coordinate-system 6.0.5__tar.gz → 7.0.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {coordinate_system-6.0.5/coordinate_system.egg-info → coordinate_system-7.0.0}/PKG-INFO +86 -18
- {coordinate_system-6.0.5 → coordinate_system-7.0.0}/README.md +77 -11
- {coordinate_system-6.0.5 → coordinate_system-7.0.0}/coordinate_system/__init__.py +25 -2
- coordinate_system-7.0.0/coordinate_system/complex_geometric_physics.py +519 -0
- {coordinate_system-6.0.5 → coordinate_system-7.0.0}/coordinate_system/u3_frame.py +231 -231
- {coordinate_system-6.0.5 → coordinate_system-7.0.0/coordinate_system.egg-info}/PKG-INFO +86 -18
- {coordinate_system-6.0.5 → coordinate_system-7.0.0}/coordinate_system.egg-info/SOURCES.txt +2 -0
- {coordinate_system-6.0.5 → coordinate_system-7.0.0}/pmsys_minimal.hpp +4 -15
- coordinate_system-7.0.0/pyproject.toml +56 -0
- {coordinate_system-6.0.5 → coordinate_system-7.0.0}/setup.py +12 -3
- {coordinate_system-6.0.5 → coordinate_system-7.0.0}/LICENSE +0 -0
- {coordinate_system-6.0.5 → coordinate_system-7.0.0}/MANIFEST.in +0 -0
- {coordinate_system-6.0.5 → coordinate_system-7.0.0}/coordinate_system/curve_interpolation.py +0 -0
- {coordinate_system-6.0.5 → coordinate_system-7.0.0}/coordinate_system/differential_geometry.py +0 -0
- {coordinate_system-6.0.5 → coordinate_system-7.0.0}/coordinate_system/spectral_geometry.py +0 -0
- {coordinate_system-6.0.5 → coordinate_system-7.0.0}/coordinate_system/visualization.py +0 -0
- {coordinate_system-6.0.5 → coordinate_system-7.0.0}/coordinate_system.egg-info/dependency_links.txt +0 -0
- {coordinate_system-6.0.5 → coordinate_system-7.0.0}/coordinate_system.egg-info/not-zip-safe +0 -0
- {coordinate_system-6.0.5 → coordinate_system-7.0.0}/coordinate_system.egg-info/requires.txt +0 -0
- {coordinate_system-6.0.5 → coordinate_system-7.0.0}/coordinate_system.egg-info/top_level.txt +0 -0
- {coordinate_system-6.0.5 → coordinate_system-7.0.0}/coordinate_system_binding.cpp +0 -0
- {coordinate_system-6.0.5 → coordinate_system-7.0.0}/setup.cfg +0 -0
|
@@ -1,15 +1,17 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: coordinate_system
|
|
3
|
-
Version:
|
|
4
|
-
Summary: High-performance 3D coordinate system library with unified differential geometry, quantum frame algebra,
|
|
3
|
+
Version: 7.0.0
|
|
4
|
+
Summary: High-performance 3D coordinate system library with unified differential geometry, quantum frame algebra, and Christmas Equation (CFUT)
|
|
5
5
|
Home-page: https://github.com/panguojun/Coordinate-System
|
|
6
6
|
Author: PanGuoJun
|
|
7
|
-
Author-email: 18858146@qq.com
|
|
7
|
+
Author-email: PanGuoJun <18858146@qq.com>
|
|
8
8
|
License: MIT
|
|
9
|
-
Project-URL:
|
|
10
|
-
Project-URL: Source, https://github.com/panguojun/Coordinate-System
|
|
9
|
+
Project-URL: Homepage, https://github.com/panguojun/Coordinate-System
|
|
11
10
|
Project-URL: Documentation, https://github.com/panguojun/Coordinate-System/blob/main/README.md
|
|
12
|
-
|
|
11
|
+
Project-URL: Repository, https://github.com/panguojun/Coordinate-System
|
|
12
|
+
Project-URL: Bug Reports, https://github.com/panguojun/Coordinate-System/issues
|
|
13
|
+
Project-URL: DOI, https://zenodo.org/records/14435613
|
|
14
|
+
Keywords: 3d,math,vector,quaternion,coordinate-system,geometry,differential-geometry,curvature,spectral-analysis,christmas-equation,cfut,unified-field-theory,complex-frame
|
|
13
15
|
Platform: Windows
|
|
14
16
|
Platform: Linux
|
|
15
17
|
Platform: macOS
|
|
@@ -20,7 +22,7 @@ Classifier: Intended Audience :: Developers
|
|
|
20
22
|
Classifier: Intended Audience :: Science/Research
|
|
21
23
|
Classifier: Topic :: Software Development :: Libraries :: Python Modules
|
|
22
24
|
Classifier: Topic :: Scientific/Engineering :: Mathematics
|
|
23
|
-
Classifier: Topic ::
|
|
25
|
+
Classifier: Topic :: Scientific/Engineering :: Physics
|
|
24
26
|
Classifier: License :: OSI Approved :: MIT License
|
|
25
27
|
Classifier: Programming Language :: Python :: 3
|
|
26
28
|
Classifier: Programming Language :: Python :: 3.7
|
|
@@ -49,16 +51,20 @@ Requires-Dist: matplotlib>=3.3.0
|
|
|
49
51
|
[](LICENSE)
|
|
50
52
|
|
|
51
53
|
**Author:** PanGuoJun
|
|
52
|
-
**Version:**
|
|
54
|
+
**Version:** 7.0.0-alpha
|
|
53
55
|
**License:** MIT
|
|
56
|
+
**DOI:** [10.5281/zenodo.14435613](https://zenodo.org/records/14435613)
|
|
54
57
|
|
|
55
58
|
---
|
|
56
59
|
|
|
57
|
-
## What's New in
|
|
60
|
+
## What's New in v7.0.0-alpha (2026-01-14)
|
|
58
61
|
|
|
59
|
-
-
|
|
60
|
-
- **Unified
|
|
61
|
-
- **
|
|
62
|
+
- **🎄 Christmas Equation**: New `complex_geometric_physics` module implementing unified field theory
|
|
63
|
+
- **Complex Frame Unified Theory (CFUT)**: Geometry + Topology = Complex Matter + Topological Force
|
|
64
|
+
- **Einstein Tensor**: Compute Ĝ_μν from complex frame field U(x)
|
|
65
|
+
- **Chern-Simons Current**: Topological current K̄_μ for gauge field analysis
|
|
66
|
+
- **Energy-Momentum Tensor**: Real-imaginary decomposition for matter and topology
|
|
67
|
+
- **Complete English Translation**: All code documentation now in English for worldwide use
|
|
62
68
|
|
|
63
69
|
---
|
|
64
70
|
|
|
@@ -66,12 +72,13 @@ Requires-Dist: matplotlib>=3.3.0
|
|
|
66
72
|
|
|
67
73
|
```
|
|
68
74
|
coordinate_system/
|
|
69
|
-
├── coordinate_system.pyd/.so
|
|
70
|
-
├──
|
|
71
|
-
├──
|
|
72
|
-
├──
|
|
73
|
-
├──
|
|
74
|
-
|
|
75
|
+
├── coordinate_system.pyd/.so # C++ core (vec3, quat, coord3)
|
|
76
|
+
├── complex_geometric_physics.py # 🎄 Christmas Equation, CFUT unified theory
|
|
77
|
+
├── spectral_geometry.py # FourierFrame [GL(1,C)], spectral analysis
|
|
78
|
+
├── u3_frame.py # U3Frame [U(3)], gauge field theory
|
|
79
|
+
├── differential_geometry.py # Surface curvature calculation
|
|
80
|
+
├── visualization.py # 3D visualization
|
|
81
|
+
└── curve_interpolation.py # C2-continuous interpolation
|
|
75
82
|
```
|
|
76
83
|
|
|
77
84
|
## Group Correspondence
|
|
@@ -79,6 +86,7 @@ coordinate_system/
|
|
|
79
86
|
| Class | Group | DOF | Use Case |
|
|
80
87
|
|-------|-------|-----|----------|
|
|
81
88
|
| `coord3` | Sim(3) = R³ ⋊ (SO(3) × R⁺) | 10 | 3D coordinate transform |
|
|
89
|
+
| `ComplexFrame` | U(3) complex field | 18 | 🎄 Unified field theory (CFUT) |
|
|
82
90
|
| `FourierFrame` | GL(1,C) = U(1) × R⁺ | 2 | Spectral geometry, heat kernel |
|
|
83
91
|
| `U3Frame` | U(3) = SU(3) × U(1) | 9 | Gauge field theory |
|
|
84
92
|
|
|
@@ -176,12 +184,63 @@ F_xy = conn_x.field_strength(conn_y)
|
|
|
176
184
|
S_YM = F_xy.yang_mills_action()
|
|
177
185
|
```
|
|
178
186
|
|
|
187
|
+
### 🎄 Complex Geometric Physics (Christmas Equation)
|
|
188
|
+
|
|
189
|
+
```python
|
|
190
|
+
from coordinate_system import (
|
|
191
|
+
ComplexFrame,
|
|
192
|
+
EnergyMomentumTensor,
|
|
193
|
+
ChristmasEquation,
|
|
194
|
+
create_flat_spacetime_frame,
|
|
195
|
+
create_curved_spacetime_frame,
|
|
196
|
+
create_gauge_field_frame,
|
|
197
|
+
M_PLANCK,
|
|
198
|
+
LAMBDA_TOPO
|
|
199
|
+
)
|
|
200
|
+
import numpy as np
|
|
201
|
+
|
|
202
|
+
# Create complex frames
|
|
203
|
+
flat_frame = create_flat_spacetime_frame()
|
|
204
|
+
curved_frame = create_curved_spacetime_frame(curvature=0.1)
|
|
205
|
+
gauge_frame = create_gauge_field_frame(field_strength=0.1)
|
|
206
|
+
|
|
207
|
+
# Initialize Christmas Equation solver
|
|
208
|
+
solver = ChristmasEquation()
|
|
209
|
+
print(f"Planck mass: {solver.M_P:.3e} GeV")
|
|
210
|
+
print(f"Topological coupling: {solver.lambda_topo:.4f}")
|
|
211
|
+
|
|
212
|
+
# Compute geometric quantities
|
|
213
|
+
G_tensor = solver.einstein_tensor(curved_frame)
|
|
214
|
+
K_current = solver.chern_simons_current(gauge_frame)
|
|
215
|
+
|
|
216
|
+
# Create matter energy-momentum tensor
|
|
217
|
+
matter_real = np.diag([1.0, 0.1, 0.1, 0.1])
|
|
218
|
+
matter_imag = np.zeros((4, 4))
|
|
219
|
+
T_matter = EnergyMomentumTensor(matter_real, matter_imag)
|
|
220
|
+
|
|
221
|
+
# Solve the Christmas Equation
|
|
222
|
+
# M_P²/2 Ĝ_μν[U] + λ/(32π²) ∇̂_(μ K̄_ν)[U] = T̂_μν^(top)[U] + T̂_μν^(mat)
|
|
223
|
+
solution = solver.solve_christmas_equation(gauge_frame, T_matter)
|
|
224
|
+
print(f"Geometric term norm: {np.linalg.norm(solution['geometric_term']):.6e}")
|
|
225
|
+
print(f"Topological term norm: {np.linalg.norm(solution['topological_term']):.6e}")
|
|
226
|
+
print(f"Equation balanced: {solution['balanced']}")
|
|
227
|
+
```
|
|
228
|
+
|
|
229
|
+
**The Christmas Equation** unifies geometry and topology:
|
|
230
|
+
- **Left side**: Geometry (Einstein tensor) + Topology (Chern-Simons current)
|
|
231
|
+
- **Right side**: Topological source + Matter source
|
|
232
|
+
- **Real part U^(R)**: Geometric properties (metric, curvature, spacetime)
|
|
233
|
+
- **Imaginary part U^(I)**: Topological properties (phase winding, gauge symmetry)
|
|
234
|
+
|
|
179
235
|
---
|
|
180
236
|
|
|
181
237
|
## Key Formulas
|
|
182
238
|
|
|
183
239
|
| Concept | Formula | Code |
|
|
184
240
|
|---------|---------|------|
|
|
241
|
+
| 🎄 **Christmas Equation** | $\frac{M_P^2}{2} \hat{G}_{\mu\nu}[U] + \frac{\lambda}{32\pi^2} \hat{\nabla}_{(\mu} \bar{K}_{\nu)}[U] = \hat{T}_{\mu\nu}^{(\text{top})}[U] + \hat{T}_{\mu\nu}^{(\text{mat})}$ | `ChristmasEquation.solve_christmas_equation()` |
|
|
242
|
+
| Einstein Tensor | $\hat{G}_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}g_{\mu\nu} R$ | `ChristmasEquation.einstein_tensor()` |
|
|
243
|
+
| Chern-Simons Current | $\bar{K}_\mu = \varepsilon_{\mu\nu\rho\sigma} \text{Tr}(A^\nu F^{\rho\sigma})$ | `ChristmasEquation.chern_simons_current()` |
|
|
185
244
|
| Intrinsic Gradient | $G_\mu = \frac{d}{dx^\mu} \log C(x)$ | `IntrinsicGradient` |
|
|
186
245
|
| Curvature Tensor | $R_{\mu\nu} = [G_\mu, G_\nu]$ | `CurvatureFromFrame` |
|
|
187
246
|
| Gaussian Curvature | $K = -\langle [G_u, G_v] e_v, e_u \rangle / \sqrt{\det g}$ | `compute_gaussian_curvature` |
|
|
@@ -218,6 +277,15 @@ S_YM = F_xy.yang_mills_action()
|
|
|
218
277
|
|
|
219
278
|
## Changelog
|
|
220
279
|
|
|
280
|
+
### v7.0.0-alpha (2026-01-14)
|
|
281
|
+
- 🎄 **Christmas Equation**: New `complex_geometric_physics.py` module
|
|
282
|
+
- **Complex Frame Unified Theory (CFUT)**: Unified field equation implementation
|
|
283
|
+
- **ComplexFrame**: U(x) = U^(R)(x) + iU^(I)(x) decomposition
|
|
284
|
+
- **EnergyMomentumTensor**: Real-imaginary tensor decomposition
|
|
285
|
+
- **ChristmasEquation**: Einstein tensor, Chern-Simons current, topological energy-momentum
|
|
286
|
+
- **Complete English Translation**: All documentation and code comments in English
|
|
287
|
+
- **DOI**: Added Zenodo DOI 10.5281/zenodo.14435613
|
|
288
|
+
|
|
221
289
|
### v6.0.4 (2025-12-08)
|
|
222
290
|
- `frames.py` → `spectral_geometry.py`
|
|
223
291
|
- Removed `fourier_spectral.py`
|
|
@@ -7,16 +7,20 @@
|
|
|
7
7
|
[](LICENSE)
|
|
8
8
|
|
|
9
9
|
**Author:** PanGuoJun
|
|
10
|
-
**Version:**
|
|
10
|
+
**Version:** 7.0.0-alpha
|
|
11
11
|
**License:** MIT
|
|
12
|
+
**DOI:** [10.5281/zenodo.14435613](https://zenodo.org/records/14435613)
|
|
12
13
|
|
|
13
14
|
---
|
|
14
15
|
|
|
15
|
-
## What's New in
|
|
16
|
+
## What's New in v7.0.0-alpha (2026-01-14)
|
|
16
17
|
|
|
17
|
-
-
|
|
18
|
-
- **Unified
|
|
19
|
-
- **
|
|
18
|
+
- **🎄 Christmas Equation**: New `complex_geometric_physics` module implementing unified field theory
|
|
19
|
+
- **Complex Frame Unified Theory (CFUT)**: Geometry + Topology = Complex Matter + Topological Force
|
|
20
|
+
- **Einstein Tensor**: Compute Ĝ_μν from complex frame field U(x)
|
|
21
|
+
- **Chern-Simons Current**: Topological current K̄_μ for gauge field analysis
|
|
22
|
+
- **Energy-Momentum Tensor**: Real-imaginary decomposition for matter and topology
|
|
23
|
+
- **Complete English Translation**: All code documentation now in English for worldwide use
|
|
20
24
|
|
|
21
25
|
---
|
|
22
26
|
|
|
@@ -24,12 +28,13 @@
|
|
|
24
28
|
|
|
25
29
|
```
|
|
26
30
|
coordinate_system/
|
|
27
|
-
├── coordinate_system.pyd/.so
|
|
28
|
-
├──
|
|
29
|
-
├──
|
|
30
|
-
├──
|
|
31
|
-
├──
|
|
32
|
-
|
|
31
|
+
├── coordinate_system.pyd/.so # C++ core (vec3, quat, coord3)
|
|
32
|
+
├── complex_geometric_physics.py # 🎄 Christmas Equation, CFUT unified theory
|
|
33
|
+
├── spectral_geometry.py # FourierFrame [GL(1,C)], spectral analysis
|
|
34
|
+
├── u3_frame.py # U3Frame [U(3)], gauge field theory
|
|
35
|
+
├── differential_geometry.py # Surface curvature calculation
|
|
36
|
+
├── visualization.py # 3D visualization
|
|
37
|
+
└── curve_interpolation.py # C2-continuous interpolation
|
|
33
38
|
```
|
|
34
39
|
|
|
35
40
|
## Group Correspondence
|
|
@@ -37,6 +42,7 @@ coordinate_system/
|
|
|
37
42
|
| Class | Group | DOF | Use Case |
|
|
38
43
|
|-------|-------|-----|----------|
|
|
39
44
|
| `coord3` | Sim(3) = R³ ⋊ (SO(3) × R⁺) | 10 | 3D coordinate transform |
|
|
45
|
+
| `ComplexFrame` | U(3) complex field | 18 | 🎄 Unified field theory (CFUT) |
|
|
40
46
|
| `FourierFrame` | GL(1,C) = U(1) × R⁺ | 2 | Spectral geometry, heat kernel |
|
|
41
47
|
| `U3Frame` | U(3) = SU(3) × U(1) | 9 | Gauge field theory |
|
|
42
48
|
|
|
@@ -134,12 +140,63 @@ F_xy = conn_x.field_strength(conn_y)
|
|
|
134
140
|
S_YM = F_xy.yang_mills_action()
|
|
135
141
|
```
|
|
136
142
|
|
|
143
|
+
### 🎄 Complex Geometric Physics (Christmas Equation)
|
|
144
|
+
|
|
145
|
+
```python
|
|
146
|
+
from coordinate_system import (
|
|
147
|
+
ComplexFrame,
|
|
148
|
+
EnergyMomentumTensor,
|
|
149
|
+
ChristmasEquation,
|
|
150
|
+
create_flat_spacetime_frame,
|
|
151
|
+
create_curved_spacetime_frame,
|
|
152
|
+
create_gauge_field_frame,
|
|
153
|
+
M_PLANCK,
|
|
154
|
+
LAMBDA_TOPO
|
|
155
|
+
)
|
|
156
|
+
import numpy as np
|
|
157
|
+
|
|
158
|
+
# Create complex frames
|
|
159
|
+
flat_frame = create_flat_spacetime_frame()
|
|
160
|
+
curved_frame = create_curved_spacetime_frame(curvature=0.1)
|
|
161
|
+
gauge_frame = create_gauge_field_frame(field_strength=0.1)
|
|
162
|
+
|
|
163
|
+
# Initialize Christmas Equation solver
|
|
164
|
+
solver = ChristmasEquation()
|
|
165
|
+
print(f"Planck mass: {solver.M_P:.3e} GeV")
|
|
166
|
+
print(f"Topological coupling: {solver.lambda_topo:.4f}")
|
|
167
|
+
|
|
168
|
+
# Compute geometric quantities
|
|
169
|
+
G_tensor = solver.einstein_tensor(curved_frame)
|
|
170
|
+
K_current = solver.chern_simons_current(gauge_frame)
|
|
171
|
+
|
|
172
|
+
# Create matter energy-momentum tensor
|
|
173
|
+
matter_real = np.diag([1.0, 0.1, 0.1, 0.1])
|
|
174
|
+
matter_imag = np.zeros((4, 4))
|
|
175
|
+
T_matter = EnergyMomentumTensor(matter_real, matter_imag)
|
|
176
|
+
|
|
177
|
+
# Solve the Christmas Equation
|
|
178
|
+
# M_P²/2 Ĝ_μν[U] + λ/(32π²) ∇̂_(μ K̄_ν)[U] = T̂_μν^(top)[U] + T̂_μν^(mat)
|
|
179
|
+
solution = solver.solve_christmas_equation(gauge_frame, T_matter)
|
|
180
|
+
print(f"Geometric term norm: {np.linalg.norm(solution['geometric_term']):.6e}")
|
|
181
|
+
print(f"Topological term norm: {np.linalg.norm(solution['topological_term']):.6e}")
|
|
182
|
+
print(f"Equation balanced: {solution['balanced']}")
|
|
183
|
+
```
|
|
184
|
+
|
|
185
|
+
**The Christmas Equation** unifies geometry and topology:
|
|
186
|
+
- **Left side**: Geometry (Einstein tensor) + Topology (Chern-Simons current)
|
|
187
|
+
- **Right side**: Topological source + Matter source
|
|
188
|
+
- **Real part U^(R)**: Geometric properties (metric, curvature, spacetime)
|
|
189
|
+
- **Imaginary part U^(I)**: Topological properties (phase winding, gauge symmetry)
|
|
190
|
+
|
|
137
191
|
---
|
|
138
192
|
|
|
139
193
|
## Key Formulas
|
|
140
194
|
|
|
141
195
|
| Concept | Formula | Code |
|
|
142
196
|
|---------|---------|------|
|
|
197
|
+
| 🎄 **Christmas Equation** | $\frac{M_P^2}{2} \hat{G}_{\mu\nu}[U] + \frac{\lambda}{32\pi^2} \hat{\nabla}_{(\mu} \bar{K}_{\nu)}[U] = \hat{T}_{\mu\nu}^{(\text{top})}[U] + \hat{T}_{\mu\nu}^{(\text{mat})}$ | `ChristmasEquation.solve_christmas_equation()` |
|
|
198
|
+
| Einstein Tensor | $\hat{G}_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}g_{\mu\nu} R$ | `ChristmasEquation.einstein_tensor()` |
|
|
199
|
+
| Chern-Simons Current | $\bar{K}_\mu = \varepsilon_{\mu\nu\rho\sigma} \text{Tr}(A^\nu F^{\rho\sigma})$ | `ChristmasEquation.chern_simons_current()` |
|
|
143
200
|
| Intrinsic Gradient | $G_\mu = \frac{d}{dx^\mu} \log C(x)$ | `IntrinsicGradient` |
|
|
144
201
|
| Curvature Tensor | $R_{\mu\nu} = [G_\mu, G_\nu]$ | `CurvatureFromFrame` |
|
|
145
202
|
| Gaussian Curvature | $K = -\langle [G_u, G_v] e_v, e_u \rangle / \sqrt{\det g}$ | `compute_gaussian_curvature` |
|
|
@@ -176,6 +233,15 @@ S_YM = F_xy.yang_mills_action()
|
|
|
176
233
|
|
|
177
234
|
## Changelog
|
|
178
235
|
|
|
236
|
+
### v7.0.0-alpha (2026-01-14)
|
|
237
|
+
- 🎄 **Christmas Equation**: New `complex_geometric_physics.py` module
|
|
238
|
+
- **Complex Frame Unified Theory (CFUT)**: Unified field equation implementation
|
|
239
|
+
- **ComplexFrame**: U(x) = U^(R)(x) + iU^(I)(x) decomposition
|
|
240
|
+
- **EnergyMomentumTensor**: Real-imaginary tensor decomposition
|
|
241
|
+
- **ChristmasEquation**: Einstein tensor, Chern-Simons current, topological energy-momentum
|
|
242
|
+
- **Complete English Translation**: All documentation and code comments in English
|
|
243
|
+
- **DOI**: Added Zenodo DOI 10.5281/zenodo.14435613
|
|
244
|
+
|
|
179
245
|
### v6.0.4 (2025-12-08)
|
|
180
246
|
- `frames.py` → `spectral_geometry.py`
|
|
181
247
|
- Removed `fourier_spectral.py`
|
|
@@ -14,6 +14,7 @@ Python Modules:
|
|
|
14
14
|
- differential_geometry: Surface curvature via intrinsic gradient / Lie bracket
|
|
15
15
|
- spectral_geometry: FourierFrame (GL(1,C)), spectral analysis, heat kernel
|
|
16
16
|
- u3_frame: U3Frame (U(3)), gauge field theory, symmetry breaking
|
|
17
|
+
- complex_geometric_physics: Christmas Equation, unified field theory (CFUT)
|
|
17
18
|
- visualization: Coordinate system visualization
|
|
18
19
|
- curve_interpolation: C2-continuous curve and frame interpolation
|
|
19
20
|
|
|
@@ -22,10 +23,10 @@ Group Correspondence:
|
|
|
22
23
|
- FourierFrame ∈ GL(1,C) = U(1) × R⁺
|
|
23
24
|
- U3Frame ∈ U(3) = SU(3) × U(1)
|
|
24
25
|
|
|
25
|
-
Version:
|
|
26
|
+
Version: 7.0.0-alpha
|
|
26
27
|
"""
|
|
27
28
|
|
|
28
|
-
__version__ = '
|
|
29
|
+
__version__ = '7.0.0-alpha'
|
|
29
30
|
|
|
30
31
|
from .coordinate_system import vec3, vec2
|
|
31
32
|
from .coordinate_system import quat
|
|
@@ -112,6 +113,23 @@ from .u3_frame import (
|
|
|
112
113
|
SymmetryBreakingPotential,
|
|
113
114
|
)
|
|
114
115
|
|
|
116
|
+
# Complex Geometric Physics module (Christmas Equation, CFUT)
|
|
117
|
+
from .complex_geometric_physics import (
|
|
118
|
+
# Core classes
|
|
119
|
+
ComplexFrame,
|
|
120
|
+
EnergyMomentumTensor,
|
|
121
|
+
ChristmasEquation,
|
|
122
|
+
|
|
123
|
+
# Utility functions
|
|
124
|
+
create_flat_spacetime_frame,
|
|
125
|
+
create_curved_spacetime_frame,
|
|
126
|
+
create_gauge_field_frame,
|
|
127
|
+
|
|
128
|
+
# Constants
|
|
129
|
+
M_PLANCK,
|
|
130
|
+
LAMBDA_TOPO,
|
|
131
|
+
)
|
|
132
|
+
|
|
115
133
|
# Visualization module
|
|
116
134
|
from .visualization import (
|
|
117
135
|
CoordinateSystemVisualizer,
|
|
@@ -177,6 +195,11 @@ __all__ = [
|
|
|
177
195
|
'GaugeConnection', 'FieldStrength',
|
|
178
196
|
'SymmetryBreakingPotential',
|
|
179
197
|
|
|
198
|
+
# Complex Geometric Physics (Christmas Equation, CFUT)
|
|
199
|
+
'ComplexFrame', 'EnergyMomentumTensor', 'ChristmasEquation',
|
|
200
|
+
'create_flat_spacetime_frame', 'create_curved_spacetime_frame', 'create_gauge_field_frame',
|
|
201
|
+
'M_PLANCK', 'LAMBDA_TOPO',
|
|
202
|
+
|
|
180
203
|
# Visualization
|
|
181
204
|
'CoordinateSystemVisualizer', 'CurveVisualizer', 'ParametricCurve',
|
|
182
205
|
'visualize_coord_system', 'visualize_curve',
|