coordinate-system 6.0.1__tar.gz → 6.0.3__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {coordinate_system-6.0.1/coordinate_system.egg-info → coordinate_system-6.0.3}/PKG-INFO +327 -47
- {coordinate_system-6.0.1 → coordinate_system-6.0.3}/README.md +326 -46
- {coordinate_system-6.0.1 → coordinate_system-6.0.3}/coordinate_system/__init__.py +31 -8
- {coordinate_system-6.0.1 → coordinate_system-6.0.3}/coordinate_system/fourier_spectral.py +12 -12
- {coordinate_system-6.0.1 → coordinate_system-6.0.3}/coordinate_system/frames.py +142 -111
- coordinate_system-6.0.3/coordinate_system/u3_frame.py +885 -0
- {coordinate_system-6.0.1 → coordinate_system-6.0.3/coordinate_system.egg-info}/PKG-INFO +327 -47
- {coordinate_system-6.0.1 → coordinate_system-6.0.3}/coordinate_system.egg-info/SOURCES.txt +1 -0
- {coordinate_system-6.0.1 → coordinate_system-6.0.3}/setup.py +2 -2
- {coordinate_system-6.0.1 → coordinate_system-6.0.3}/LICENSE +0 -0
- {coordinate_system-6.0.1 → coordinate_system-6.0.3}/MANIFEST.in +0 -0
- {coordinate_system-6.0.1 → coordinate_system-6.0.3}/coordinate_system/curve_interpolation.py +0 -0
- {coordinate_system-6.0.1 → coordinate_system-6.0.3}/coordinate_system/differential_geometry.py +0 -0
- {coordinate_system-6.0.1 → coordinate_system-6.0.3}/coordinate_system/visualization.py +0 -0
- {coordinate_system-6.0.1 → coordinate_system-6.0.3}/coordinate_system.egg-info/dependency_links.txt +0 -0
- {coordinate_system-6.0.1 → coordinate_system-6.0.3}/coordinate_system.egg-info/not-zip-safe +0 -0
- {coordinate_system-6.0.1 → coordinate_system-6.0.3}/coordinate_system.egg-info/requires.txt +0 -0
- {coordinate_system-6.0.1 → coordinate_system-6.0.3}/coordinate_system.egg-info/top_level.txt +0 -0
- {coordinate_system-6.0.1 → coordinate_system-6.0.3}/coordinate_system_binding.cpp +0 -0
- {coordinate_system-6.0.1 → coordinate_system-6.0.3}/pmsys_minimal.hpp +0 -0
- {coordinate_system-6.0.1 → coordinate_system-6.0.3}/setup.cfg +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: coordinate_system
|
|
3
|
-
Version: 6.0.
|
|
3
|
+
Version: 6.0.3
|
|
4
4
|
Summary: High-performance 3D coordinate system library with unified differential geometry, quantum frame algebra, spectral transforms, and professional curvature visualization
|
|
5
5
|
Home-page: https://github.com/panguojun/Coordinate-System
|
|
6
6
|
Author: PanGuoJun
|
|
@@ -50,46 +50,311 @@ Requires-Dist: matplotlib>=3.3.0
|
|
|
50
50
|
[](LICENSE)
|
|
51
51
|
|
|
52
52
|
**Author:** PanGuoJun
|
|
53
|
-
**Version:** 6.0.
|
|
53
|
+
**Version:** 6.0.3
|
|
54
54
|
**License:** MIT
|
|
55
55
|
|
|
56
56
|
---
|
|
57
57
|
|
|
58
|
+
## 🆕 What's New in v6.0.3 (2025-12-04)
|
|
59
|
+
|
|
60
|
+
### U(3) Gauge Theory Framework - Unified Complex Frame & Gauge Fields
|
|
61
|
+
|
|
62
|
+
**Complete implementation of gauge field theory based on U(3) unitary group** - A groundbreaking framework unifying geometry, topology, and gauge field theory through complex frames.
|
|
63
|
+
|
|
64
|
+
> **Theoretical Foundation**:
|
|
65
|
+
>
|
|
66
|
+
> Based on the paper "*Geometric-Topological Duality: Complex Frame as Unified Structure of Spacetime and Gauge Fields*", this implementation realizes:
|
|
67
|
+
> - **U(3) Complex Frame**: Full 3×3 unitary matrix representation
|
|
68
|
+
> - **Symmetry Breaking Chain**: SU(4) → SU(3) × SU(2) × U(1)
|
|
69
|
+
> - **Color-Space Duality**: RGB color phases ↔ Spatial axes
|
|
70
|
+
> - **Imaginary Time Embedding**: ℝ³ × iℝ → Internal rotation degrees of freedom
|
|
71
|
+
|
|
72
|
+
#### 🎯 **New U(3) Frame Module**
|
|
73
|
+
|
|
74
|
+
**U3Frame Class** - Complete U(3) unitary frame:
|
|
75
|
+
|
|
76
|
+
```python
|
|
77
|
+
from coordinate_system import U3Frame
|
|
78
|
+
import numpy as np
|
|
79
|
+
|
|
80
|
+
# Create U(3) frame with color phases
|
|
81
|
+
theta_R, theta_G, theta_B = 0.1, 0.3, -0.4 # RGB phases
|
|
82
|
+
e1 = np.array([np.exp(1j * theta_R), 0, 0])
|
|
83
|
+
e2 = np.array([0, np.exp(1j * theta_G), 0])
|
|
84
|
+
e3 = np.array([0, 0, np.exp(1j * theta_B)])
|
|
85
|
+
|
|
86
|
+
frame = U3Frame(e1, e2, e3)
|
|
87
|
+
|
|
88
|
+
# Symmetry decomposition
|
|
89
|
+
su3_comp, u1_phase = frame.to_su3_u1() # U(3) = SU(3) × U(1)
|
|
90
|
+
|
|
91
|
+
# Color phases (Red, Green, Blue)
|
|
92
|
+
phases = frame.color_phases() # (θ_R, θ_G, θ_B)
|
|
93
|
+
|
|
94
|
+
# Quaternion representation (SU(2) subgroup)
|
|
95
|
+
q = frame.to_quaternion_representation()
|
|
96
|
+
```
|
|
97
|
+
|
|
98
|
+
#### 🌟 **Gauge Field Theory**
|
|
99
|
+
|
|
100
|
+
**GaugeConnection Class** - Unified gauge field representation:
|
|
101
|
+
|
|
102
|
+
```python
|
|
103
|
+
from coordinate_system import GaugeConnection, FieldStrength
|
|
104
|
+
|
|
105
|
+
# Create gauge connection A_μ = A^{SU(3)} + A^{SU(2)} + A^{U(1)}
|
|
106
|
+
connection = GaugeConnection(
|
|
107
|
+
su3_component=np.random.randn(8) * 0.1, # 8 gluons (QCD)
|
|
108
|
+
su2_component=np.random.randn(3) * 0.1, # 3 W/Z bosons (weak)
|
|
109
|
+
u1_component=0.05+0.02j # 1 photon (EM)
|
|
110
|
+
)
|
|
111
|
+
|
|
112
|
+
# Field strength tensor F_μν = [A_μ, A_ν]
|
|
113
|
+
F = connection_x.field_strength(connection_y)
|
|
114
|
+
|
|
115
|
+
# Yang-Mills action
|
|
116
|
+
S_YM = F.yang_mills_action()
|
|
117
|
+
|
|
118
|
+
# Topological charge (Instanton number)
|
|
119
|
+
Q = F.topological_charge()
|
|
120
|
+
```
|
|
121
|
+
|
|
122
|
+
#### 🔬 **Core Features**
|
|
123
|
+
|
|
124
|
+
**1. Complete U(3) Unitary Frame**
|
|
125
|
+
```python
|
|
126
|
+
U(x) = [𝐞₁, 𝐞₂, 𝐞₃] ∈ U(3)
|
|
127
|
+
Each column: 𝐞ₖ = 𝐚ₖ + i𝐛ₖ ∈ ℂ³
|
|
128
|
+
```
|
|
129
|
+
- Full 3×3 complex matrix representation
|
|
130
|
+
- Gram-Schmidt orthonormalization
|
|
131
|
+
- Unitary property: U† U = I
|
|
132
|
+
|
|
133
|
+
**2. Symmetry Decomposition**
|
|
134
|
+
```python
|
|
135
|
+
U(3) = SU(3) × U(1)
|
|
136
|
+
SU(3) ⊃ SU(2) × U(1)
|
|
137
|
+
```
|
|
138
|
+
- SU(3): 8 generators (Gell-Mann matrices)
|
|
139
|
+
- SU(2): 3 generators (Pauli matrices)
|
|
140
|
+
- U(1): Global phase
|
|
141
|
+
|
|
142
|
+
**3. Color-Space Duality**
|
|
143
|
+
```
|
|
144
|
+
Spatial Axis ↔ Color Charge
|
|
145
|
+
─────────────────────────────
|
|
146
|
+
x-axis (e₁) ↔ Red (θ₁)
|
|
147
|
+
y-axis (e₂) ↔ Green (θ₂)
|
|
148
|
+
z-axis (e₃) ↔ Blue (θ₃)
|
|
149
|
+
|
|
150
|
+
Constraint: θ₁ + θ₂ + θ₃ = φ (color singlet)
|
|
151
|
+
```
|
|
152
|
+
|
|
153
|
+
**4. Gauge Transformations**
|
|
154
|
+
```python
|
|
155
|
+
# U(1) gauge transform
|
|
156
|
+
frame_u1 = frame.gauge_transform_u1(phi)
|
|
157
|
+
|
|
158
|
+
# SU(2) gauge transform (weak interaction)
|
|
159
|
+
frame_su2 = frame.gauge_transform_su2((θx, θy, θz))
|
|
160
|
+
|
|
161
|
+
# SU(3) gauge transform (strong interaction)
|
|
162
|
+
frame_su3 = frame.gauge_transform_su3(gell_mann_params)
|
|
163
|
+
```
|
|
164
|
+
|
|
165
|
+
**5. Imaginary Time Evolution**
|
|
166
|
+
```python
|
|
167
|
+
# Imaginary time evolution U(τ) = exp(-τĤ) U(0)
|
|
168
|
+
frame_tau = frame.imaginary_time_evolution(tau=0.5, hamiltonian=H)
|
|
169
|
+
|
|
170
|
+
# Wick rotation: t → -iτ
|
|
171
|
+
frame_wick = frame.wick_rotation(real_time=1.0)
|
|
172
|
+
```
|
|
173
|
+
|
|
174
|
+
**6. Symmetry Breaking Potential**
|
|
175
|
+
```python
|
|
176
|
+
from coordinate_system import SymmetryBreakingPotential
|
|
177
|
+
|
|
178
|
+
# Higgs-type potential
|
|
179
|
+
potential = SymmetryBreakingPotential(
|
|
180
|
+
mu_squared=-1.0, # Negative triggers breaking
|
|
181
|
+
lambda_coupling=0.5,
|
|
182
|
+
gamma_coupling=0.1
|
|
183
|
+
)
|
|
184
|
+
|
|
185
|
+
# Find vacuum state
|
|
186
|
+
frame_vacuum = potential.find_vacuum()
|
|
187
|
+
```
|
|
188
|
+
|
|
189
|
+
#### 📐 **Physical Interpretation**
|
|
190
|
+
|
|
191
|
+
**Unified Framework:**
|
|
192
|
+
```
|
|
193
|
+
U(3) Complex Frame
|
|
194
|
+
/ | \
|
|
195
|
+
/ | \
|
|
196
|
+
Geometry Gauge Field Imaginary Time
|
|
197
|
+
(Real Part) (Connection) (Imag Part)
|
|
198
|
+
| | |
|
|
199
|
+
V V V
|
|
200
|
+
Metric Interactions Evolution
|
|
201
|
+
```
|
|
202
|
+
|
|
203
|
+
**Standard Model Gauge Group:**
|
|
204
|
+
| Layer | Gauge Group | Physical Field | Implementation |
|
|
205
|
+
|-------|-------------|----------------|----------------|
|
|
206
|
+
| **Strong** | SU(3) | 8 Gluons | `su3_component` |
|
|
207
|
+
| **Weak** | SU(2) | W⁺, W⁻, Z⁰ | `su2_component` |
|
|
208
|
+
| **EM** | U(1) | Photon (γ) | `u1_component` |
|
|
209
|
+
| **Unified** | U(3) | **Complex Frame** | `U3Frame` |
|
|
210
|
+
|
|
211
|
+
#### 🚀 **New Classes & Functions**
|
|
212
|
+
|
|
213
|
+
```python
|
|
214
|
+
from coordinate_system import (
|
|
215
|
+
# Core U(3) classes
|
|
216
|
+
U3Frame, # Complete U(3) unitary frame
|
|
217
|
+
SU3Component, # SU(3) decomposition
|
|
218
|
+
|
|
219
|
+
# Gauge field classes
|
|
220
|
+
GaugeConnection, # Gauge potential A_μ
|
|
221
|
+
FieldStrength, # Field strength F_μν
|
|
222
|
+
|
|
223
|
+
# Symmetry breaking
|
|
224
|
+
SymmetryBreakingPotential, # Higgs-type potential
|
|
225
|
+
|
|
226
|
+
# Constants
|
|
227
|
+
C_SPEED, # Speed of light
|
|
228
|
+
)
|
|
229
|
+
```
|
|
230
|
+
|
|
231
|
+
#### 📚 **Documentation**
|
|
232
|
+
|
|
233
|
+
- **Theory Guide**: `.doc/U3_FRAME_THEORY.md` - Complete mathematical framework
|
|
234
|
+
- **Upgrade Summary**: `UPGRADE_SUMMARY.md` - Detailed comparison with v6.0.1
|
|
235
|
+
- **Demo Program**: `examples/u3_gauge_theory_demo.py` - 9 comprehensive demonstrations
|
|
236
|
+
- **Original Paper**: `复标架与规范场.md` - Theoretical foundation
|
|
237
|
+
|
|
238
|
+
#### 🎓 **Example: Complete Gauge Theory Workflow**
|
|
239
|
+
|
|
240
|
+
```python
|
|
241
|
+
from coordinate_system import U3Frame, GaugeConnection, SymmetryBreakingPotential
|
|
242
|
+
import numpy as np
|
|
243
|
+
|
|
244
|
+
# 1. Create U(3) frame with color phases
|
|
245
|
+
theta_R, theta_G, theta_B = 0.1, 0.2, -0.3
|
|
246
|
+
e1 = np.array([np.exp(1j * theta_R), 0, 0])
|
|
247
|
+
e2 = np.array([0, np.exp(1j * theta_G), 0])
|
|
248
|
+
e3 = np.array([0, 0, np.exp(1j * theta_B)])
|
|
249
|
+
frame = U3Frame(e1, e2, e3)
|
|
250
|
+
|
|
251
|
+
# 2. Decompose to SU(3) × U(1)
|
|
252
|
+
su3_comp, u1_phase = frame.to_su3_u1()
|
|
253
|
+
print(f"SU(3) det: {np.linalg.det(su3_comp.matrix):.6f}") # Should be 1
|
|
254
|
+
|
|
255
|
+
# 3. Create gauge connections
|
|
256
|
+
connection_x = GaugeConnection(
|
|
257
|
+
su3_component=np.random.randn(8) * 0.1, # Gluons
|
|
258
|
+
su2_component=np.random.randn(3) * 0.1, # W/Z bosons
|
|
259
|
+
u1_component=0.05+0.02j # Photon
|
|
260
|
+
)
|
|
261
|
+
connection_y = GaugeConnection(...)
|
|
262
|
+
|
|
263
|
+
# 4. Calculate field strength
|
|
264
|
+
F_xy = connection_x.field_strength(connection_y)
|
|
265
|
+
S_YM = F_xy.yang_mills_action()
|
|
266
|
+
Q = F_xy.topological_charge()
|
|
267
|
+
print(f"Yang-Mills action: {S_YM:.6f}")
|
|
268
|
+
print(f"Topological charge: {Q:.6f}")
|
|
269
|
+
|
|
270
|
+
# 5. Symmetry breaking
|
|
271
|
+
potential = SymmetryBreakingPotential(mu_squared=-1.0)
|
|
272
|
+
frame_vacuum = potential.find_vacuum()
|
|
273
|
+
V_vac = potential.potential(frame_vacuum)
|
|
274
|
+
print(f"Vacuum energy: {V_vac:.6f}")
|
|
275
|
+
|
|
276
|
+
# 6. Gauge transformations
|
|
277
|
+
frame_u1 = frame.gauge_transform_u1(np.pi/4)
|
|
278
|
+
frame_su2 = frame.gauge_transform_su2((0.1, 0.2, 0.3))
|
|
279
|
+
frame_su3 = frame.gauge_transform_su3(np.random.randn(8) * 0.1)
|
|
280
|
+
|
|
281
|
+
# 7. Imaginary time evolution
|
|
282
|
+
H = np.diag([1.0, 2.0, 3.0])
|
|
283
|
+
frame_evolved = frame.imaginary_time_evolution(tau=0.5, hamiltonian=H)
|
|
284
|
+
```
|
|
285
|
+
|
|
286
|
+
#### 🔑 **Key Formulas Implemented**
|
|
287
|
+
|
|
288
|
+
```
|
|
289
|
+
U(x) = [e₁, e₂, e₃] ∈ U(3) [U(3) Frame]
|
|
290
|
+
U(3) = SU(3) × U(1) [Decomposition]
|
|
291
|
+
A_μ = A_μ^{SU(3)} + A_μ^{SU(2)} + A_μ^{U(1)} [Gauge Connection]
|
|
292
|
+
F_μν = ∂_μ A_ν - ∂_ν A_μ + [A_μ, A_ν] [Field Strength]
|
|
293
|
+
S_YM = -1/(4g²) Tr(F_μν F^μν) [Yang-Mills Action]
|
|
294
|
+
U(τ) = exp(-τĤ) U(0) [Imaginary Time]
|
|
295
|
+
V(U) = -μ² Tr(U†U) + λ[Tr(U†U)]² + ... [Symmetry Breaking]
|
|
296
|
+
```
|
|
297
|
+
|
|
298
|
+
### New Features Summary
|
|
299
|
+
|
|
300
|
+
- ✅ **Complete U(3) unitary matrix representation**
|
|
301
|
+
- ✅ **Symmetry decomposition: U(3) → SU(3) × SU(2) × U(1)**
|
|
302
|
+
- ✅ **Color phase extraction (Red, Green, Blue)**
|
|
303
|
+
- ✅ **Quaternion ↔ SU(2) correspondence**
|
|
304
|
+
- ✅ **Three gauge transformations (U(1), SU(2), SU(3))**
|
|
305
|
+
- ✅ **Gell-Mann & Pauli matrix implementations**
|
|
306
|
+
- ✅ **Gauge connection A_μ ∈ 𝔲(3)**
|
|
307
|
+
- ✅ **Field strength tensor F_μν**
|
|
308
|
+
- ✅ **Yang-Mills action & topological charge**
|
|
309
|
+
- ✅ **Imaginary time evolution & Wick rotation**
|
|
310
|
+
- ✅ **Symmetry breaking potential & vacuum finder**
|
|
311
|
+
- ✅ **Complete documentation & demos**
|
|
312
|
+
|
|
313
|
+
### Philosophical Vision
|
|
314
|
+
|
|
315
|
+
> *"The real part describes the space we inhabit,*
|
|
316
|
+
> *The imaginary part describes the time we traverse,*
|
|
317
|
+
> *The complex frame describes the existence we are."*
|
|
318
|
+
>
|
|
319
|
+
> — From the unified gauge theory framework
|
|
320
|
+
|
|
321
|
+
---
|
|
322
|
+
|
|
58
323
|
## 🆕 What's New in v6.0.1 (2025-12-04)
|
|
59
324
|
|
|
60
325
|
### Classical Spectral Geometry Implementation
|
|
61
326
|
|
|
62
|
-
**
|
|
327
|
+
**FourierFrame-Based Spectral Geometry** - Complete implementation of **classical geometric spectral analysis** using FourierFrame as the mathematical foundation
|
|
63
328
|
|
|
64
329
|
> **Important Design Philosophy**:
|
|
65
330
|
>
|
|
66
|
-
> This library follows the progression: **Coordinate System (Geometric Frame) → Curvature Computation →
|
|
331
|
+
> This library follows the progression: **Coordinate System (Geometric Frame) → Curvature Computation → FourierFrame → Spectral Geometry**
|
|
67
332
|
>
|
|
68
333
|
> All implementations are **classical geometric tools** suitable for numerical computation on standard computers. While the mathematical formalism resembles quantum theory, this is purely **classical differential geometry** without quantum physical interpretation.
|
|
69
334
|
|
|
70
335
|
#### 🎯 **Core Class Renaming (Breaking Change)**
|
|
71
|
-
- **QFrame →
|
|
72
|
-
- **QFrameSpectrum →
|
|
336
|
+
- **QFrame → FourierFrame**: More descriptive name avoiding confusion with generic "Frame"
|
|
337
|
+
- **QFrameSpectrum → FourierFrameSpectrum**: Consistent naming convention
|
|
73
338
|
- **Backward Compatibility**: All old names (QFrame, QFrameSpectrum) retained as aliases
|
|
74
339
|
|
|
75
|
-
#### 🌟 **
|
|
340
|
+
#### 🌟 **FourierFrame as Mathematical Foundation**
|
|
76
341
|
|
|
77
|
-
**
|
|
342
|
+
**FourierFrame represents the mathematical language for all spectral geometry formulas:**
|
|
78
343
|
|
|
79
|
-
**1.
|
|
344
|
+
**1. FourierFrame Algebra (复标架代数)**
|
|
80
345
|
```python
|
|
81
346
|
# Core transformations
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
e^{tΔ}
|
|
347
|
+
FourierFrame * e^{iθ} # Fourier transform (phase rotation)
|
|
348
|
+
FourierFrame * λ # Conformal transform (scaling)
|
|
349
|
+
e^{tΔ} FourierFrame # Diffusion evolution (heat equation solution)
|
|
85
350
|
```
|
|
86
|
-
- Complex extension of coordinate frames:
|
|
351
|
+
- Complex extension of coordinate frames: FourierFrame = coord3 ⊗ ℂ
|
|
87
352
|
- Mathematical tool for spectral analysis (not quantum states)
|
|
88
|
-
- Laplacian operator: Δ log
|
|
353
|
+
- Laplacian operator: Δ log FourierFrame
|
|
89
354
|
|
|
90
355
|
**2. IntrinsicGradient (内禀梯度算子)**
|
|
91
356
|
```python
|
|
92
|
-
G_μ = d/dx^μ log
|
|
357
|
+
G_μ = d/dx^μ log FourierFrame(x)
|
|
93
358
|
```
|
|
94
359
|
- **Geometric meaning**: Local frame rotation rate (covariant derivative)
|
|
95
360
|
- Corresponds to connection 1-form in Riemannian geometry
|
|
@@ -101,7 +366,7 @@ G_μ = d/dx^μ log ComplexFrame(x)
|
|
|
101
366
|
∂u/∂t = Δu (Classical heat equation)
|
|
102
367
|
Tr(e^{tΔ}) ~ (4πt)^{-d/2} [a₀ + a₁t + a₂t² + ...]
|
|
103
368
|
```
|
|
104
|
-
- **
|
|
369
|
+
- **FourierFrame evolution**: FourierFrame(x,t) = e^{tΔ} FourierFrame(x,0)
|
|
105
370
|
- **Classical diffusion process** (NOT quantum imaginary time)
|
|
106
371
|
- Heat kernel coefficients encode geometric invariants:
|
|
107
372
|
- a₀ = Volume of manifold
|
|
@@ -112,9 +377,9 @@ Tr(e^{tΔ}) ~ (4πt)^{-d/2} [a₀ + a₁t + a₂t² + ...]
|
|
|
112
377
|
**4. SpectralDecomposition (谱分解)**
|
|
113
378
|
```python
|
|
114
379
|
Δφ_n = -λ_n φ_n (Laplacian eigenvalue problem)
|
|
115
|
-
|
|
380
|
+
FourierFrame(x) = Σ_n c_n φ_n(x) FourierFrame_n
|
|
116
381
|
```
|
|
117
|
-
- **
|
|
382
|
+
- **FourierFrame as eigenstates**: Expansion in Laplacian eigenbasis
|
|
118
383
|
- **Shape DNA**: Eigenvalue spectrum {λ_n} characterizes manifold geometry
|
|
119
384
|
- Weyl asymptotic law: N(λ) ~ (1/4π) Area(M) λ (2D case)
|
|
120
385
|
- **Classical spectral theory**: "Can one hear the shape of a drum?" (Kac, 1966)
|
|
@@ -134,7 +399,7 @@ c₁ = (1/2π) ∬_M R_{μν} dS
|
|
|
134
399
|
```
|
|
135
400
|
- **Topological invariant** of fiber bundle
|
|
136
401
|
- Integer-valued geometric index
|
|
137
|
-
- Characterizes global geometry of
|
|
402
|
+
- Characterizes global geometry of FourierFrame field
|
|
138
403
|
- **Classical topology**: No quantum Hall effect interpretation here
|
|
139
404
|
|
|
140
405
|
**7. CurvatureFromFrame (曲率计算)**
|
|
@@ -142,7 +407,7 @@ c₁ = (1/2π) ∬_M R_{μν} dS
|
|
|
142
407
|
R_{μν} = [G_μ, G_ν]
|
|
143
408
|
K = -Im(R_{xy}) (Gaussian curvature, for complex frames)
|
|
144
409
|
```
|
|
145
|
-
- Curvature computed from
|
|
410
|
+
- Curvature computed from FourierFrame field
|
|
146
411
|
- Intrinsic gradient formulation
|
|
147
412
|
- **Classical differential geometry**
|
|
148
413
|
|
|
@@ -162,21 +427,21 @@ K = -Im(R_{xy}) (Gaussian curvature, for complex frames)
|
|
|
162
427
|
|
|
163
428
|
#### 🔬 **Core Formulas Summary**
|
|
164
429
|
```
|
|
165
|
-
|
|
166
|
-
G_μ = d/dx^μ log
|
|
430
|
+
FourierFrame = coord3 ⊗ ℂ [Mathematical Foundation]
|
|
431
|
+
G_μ = d/dx^μ log FourierFrame(x) [Intrinsic Gradient]
|
|
167
432
|
R_{μν} = [G_μ, G_ν] [Curvature]
|
|
168
|
-
Δ log
|
|
169
|
-
e^{tΔ}
|
|
433
|
+
Δ log FourierFrame = ∂²/∂x² + ∂²/∂y² [Laplacian]
|
|
434
|
+
e^{tΔ} FourierFrame = Heat diffusion evolution [Heat Kernel]
|
|
170
435
|
Δφ_n = -λ_n φ_n [Spectral Decomposition]
|
|
171
|
-
|
|
436
|
+
FourierFrame = Σ_n c_n φ_n FourierFrame_n [Eigenbasis Expansion]
|
|
172
437
|
γ = ∮ G_μ dx^μ [Geometric Phase]
|
|
173
438
|
c₁ = (1/2π) ∬ R_{μν} dS [Chern Number]
|
|
174
439
|
```
|
|
175
440
|
|
|
176
441
|
### Breaking Changes
|
|
177
442
|
|
|
178
|
-
- `QFrame` → `
|
|
179
|
-
- `QFrameSpectrum` → `
|
|
443
|
+
- `QFrame` → `FourierFrame` (old name works as alias)
|
|
444
|
+
- `QFrameSpectrum` → `FourierFrameSpectrum` (old name works as alias)
|
|
180
445
|
- `qframes.py` deleted (functionality moved to `frames.py`)
|
|
181
446
|
- Quantum-related classes removed (QuantumState, PathIntegral, Dirac notation)
|
|
182
447
|
|
|
@@ -187,11 +452,11 @@ c₁ = (1/2π) ∬ R_{μν} dS [Chern Number]
|
|
|
187
452
|
from coordinate_system import QFrame, QFrameSpectrum
|
|
188
453
|
|
|
189
454
|
# New code (recommended):
|
|
190
|
-
from coordinate_system import
|
|
455
|
+
from coordinate_system import FourierFrame, FourierFrameSpectrum
|
|
191
456
|
|
|
192
457
|
# Full classical spectral geometry toolkit:
|
|
193
458
|
from coordinate_system import (
|
|
194
|
-
|
|
459
|
+
FourierFrame, FourierFrameSpectrum,
|
|
195
460
|
IntrinsicGradient, CurvatureFromFrame,
|
|
196
461
|
BerryPhase, ChernNumber,
|
|
197
462
|
SpectralDecomposition, HeatKernel,
|
|
@@ -201,10 +466,10 @@ from coordinate_system import (
|
|
|
201
466
|
|
|
202
467
|
**Example: Heat Kernel Diffusion**
|
|
203
468
|
```python
|
|
204
|
-
from coordinate_system import
|
|
469
|
+
from coordinate_system import FourierFrame, HeatKernel
|
|
205
470
|
|
|
206
|
-
# Create a
|
|
207
|
-
frame_field = [[
|
|
471
|
+
# Create a FourierFrame field
|
|
472
|
+
frame_field = [[FourierFrame(q_factor=1.0 + 0.1j*(i+j))
|
|
208
473
|
for j in range(10)] for i in range(10)]
|
|
209
474
|
|
|
210
475
|
# Initialize heat kernel
|
|
@@ -372,17 +637,17 @@ visualize_surface(sphere, curvature_type='gaussian', show_colorbar=True)
|
|
|
372
637
|
|
|
373
638
|
# Spectral geometry (NEW in 6.0.1)
|
|
374
639
|
from coordinate_system import (
|
|
375
|
-
|
|
640
|
+
FourierFrame, IntrinsicGradient,
|
|
376
641
|
CurvatureFromFrame, BerryPhase
|
|
377
642
|
)
|
|
378
643
|
|
|
379
644
|
# Create frame field
|
|
380
|
-
frame_field = [[
|
|
645
|
+
frame_field = [[FourierFrame(q_factor=1.0 + 0.1j*(i+j))
|
|
381
646
|
for j in range(10)] for i in range(10)]
|
|
382
647
|
|
|
383
648
|
# Compute intrinsic gradient
|
|
384
649
|
grad_op = IntrinsicGradient(frame_field)
|
|
385
|
-
G_x = grad_op.compute_at((5, 5), 0) # ∂_x log
|
|
650
|
+
G_x = grad_op.compute_at((5, 5), 0) # ∂_x log FourierFrame
|
|
386
651
|
|
|
387
652
|
# Compute curvature
|
|
388
653
|
curv_calc = CurvatureFromFrame(frame_field)
|
|
@@ -403,7 +668,7 @@ gamma = berry.compute_along_path(path) # γ = ∮ G_μ dx^μ
|
|
|
403
668
|
```python
|
|
404
669
|
from coordinate_system import (
|
|
405
670
|
# Core classes
|
|
406
|
-
|
|
671
|
+
FourierFrame, QuantumState, PathIntegral, FourierFrameSpectrum,
|
|
407
672
|
|
|
408
673
|
# Spectral geometry core
|
|
409
674
|
IntrinsicGradient, CurvatureFromFrame,
|
|
@@ -422,20 +687,20 @@ from coordinate_system import (
|
|
|
422
687
|
)
|
|
423
688
|
|
|
424
689
|
# Create complex frame
|
|
425
|
-
cf =
|
|
690
|
+
cf = FourierFrame(base_coord=coord3(), q_factor=1.0+0.5j)
|
|
426
691
|
|
|
427
692
|
# Fourier transform (phase rotation)
|
|
428
|
-
cf_ft = cf.fourier_transform(theta=np.pi/2) #
|
|
693
|
+
cf_ft = cf.fourier_transform(theta=np.pi/2) # FourierFrame * e^{iθ}
|
|
429
694
|
|
|
430
695
|
# Conformal transform (scaling)
|
|
431
|
-
cf_conf = cf.conformal_transform(2.0) #
|
|
696
|
+
cf_conf = cf.conformal_transform(2.0) # FourierFrame * λ
|
|
432
697
|
|
|
433
698
|
# Intrinsic gradient operator
|
|
434
|
-
frame_field = [[
|
|
699
|
+
frame_field = [[FourierFrame(q_factor=1.0 + 0.1j*(i+j))
|
|
435
700
|
for j in range(16)] for i in range(16)]
|
|
436
701
|
grad_op = IntrinsicGradient(frame_field)
|
|
437
|
-
G_x = grad_op.compute_at((8, 8), 0) # G_x = ∂_x log
|
|
438
|
-
G_y = grad_op.compute_at((8, 8), 1) # G_y = ∂_y log
|
|
702
|
+
G_x = grad_op.compute_at((8, 8), 0) # G_x = ∂_x log FourierFrame
|
|
703
|
+
G_y = grad_op.compute_at((8, 8), 1) # G_y = ∂_y log FourierFrame
|
|
439
704
|
|
|
440
705
|
# Curvature from frame field
|
|
441
706
|
curv_calc = CurvatureFromFrame(frame_field)
|
|
@@ -452,7 +717,7 @@ chern = ChernNumber(curv_calc)
|
|
|
452
717
|
c1 = chern.compute() # c₁ = (1/2π) ∬ R_{μν} dS
|
|
453
718
|
|
|
454
719
|
# Spectral decomposition
|
|
455
|
-
# First create a
|
|
720
|
+
# First create a FourierFrameSpectrum from coordinate field
|
|
456
721
|
import numpy as np
|
|
457
722
|
coord_field = [[coord3(vec3(i, j, 0)) for j in range(16)] for i in range(16)]
|
|
458
723
|
spectrum = spectral_transform(coord_field)
|
|
@@ -545,7 +810,7 @@ visualize_surface(
|
|
|
545
810
|
|
|
546
811
|
```python
|
|
547
812
|
from coordinate_system import (
|
|
548
|
-
|
|
813
|
+
FourierFrame, IntrinsicGradient,
|
|
549
814
|
CurvatureFromFrame, BerryPhase, ChernNumber,
|
|
550
815
|
SpectralDecomposition, spectral_transform
|
|
551
816
|
)
|
|
@@ -560,7 +825,7 @@ for i in range(ny):
|
|
|
560
825
|
phase = 2*np.pi*(i/ny + j/nx)
|
|
561
826
|
amplitude = 1.0 + 0.3*np.sin(2*np.pi*i/ny)*np.cos(2*np.pi*j/nx)
|
|
562
827
|
q = amplitude * np.exp(1j * phase)
|
|
563
|
-
row.append(
|
|
828
|
+
row.append(FourierFrame(q_factor=q))
|
|
564
829
|
frame_field.append(row)
|
|
565
830
|
|
|
566
831
|
# 1. Intrinsic gradient
|
|
@@ -656,10 +921,25 @@ Benchmark on Intel i7-10700K @ 3.8GHz:
|
|
|
656
921
|
|
|
657
922
|
## Changelog
|
|
658
923
|
|
|
924
|
+
### Version 6.0.3 (2025-12-04)
|
|
925
|
+
- 🚀 **U(3) GAUGE THEORY FRAMEWORK**: Complete implementation of unified gauge field theory
|
|
926
|
+
- ✨ **U3Frame Class**: Full 3×3 unitary matrix representation (U(3) group)
|
|
927
|
+
- ✨ **Symmetry Decomposition**: U(3) → SU(3) × SU(2) × U(1) breaking chain
|
|
928
|
+
- 🎨 **Color-Space Duality**: RGB color phases ↔ Spatial axes correspondence
|
|
929
|
+
- 🌟 **GaugeConnection**: Unified gauge potential A_μ = A^{SU(3)} + A^{SU(2)} + A^{U(1)}
|
|
930
|
+
- 🌟 **FieldStrength**: Yang-Mills field tensor F_μν with action & topological charge
|
|
931
|
+
- 🔬 **Gell-Mann Matrices**: Complete SU(3) generators (8 matrices)
|
|
932
|
+
- 🔬 **Pauli Matrices**: SU(2) generators (3 matrices)
|
|
933
|
+
- 🎯 **Quaternion ↔ SU(2)**: Direct correspondence interface
|
|
934
|
+
- ⚛️ **Imaginary Time Evolution**: U(τ) = exp(-τĤ) U(0) with Wick rotation
|
|
935
|
+
- 🔮 **Symmetry Breaking**: Higgs-type potential with vacuum state finder
|
|
936
|
+
- 📚 **Complete Documentation**: Theory guide, upgrade summary, demo programs
|
|
937
|
+
- 🗑️ **Cleanup**: Removed obsolete build files and created .gitignore
|
|
938
|
+
|
|
659
939
|
### Version 6.0.1 (2025-12-04)
|
|
660
940
|
- 🎯 **COMPLETE SPECTRAL GEOMETRY**: Full implementation of quantum spectral geometry framework
|
|
661
|
-
- ✨ **
|
|
662
|
-
- 🌟 **IntrinsicGradient**: G_μ = d/dx^μ log
|
|
941
|
+
- ✨ **FourierFrame Renaming**: QFrame → FourierFrame (clearer naming)
|
|
942
|
+
- 🌟 **IntrinsicGradient**: G_μ = d/dx^μ log FourierFrame(x)
|
|
663
943
|
- 🌟 **CurvatureFromFrame**: R_{μν} = [G_μ, G_ν]
|
|
664
944
|
- 🌟 **BerryPhase**: γ = ∮ G_μ dx^μ (geometric phase)
|
|
665
945
|
- 🌟 **ChernNumber**: c₁ = (1/2π) ∬ R_{μν} dS (topological invariant)
|