14. {coordinate_system-6.0.5 → coordinate_system-7.0.0}/coordinate_system/differential_geometry.py +0 -0
  15. {coordinate_system-6.0.5 → coordinate_system-7.0.0}/coordinate_system/spectral_geometry.py +0 -0
  16. {coordinate_system-6.0.5 → coordinate_system-7.0.0}/coordinate_system/visualization.py +0 -0
  17. {coordinate_system-6.0.5 → coordinate_system-7.0.0}/coordinate_system.egg-info/dependency_links.txt +0 -0
  18. {coordinate_system-6.0.5 → coordinate_system-7.0.0}/coordinate_system.egg-info/not-zip-safe +0 -0
  19. {coordinate_system-6.0.5 → coordinate_system-7.0.0}/coordinate_system.egg-info/requires.txt +0 -0
  20. {coordinate_system-6.0.5 → coordinate_system-7.0.0}/coordinate_system.egg-info/top_level.txt +0 -0
  21. {coordinate_system-6.0.5 → coordinate_system-7.0.0}/coordinate_system_binding.cpp +0 -0
  22. {coordinate_system-6.0.5 → coordinate_system-7.0.0}/setup.cfg +0 -0
@@ -1,15 +1,17 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: coordinate_system
3
- Version: 6.0.5
4
- Summary: High-performance 3D coordinate system library with unified differential geometry, quantum frame algebra, spectral transforms, and professional curvature visualization
3
+ Version: 7.0.0
4
+ Summary: High-performance 3D coordinate system library with unified differential geometry, quantum frame algebra, and Christmas Equation (CFUT)
5
5
  Home-page: https://github.com/panguojun/Coordinate-System
6
6
  Author: PanGuoJun
7
- Author-email: 18858146@qq.com
7
+ Author-email: PanGuoJun <18858146@qq.com>
8
8
  License: MIT
9
- Project-URL: Bug Reports, https://github.com/panguojun/Coordinate-System/issues
10
- Project-URL: Source, https://github.com/panguojun/Coordinate-System
9
+ Project-URL: Homepage, https://github.com/panguojun/Coordinate-System
11
10
  Project-URL: Documentation, https://github.com/panguojun/Coordinate-System/blob/main/README.md
12
- Keywords: 3d math vector quaternion coordinate-system geometry graphics spatial-computing differential-geometry curvature curve-interpolation c2-continuity frenet-frames fourier-transform operator-overloading quantum-coordinates heisenberg-uncertainty visualization rgb-frames catmull-rom squad intrinsic-gradient spectral-analysis surface-visualization
11
+ Project-URL: Repository, https://github.com/panguojun/Coordinate-System
12
+ Project-URL: Bug Reports, https://github.com/panguojun/Coordinate-System/issues
13
+ Project-URL: DOI, https://zenodo.org/records/14435613
14
+ Keywords: 3d,math,vector,quaternion,coordinate-system,geometry,differential-geometry,curvature,spectral-analysis,christmas-equation,cfut,unified-field-theory,complex-frame
13
15
  Platform: Windows
14
16
  Platform: Linux
15
17
  Platform: macOS
@@ -20,7 +22,7 @@ Classifier: Intended Audience :: Developers
20
22
  Classifier: Intended Audience :: Science/Research
21
23
  Classifier: Topic :: Software Development :: Libraries :: Python Modules
22
24
  Classifier: Topic :: Scientific/Engineering :: Mathematics
23
- Classifier: Topic :: Multimedia :: Graphics :: 3D Modeling
25
+ Classifier: Topic :: Scientific/Engineering :: Physics
24
26
  Classifier: License :: OSI Approved :: MIT License
25
27
  Classifier: Programming Language :: Python :: 3
26
28
  Classifier: Programming Language :: Python :: 3.7
@@ -49,16 +51,20 @@ Requires-Dist: matplotlib>=3.3.0
49
51
  [![License](https://img.shields.io/badge/license-MIT-green.svg)](LICENSE)
50
52
 
51
53
  **Author:** PanGuoJun
52
- **Version:** 6.0.4
54
+ **Version:** 7.0.0-alpha
53
55
  **License:** MIT
56
+ **DOI:** [10.5281/zenodo.14435613](https://zenodo.org/records/14435613)
54
57
 
55
58
  ---
56
59
 
57
- ## What's New in v6.0.4 (2025-12-08)
60
+ ## What's New in v7.0.0-alpha (2026-01-14)
58
61
 
59
- - **File Restructure**: `frames.py` `spectral_geometry.py`, removed redundant `fourier_spectral.py`
60
- - **Unified Documentation**: Complete "Complex Frame Field Algebra" theory document
61
- - **Gaussian Curvature**: Unified to intrinsic gradient / Lie bracket method
62
+ - **🎄 Christmas Equation**: New `complex_geometric_physics` module implementing unified field theory
63
+ - **Complex Frame Unified Theory (CFUT)**: Geometry + Topology = Complex Matter + Topological Force
64
+ - **Einstein Tensor**: Compute Ĝ_μν from complex frame field U(x)
65
+ - **Chern-Simons Current**: Topological current K̄_μ for gauge field analysis
66
+ - **Energy-Momentum Tensor**: Real-imaginary decomposition for matter and topology
67
+ - **Complete English Translation**: All code documentation now in English for worldwide use
62
68
 
63
69
  ---
64
70
 
@@ -66,12 +72,13 @@ Requires-Dist: matplotlib>=3.3.0
66
72
 
67
73
  ```
68
74
  coordinate_system/
69
- ├── coordinate_system.pyd/.so # C++ core (vec3, quat, coord3)
70
- ├── spectral_geometry.py # FourierFrame [GL(1,C)], spectral analysis
71
- ├── u3_frame.py # U3Frame [U(3)], gauge field theory
72
- ├── differential_geometry.py # Surface curvature calculation
73
- ├── visualization.py # 3D visualization
74
- └── curve_interpolation.py # C2-continuous interpolation
75
+ ├── coordinate_system.pyd/.so # C++ core (vec3, quat, coord3)
76
+ ├── complex_geometric_physics.py # 🎄 Christmas Equation, CFUT unified theory
77
+ ├── spectral_geometry.py # FourierFrame [GL(1,C)], spectral analysis
78
+ ├── u3_frame.py # U3Frame [U(3)], gauge field theory
79
+ ├── differential_geometry.py # Surface curvature calculation
80
+ ├── visualization.py # 3D visualization
81
+ └── curve_interpolation.py # C2-continuous interpolation
75
82
  ```
76
83
 
77
84
  ## Group Correspondence
@@ -79,6 +86,7 @@ coordinate_system/
79
86
  | Class | Group | DOF | Use Case |
80
87
  |-------|-------|-----|----------|
81
88
  | `coord3` | Sim(3) = R³ ⋊ (SO(3) × R⁺) | 10 | 3D coordinate transform |
89
+ | `ComplexFrame` | U(3) complex field | 18 | 🎄 Unified field theory (CFUT) |
82
90
  | `FourierFrame` | GL(1,C) = U(1) × R⁺ | 2 | Spectral geometry, heat kernel |
83
91
  | `U3Frame` | U(3) = SU(3) × U(1) | 9 | Gauge field theory |
84
92
 
@@ -176,12 +184,63 @@ F_xy = conn_x.field_strength(conn_y)
176
184
  S_YM = F_xy.yang_mills_action()
177
185
  ```
178
186
 
187
+ ### 🎄 Complex Geometric Physics (Christmas Equation)
188
+
189
+ ```python
190
+ from coordinate_system import (
191
+ ComplexFrame,
192
+ EnergyMomentumTensor,
193
+ ChristmasEquation,
194
+ create_flat_spacetime_frame,
195
+ create_curved_spacetime_frame,
196
+ create_gauge_field_frame,
197
+ M_PLANCK,
198
+ LAMBDA_TOPO
199
+ )
200
+ import numpy as np
201
+
202
+ # Create complex frames
203
+ flat_frame = create_flat_spacetime_frame()
204
+ curved_frame = create_curved_spacetime_frame(curvature=0.1)
205
+ gauge_frame = create_gauge_field_frame(field_strength=0.1)
206
+
207
+ # Initialize Christmas Equation solver
208
+ solver = ChristmasEquation()
209
+ print(f"Planck mass: {solver.M_P:.3e} GeV")
210
+ print(f"Topological coupling: {solver.lambda_topo:.4f}")
211
+
212
+ # Compute geometric quantities
213
+ G_tensor = solver.einstein_tensor(curved_frame)
214
+ K_current = solver.chern_simons_current(gauge_frame)
215
+
216
+ # Create matter energy-momentum tensor
217
+ matter_real = np.diag([1.0, 0.1, 0.1, 0.1])
218
+ matter_imag = np.zeros((4, 4))
219
+ T_matter = EnergyMomentumTensor(matter_real, matter_imag)
220
+
221
+ # Solve the Christmas Equation
222
+ # M_P²/2 Ĝ_μν[U] + λ/(32π²) ∇̂_(μ K̄_ν)[U] = T̂_μν^(top)[U] + T̂_μν^(mat)
223
+ solution = solver.solve_christmas_equation(gauge_frame, T_matter)
224
+ print(f"Geometric term norm: {np.linalg.norm(solution['geometric_term']):.6e}")
225
+ print(f"Topological term norm: {np.linalg.norm(solution['topological_term']):.6e}")
226
+ print(f"Equation balanced: {solution['balanced']}")
227
+ ```
228
+
229
+ **The Christmas Equation** unifies geometry and topology:
230
+ - **Left side**: Geometry (Einstein tensor) + Topology (Chern-Simons current)
231
+ - **Right side**: Topological source + Matter source
232
+ - **Real part U^(R)**: Geometric properties (metric, curvature, spacetime)
233
+ - **Imaginary part U^(I)**: Topological properties (phase winding, gauge symmetry)
234
+
179
235
  ---
180
236
 
181
237
  ## Key Formulas
182
238
 
183
239
  | Concept | Formula | Code |
184
240
  |---------|---------|------|
241
+ | 🎄 **Christmas Equation** | $\frac{M_P^2}{2} \hat{G}_{\mu\nu}[U] + \frac{\lambda}{32\pi^2} \hat{\nabla}_{(\mu} \bar{K}_{\nu)}[U] = \hat{T}_{\mu\nu}^{(\text{top})}[U] + \hat{T}_{\mu\nu}^{(\text{mat})}$ | `ChristmasEquation.solve_christmas_equation()` |
242
+ | Einstein Tensor | $\hat{G}_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}g_{\mu\nu} R$ | `ChristmasEquation.einstein_tensor()` |
243
+ | Chern-Simons Current | $\bar{K}_\mu = \varepsilon_{\mu\nu\rho\sigma} \text{Tr}(A^\nu F^{\rho\sigma})$ | `ChristmasEquation.chern_simons_current()` |
185
244
  | Intrinsic Gradient | $G_\mu = \frac{d}{dx^\mu} \log C(x)$ | `IntrinsicGradient` |
186
245
  | Curvature Tensor | $R_{\mu\nu} = [G_\mu, G_\nu]$ | `CurvatureFromFrame` |
187
246
  | Gaussian Curvature | $K = -\langle [G_u, G_v] e_v, e_u \rangle / \sqrt{\det g}$ | `compute_gaussian_curvature` |
@@ -218,6 +277,15 @@ S_YM = F_xy.yang_mills_action()
218
277
 
219
278
  ## Changelog
220
279
 
280
+ ### v7.0.0-alpha (2026-01-14)
281
+ - 🎄 **Christmas Equation**: New `complex_geometric_physics.py` module
282
+ - **Complex Frame Unified Theory (CFUT)**: Unified field equation implementation
283
+ - **ComplexFrame**: U(x) = U^(R)(x) + iU^(I)(x) decomposition
284
+ - **EnergyMomentumTensor**: Real-imaginary tensor decomposition
285
+ - **ChristmasEquation**: Einstein tensor, Chern-Simons current, topological energy-momentum
286
+ - **Complete English Translation**: All documentation and code comments in English
287
+ - **DOI**: Added Zenodo DOI 10.5281/zenodo.14435613
288
+
221
289
  ### v6.0.4 (2025-12-08)
222
290
  - `frames.py` → `spectral_geometry.py`
223
291
  - Removed `fourier_spectral.py`
@@ -7,16 +7,20 @@
7
7
  [![License](https://img.shields.io/badge/license-MIT-green.svg)](LICENSE)
8
8
 
9
9
  **Author:** PanGuoJun
10
- **Version:** 6.0.4
10
+ **Version:** 7.0.0-alpha
11
11
  **License:** MIT
12
+ **DOI:** [10.5281/zenodo.14435613](https://zenodo.org/records/14435613)
12
13
 
13
14
  ---
14
15
 
15
- ## What's New in v6.0.4 (2025-12-08)
16
+ ## What's New in v7.0.0-alpha (2026-01-14)
16
17
 
17
- - **File Restructure**: `frames.py` `spectral_geometry.py`, removed redundant `fourier_spectral.py`
18
- - **Unified Documentation**: Complete "Complex Frame Field Algebra" theory document
19
- - **Gaussian Curvature**: Unified to intrinsic gradient / Lie bracket method
18
+ - **🎄 Christmas Equation**: New `complex_geometric_physics` module implementing unified field theory
19
+ - **Complex Frame Unified Theory (CFUT)**: Geometry + Topology = Complex Matter + Topological Force
20
+ - **Einstein Tensor**: Compute Ĝ_μν from complex frame field U(x)
21
+ - **Chern-Simons Current**: Topological current K̄_μ for gauge field analysis
22
+ - **Energy-Momentum Tensor**: Real-imaginary decomposition for matter and topology
23
+ - **Complete English Translation**: All code documentation now in English for worldwide use
20
24
 
21
25
  ---
22
26
 
@@ -24,12 +28,13 @@
24
28
 
25
29
  ```
26
30
  coordinate_system/
27
- ├── coordinate_system.pyd/.so # C++ core (vec3, quat, coord3)
28
- ├── spectral_geometry.py # FourierFrame [GL(1,C)], spectral analysis
29
- ├── u3_frame.py # U3Frame [U(3)], gauge field theory
30
- ├── differential_geometry.py # Surface curvature calculation
31
- ├── visualization.py # 3D visualization
32
- └── curve_interpolation.py # C2-continuous interpolation
31
+ ├── coordinate_system.pyd/.so # C++ core (vec3, quat, coord3)
32
+ ├── complex_geometric_physics.py # 🎄 Christmas Equation, CFUT unified theory
33
+ ├── spectral_geometry.py # FourierFrame [GL(1,C)], spectral analysis
34
+ ├── u3_frame.py # U3Frame [U(3)], gauge field theory
35
+ ├── differential_geometry.py # Surface curvature calculation
36
+ ├── visualization.py # 3D visualization
37
+ └── curve_interpolation.py # C2-continuous interpolation
33
38
  ```
34
39
 
35
40
  ## Group Correspondence
@@ -37,6 +42,7 @@ coordinate_system/
37
42
  | Class | Group | DOF | Use Case |
38
43
  |-------|-------|-----|----------|
39
44
  | `coord3` | Sim(3) = R³ ⋊ (SO(3) × R⁺) | 10 | 3D coordinate transform |
45
+ | `ComplexFrame` | U(3) complex field | 18 | 🎄 Unified field theory (CFUT) |
40
46
  | `FourierFrame` | GL(1,C) = U(1) × R⁺ | 2 | Spectral geometry, heat kernel |
41
47
  | `U3Frame` | U(3) = SU(3) × U(1) | 9 | Gauge field theory |
42
48
 
@@ -134,12 +140,63 @@ F_xy = conn_x.field_strength(conn_y)
134
140
  S_YM = F_xy.yang_mills_action()
135
141
  ```
136
142
 
143
+ ### 🎄 Complex Geometric Physics (Christmas Equation)
144
+
145
+ ```python
146
+ from coordinate_system import (
147
+ ComplexFrame,
148
+ EnergyMomentumTensor,
149
+ ChristmasEquation,
150
+ create_flat_spacetime_frame,
151
+ create_curved_spacetime_frame,
152
+ create_gauge_field_frame,
153
+ M_PLANCK,
154
+ LAMBDA_TOPO
155
+ )
156
+ import numpy as np
157
+
158
+ # Create complex frames
159
+ flat_frame = create_flat_spacetime_frame()
160
+ curved_frame = create_curved_spacetime_frame(curvature=0.1)
161
+ gauge_frame = create_gauge_field_frame(field_strength=0.1)
162
+
163
+ # Initialize Christmas Equation solver
164
+ solver = ChristmasEquation()
165
+ print(f"Planck mass: {solver.M_P:.3e} GeV")
166
+ print(f"Topological coupling: {solver.lambda_topo:.4f}")
167
+
168
+ # Compute geometric quantities
169
+ G_tensor = solver.einstein_tensor(curved_frame)
170
+ K_current = solver.chern_simons_current(gauge_frame)
171
+
172
+ # Create matter energy-momentum tensor
173
+ matter_real = np.diag([1.0, 0.1, 0.1, 0.1])
174
+ matter_imag = np.zeros((4, 4))
175
+ T_matter = EnergyMomentumTensor(matter_real, matter_imag)
176
+
177
+ # Solve the Christmas Equation
178
+ # M_P²/2 Ĝ_μν[U] + λ/(32π²) ∇̂_(μ K̄_ν)[U] = T̂_μν^(top)[U] + T̂_μν^(mat)
179
+ solution = solver.solve_christmas_equation(gauge_frame, T_matter)
180
+ print(f"Geometric term norm: {np.linalg.norm(solution['geometric_term']):.6e}")
181
+ print(f"Topological term norm: {np.linalg.norm(solution['topological_term']):.6e}")
182
+ print(f"Equation balanced: {solution['balanced']}")
183
+ ```
184
+
185
+ **The Christmas Equation** unifies geometry and topology:
186
+ - **Left side**: Geometry (Einstein tensor) + Topology (Chern-Simons current)
187
+ - **Right side**: Topological source + Matter source
188
+ - **Real part U^(R)**: Geometric properties (metric, curvature, spacetime)
189
+ - **Imaginary part U^(I)**: Topological properties (phase winding, gauge symmetry)
190
+
137
191
  ---
138
192
 
139
193
  ## Key Formulas
140
194
 
141
195
  | Concept | Formula | Code |
142
196
  |---------|---------|------|
197
+ | 🎄 **Christmas Equation** | $\frac{M_P^2}{2} \hat{G}_{\mu\nu}[U] + \frac{\lambda}{32\pi^2} \hat{\nabla}_{(\mu} \bar{K}_{\nu)}[U] = \hat{T}_{\mu\nu}^{(\text{top})}[U] + \hat{T}_{\mu\nu}^{(\text{mat})}$ | `ChristmasEquation.solve_christmas_equation()` |
198
+ | Einstein Tensor | $\hat{G}_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}g_{\mu\nu} R$ | `ChristmasEquation.einstein_tensor()` |
199
+ | Chern-Simons Current | $\bar{K}_\mu = \varepsilon_{\mu\nu\rho\sigma} \text{Tr}(A^\nu F^{\rho\sigma})$ | `ChristmasEquation.chern_simons_current()` |
143
200
  | Intrinsic Gradient | $G_\mu = \frac{d}{dx^\mu} \log C(x)$ | `IntrinsicGradient` |
144
201
  | Curvature Tensor | $R_{\mu\nu} = [G_\mu, G_\nu]$ | `CurvatureFromFrame` |
145
202
  | Gaussian Curvature | $K = -\langle [G_u, G_v] e_v, e_u \rangle / \sqrt{\det g}$ | `compute_gaussian_curvature` |
@@ -176,6 +233,15 @@ S_YM = F_xy.yang_mills_action()
176
233
 
177
234
  ## Changelog
178
235
 
236
+ ### v7.0.0-alpha (2026-01-14)
237
+ - 🎄 **Christmas Equation**: New `complex_geometric_physics.py` module
238
+ - **Complex Frame Unified Theory (CFUT)**: Unified field equation implementation
239
+ - **ComplexFrame**: U(x) = U^(R)(x) + iU^(I)(x) decomposition
240
+ - **EnergyMomentumTensor**: Real-imaginary tensor decomposition
241
+ - **ChristmasEquation**: Einstein tensor, Chern-Simons current, topological energy-momentum
242
+ - **Complete English Translation**: All documentation and code comments in English
243
+ - **DOI**: Added Zenodo DOI 10.5281/zenodo.14435613
244
+
179
245
  ### v6.0.4 (2025-12-08)
180
246
  - `frames.py` → `spectral_geometry.py`
181
247
  - Removed `fourier_spectral.py`
@@ -14,6 +14,7 @@ Python Modules:
14
14
  - differential_geometry: Surface curvature via intrinsic gradient / Lie bracket
15
15
  - spectral_geometry: FourierFrame (GL(1,C)), spectral analysis, heat kernel
16
16
  - u3_frame: U3Frame (U(3)), gauge field theory, symmetry breaking
17
+ - complex_geometric_physics: Christmas Equation, unified field theory (CFUT)
17
18
  - visualization: Coordinate system visualization
18
19
  - curve_interpolation: C2-continuous curve and frame interpolation
19
20
 
@@ -22,10 +23,10 @@ Group Correspondence:
22
23
  - FourierFrame ∈ GL(1,C) = U(1) × R⁺
23
24
  - U3Frame ∈ U(3) = SU(3) × U(1)
24
25
 
25
- Version: 6.0.4
26
+ Version: 7.0.0-alpha
26
27
  """
27
28
 
28
- __version__ = '6.0.4'
29
+ __version__ = '7.0.0-alpha'
29
30
 
30
31
  from .coordinate_system import vec3, vec2
31
32
  from .coordinate_system import quat
@@ -112,6 +113,23 @@ from .u3_frame import (
112
113
  SymmetryBreakingPotential,
113
114
  )
114
115
 
116
+ # Complex Geometric Physics module (Christmas Equation, CFUT)
117
+ from .complex_geometric_physics import (
118
+ # Core classes
119
+ ComplexFrame,
120
+ EnergyMomentumTensor,
121
+ ChristmasEquation,
122
+
123
+ # Utility functions
124
+ create_flat_spacetime_frame,
125
+ create_curved_spacetime_frame,
126
+ create_gauge_field_frame,
127
+
128
+ # Constants
129
+ M_PLANCK,
130
+ LAMBDA_TOPO,
131
+ )
132
+
115
133
  # Visualization module
116
134
  from .visualization import (
117
135
  CoordinateSystemVisualizer,
@@ -177,6 +195,11 @@ __all__ = [
177
195
  'GaugeConnection', 'FieldStrength',
178
196
  'SymmetryBreakingPotential',
179
197
 
198
+ # Complex Geometric Physics (Christmas Equation, CFUT)
199
+ 'ComplexFrame', 'EnergyMomentumTensor', 'ChristmasEquation',
200
+ 'create_flat_spacetime_frame', 'create_curved_spacetime_frame', 'create_gauge_field_frame',
201
+ 'M_PLANCK', 'LAMBDA_TOPO',
202
+
180
203
  # Visualization
181
204
  'CoordinateSystemVisualizer', 'CurveVisualizer', 'ParametricCurve',
182
205
  'visualize_coord_system', 'visualize_curve',