coordinate-system 6.0.1__tar.gz → 6.0.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (21) hide show
  1. {coordinate_system-6.0.1/coordinate_system.egg-info → coordinate_system-6.0.3}/PKG-INFO +327 -47
  2. {coordinate_system-6.0.1 → coordinate_system-6.0.3}/README.md +326 -46
  3. {coordinate_system-6.0.1 → coordinate_system-6.0.3}/coordinate_system/__init__.py +31 -8
  4. {coordinate_system-6.0.1 → coordinate_system-6.0.3}/coordinate_system/fourier_spectral.py +12 -12
  5. {coordinate_system-6.0.1 → coordinate_system-6.0.3}/coordinate_system/frames.py +142 -111
  6. coordinate_system-6.0.3/coordinate_system/u3_frame.py +885 -0
  7. {coordinate_system-6.0.1 → coordinate_system-6.0.3/coordinate_system.egg-info}/PKG-INFO +327 -47
  8. {coordinate_system-6.0.1 → coordinate_system-6.0.3}/coordinate_system.egg-info/SOURCES.txt +1 -0
  9. {coordinate_system-6.0.1 → coordinate_system-6.0.3}/setup.py +2 -2
  10. {coordinate_system-6.0.1 → coordinate_system-6.0.3}/LICENSE +0 -0
  11. {coordinate_system-6.0.1 → coordinate_system-6.0.3}/MANIFEST.in +0 -0
  12. {coordinate_system-6.0.1 → coordinate_system-6.0.3}/coordinate_system/curve_interpolation.py +0 -0
  13. {coordinate_system-6.0.1 → coordinate_system-6.0.3}/coordinate_system/differential_geometry.py +0 -0
  14. {coordinate_system-6.0.1 → coordinate_system-6.0.3}/coordinate_system/visualization.py +0 -0
  15. {coordinate_system-6.0.1 → coordinate_system-6.0.3}/coordinate_system.egg-info/dependency_links.txt +0 -0
  16. {coordinate_system-6.0.1 → coordinate_system-6.0.3}/coordinate_system.egg-info/not-zip-safe +0 -0
  17. {coordinate_system-6.0.1 → coordinate_system-6.0.3}/coordinate_system.egg-info/requires.txt +0 -0
  18. {coordinate_system-6.0.1 → coordinate_system-6.0.3}/coordinate_system.egg-info/top_level.txt +0 -0
  19. {coordinate_system-6.0.1 → coordinate_system-6.0.3}/coordinate_system_binding.cpp +0 -0
  20. {coordinate_system-6.0.1 → coordinate_system-6.0.3}/pmsys_minimal.hpp +0 -0
  21. {coordinate_system-6.0.1 → coordinate_system-6.0.3}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: coordinate_system
3
- Version: 6.0.1
3
+ Version: 6.0.3
4
4
  Summary: High-performance 3D coordinate system library with unified differential geometry, quantum frame algebra, spectral transforms, and professional curvature visualization
5
5
  Home-page: https://github.com/panguojun/Coordinate-System
6
6
  Author: PanGuoJun
@@ -50,46 +50,311 @@ Requires-Dist: matplotlib>=3.3.0
50
50
  [![License](https://img.shields.io/badge/license-MIT-green.svg)](LICENSE)
51
51
 
52
52
  **Author:** PanGuoJun
53
- **Version:** 6.0.1
53
+ **Version:** 6.0.3
54
54
  **License:** MIT
55
55
 
56
56
  ---
57
57
 
58
+ ## 🆕 What's New in v6.0.3 (2025-12-04)
59
+
60
+ ### U(3) Gauge Theory Framework - Unified Complex Frame & Gauge Fields
61
+
62
+ **Complete implementation of gauge field theory based on U(3) unitary group** - A groundbreaking framework unifying geometry, topology, and gauge field theory through complex frames.
63
+
64
+ > **Theoretical Foundation**:
65
+ >
66
+ > Based on the paper "*Geometric-Topological Duality: Complex Frame as Unified Structure of Spacetime and Gauge Fields*", this implementation realizes:
67
+ > - **U(3) Complex Frame**: Full 3×3 unitary matrix representation
68
+ > - **Symmetry Breaking Chain**: SU(4) → SU(3) × SU(2) × U(1)
69
+ > - **Color-Space Duality**: RGB color phases ↔ Spatial axes
70
+ > - **Imaginary Time Embedding**: ℝ³ × iℝ → Internal rotation degrees of freedom
71
+
72
+ #### 🎯 **New U(3) Frame Module**
73
+
74
+ **U3Frame Class** - Complete U(3) unitary frame:
75
+
76
+ ```python
77
+ from coordinate_system import U3Frame
78
+ import numpy as np
79
+
80
+ # Create U(3) frame with color phases
81
+ theta_R, theta_G, theta_B = 0.1, 0.3, -0.4 # RGB phases
82
+ e1 = np.array([np.exp(1j * theta_R), 0, 0])
83
+ e2 = np.array([0, np.exp(1j * theta_G), 0])
84
+ e3 = np.array([0, 0, np.exp(1j * theta_B)])
85
+
86
+ frame = U3Frame(e1, e2, e3)
87
+
88
+ # Symmetry decomposition
89
+ su3_comp, u1_phase = frame.to_su3_u1() # U(3) = SU(3) × U(1)
90
+
91
+ # Color phases (Red, Green, Blue)
92
+ phases = frame.color_phases() # (θ_R, θ_G, θ_B)
93
+
94
+ # Quaternion representation (SU(2) subgroup)
95
+ q = frame.to_quaternion_representation()
96
+ ```
97
+
98
+ #### 🌟 **Gauge Field Theory**
99
+
100
+ **GaugeConnection Class** - Unified gauge field representation:
101
+
102
+ ```python
103
+ from coordinate_system import GaugeConnection, FieldStrength
104
+
105
+ # Create gauge connection A_μ = A^{SU(3)} + A^{SU(2)} + A^{U(1)}
106
+ connection = GaugeConnection(
107
+ su3_component=np.random.randn(8) * 0.1, # 8 gluons (QCD)
108
+ su2_component=np.random.randn(3) * 0.1, # 3 W/Z bosons (weak)
109
+ u1_component=0.05+0.02j # 1 photon (EM)
110
+ )
111
+
112
+ # Field strength tensor F_μν = [A_μ, A_ν]
113
+ F = connection_x.field_strength(connection_y)
114
+
115
+ # Yang-Mills action
116
+ S_YM = F.yang_mills_action()
117
+
118
+ # Topological charge (Instanton number)
119
+ Q = F.topological_charge()
120
+ ```
121
+
122
+ #### 🔬 **Core Features**
123
+
124
+ **1. Complete U(3) Unitary Frame**
125
+ ```python
126
+ U(x) = [𝐞₁, 𝐞₂, 𝐞₃] ∈ U(3)
127
+ Each column: 𝐞ₖ = 𝐚ₖ + i𝐛ₖ ∈ ℂ³
128
+ ```
129
+ - Full 3×3 complex matrix representation
130
+ - Gram-Schmidt orthonormalization
131
+ - Unitary property: U† U = I
132
+
133
+ **2. Symmetry Decomposition**
134
+ ```python
135
+ U(3) = SU(3) × U(1)
136
+ SU(3) ⊃ SU(2) × U(1)
137
+ ```
138
+ - SU(3): 8 generators (Gell-Mann matrices)
139
+ - SU(2): 3 generators (Pauli matrices)
140
+ - U(1): Global phase
141
+
142
+ **3. Color-Space Duality**
143
+ ```
144
+ Spatial Axis ↔ Color Charge
145
+ ─────────────────────────────
146
+ x-axis (e₁) ↔ Red (θ₁)
147
+ y-axis (e₂) ↔ Green (θ₂)
148
+ z-axis (e₃) ↔ Blue (θ₃)
149
+
150
+ Constraint: θ₁ + θ₂ + θ₃ = φ (color singlet)
151
+ ```
152
+
153
+ **4. Gauge Transformations**
154
+ ```python
155
+ # U(1) gauge transform
156
+ frame_u1 = frame.gauge_transform_u1(phi)
157
+
158
+ # SU(2) gauge transform (weak interaction)
159
+ frame_su2 = frame.gauge_transform_su2((θx, θy, θz))
160
+
161
+ # SU(3) gauge transform (strong interaction)
162
+ frame_su3 = frame.gauge_transform_su3(gell_mann_params)
163
+ ```
164
+
165
+ **5. Imaginary Time Evolution**
166
+ ```python
167
+ # Imaginary time evolution U(τ) = exp(-τĤ) U(0)
168
+ frame_tau = frame.imaginary_time_evolution(tau=0.5, hamiltonian=H)
169
+
170
+ # Wick rotation: t → -iτ
171
+ frame_wick = frame.wick_rotation(real_time=1.0)
172
+ ```
173
+
174
+ **6. Symmetry Breaking Potential**
175
+ ```python
176
+ from coordinate_system import SymmetryBreakingPotential
177
+
178
+ # Higgs-type potential
179
+ potential = SymmetryBreakingPotential(
180
+ mu_squared=-1.0, # Negative triggers breaking
181
+ lambda_coupling=0.5,
182
+ gamma_coupling=0.1
183
+ )
184
+
185
+ # Find vacuum state
186
+ frame_vacuum = potential.find_vacuum()
187
+ ```
188
+
189
+ #### 📐 **Physical Interpretation**
190
+
191
+ **Unified Framework:**
192
+ ```
193
+ U(3) Complex Frame
194
+ / | \
195
+ / | \
196
+ Geometry Gauge Field Imaginary Time
197
+ (Real Part) (Connection) (Imag Part)
198
+ | | |
199
+ V V V
200
+ Metric Interactions Evolution
201
+ ```
202
+
203
+ **Standard Model Gauge Group:**
204
+ | Layer | Gauge Group | Physical Field | Implementation |
205
+ |-------|-------------|----------------|----------------|
206
+ | **Strong** | SU(3) | 8 Gluons | `su3_component` |
207
+ | **Weak** | SU(2) | W⁺, W⁻, Z⁰ | `su2_component` |
208
+ | **EM** | U(1) | Photon (γ) | `u1_component` |
209
+ | **Unified** | U(3) | **Complex Frame** | `U3Frame` |
210
+
211
+ #### 🚀 **New Classes & Functions**
212
+
213
+ ```python
214
+ from coordinate_system import (
215
+ # Core U(3) classes
216
+ U3Frame, # Complete U(3) unitary frame
217
+ SU3Component, # SU(3) decomposition
218
+
219
+ # Gauge field classes
220
+ GaugeConnection, # Gauge potential A_μ
221
+ FieldStrength, # Field strength F_μν
222
+
223
+ # Symmetry breaking
224
+ SymmetryBreakingPotential, # Higgs-type potential
225
+
226
+ # Constants
227
+ C_SPEED, # Speed of light
228
+ )
229
+ ```
230
+
231
+ #### 📚 **Documentation**
232
+
233
+ - **Theory Guide**: `.doc/U3_FRAME_THEORY.md` - Complete mathematical framework
234
+ - **Upgrade Summary**: `UPGRADE_SUMMARY.md` - Detailed comparison with v6.0.1
235
+ - **Demo Program**: `examples/u3_gauge_theory_demo.py` - 9 comprehensive demonstrations
236
+ - **Original Paper**: `复标架与规范场.md` - Theoretical foundation
237
+
238
+ #### 🎓 **Example: Complete Gauge Theory Workflow**
239
+
240
+ ```python
241
+ from coordinate_system import U3Frame, GaugeConnection, SymmetryBreakingPotential
242
+ import numpy as np
243
+
244
+ # 1. Create U(3) frame with color phases
245
+ theta_R, theta_G, theta_B = 0.1, 0.2, -0.3
246
+ e1 = np.array([np.exp(1j * theta_R), 0, 0])
247
+ e2 = np.array([0, np.exp(1j * theta_G), 0])
248
+ e3 = np.array([0, 0, np.exp(1j * theta_B)])
249
+ frame = U3Frame(e1, e2, e3)
250
+
251
+ # 2. Decompose to SU(3) × U(1)
252
+ su3_comp, u1_phase = frame.to_su3_u1()
253
+ print(f"SU(3) det: {np.linalg.det(su3_comp.matrix):.6f}") # Should be 1
254
+
255
+ # 3. Create gauge connections
256
+ connection_x = GaugeConnection(
257
+ su3_component=np.random.randn(8) * 0.1, # Gluons
258
+ su2_component=np.random.randn(3) * 0.1, # W/Z bosons
259
+ u1_component=0.05+0.02j # Photon
260
+ )
261
+ connection_y = GaugeConnection(...)
262
+
263
+ # 4. Calculate field strength
264
+ F_xy = connection_x.field_strength(connection_y)
265
+ S_YM = F_xy.yang_mills_action()
266
+ Q = F_xy.topological_charge()
267
+ print(f"Yang-Mills action: {S_YM:.6f}")
268
+ print(f"Topological charge: {Q:.6f}")
269
+
270
+ # 5. Symmetry breaking
271
+ potential = SymmetryBreakingPotential(mu_squared=-1.0)
272
+ frame_vacuum = potential.find_vacuum()
273
+ V_vac = potential.potential(frame_vacuum)
274
+ print(f"Vacuum energy: {V_vac:.6f}")
275
+
276
+ # 6. Gauge transformations
277
+ frame_u1 = frame.gauge_transform_u1(np.pi/4)
278
+ frame_su2 = frame.gauge_transform_su2((0.1, 0.2, 0.3))
279
+ frame_su3 = frame.gauge_transform_su3(np.random.randn(8) * 0.1)
280
+
281
+ # 7. Imaginary time evolution
282
+ H = np.diag([1.0, 2.0, 3.0])
283
+ frame_evolved = frame.imaginary_time_evolution(tau=0.5, hamiltonian=H)
284
+ ```
285
+
286
+ #### 🔑 **Key Formulas Implemented**
287
+
288
+ ```
289
+ U(x) = [e₁, e₂, e₃] ∈ U(3) [U(3) Frame]
290
+ U(3) = SU(3) × U(1) [Decomposition]
291
+ A_μ = A_μ^{SU(3)} + A_μ^{SU(2)} + A_μ^{U(1)} [Gauge Connection]
292
+ F_μν = ∂_μ A_ν - ∂_ν A_μ + [A_μ, A_ν] [Field Strength]
293
+ S_YM = -1/(4g²) Tr(F_μν F^μν) [Yang-Mills Action]
294
+ U(τ) = exp(-τĤ) U(0) [Imaginary Time]
295
+ V(U) = -μ² Tr(U†U) + λ[Tr(U†U)]² + ... [Symmetry Breaking]
296
+ ```
297
+
298
+ ### New Features Summary
299
+
300
+ - ✅ **Complete U(3) unitary matrix representation**
301
+ - ✅ **Symmetry decomposition: U(3) → SU(3) × SU(2) × U(1)**
302
+ - ✅ **Color phase extraction (Red, Green, Blue)**
303
+ - ✅ **Quaternion ↔ SU(2) correspondence**
304
+ - ✅ **Three gauge transformations (U(1), SU(2), SU(3))**
305
+ - ✅ **Gell-Mann & Pauli matrix implementations**
306
+ - ✅ **Gauge connection A_μ ∈ 𝔲(3)**
307
+ - ✅ **Field strength tensor F_μν**
308
+ - ✅ **Yang-Mills action & topological charge**
309
+ - ✅ **Imaginary time evolution & Wick rotation**
310
+ - ✅ **Symmetry breaking potential & vacuum finder**
311
+ - ✅ **Complete documentation & demos**
312
+
313
+ ### Philosophical Vision
314
+
315
+ > *"The real part describes the space we inhabit,*
316
+ > *The imaginary part describes the time we traverse,*
317
+ > *The complex frame describes the existence we are."*
318
+ >
319
+ > — From the unified gauge theory framework
320
+
321
+ ---
322
+
58
323
  ## 🆕 What's New in v6.0.1 (2025-12-04)
59
324
 
60
325
  ### Classical Spectral Geometry Implementation
61
326
 
62
- **ComplexFrame-Based Spectral Geometry** - Complete implementation of **classical geometric spectral analysis** using ComplexFrame as the mathematical foundation
327
+ **FourierFrame-Based Spectral Geometry** - Complete implementation of **classical geometric spectral analysis** using FourierFrame as the mathematical foundation
63
328
 
64
329
  > **Important Design Philosophy**:
65
330
  >
66
- > This library follows the progression: **Coordinate System (Geometric Frame) → Curvature Computation → ComplexFrame → Spectral Geometry**
331
+ > This library follows the progression: **Coordinate System (Geometric Frame) → Curvature Computation → FourierFrame → Spectral Geometry**
67
332
  >
68
333
  > All implementations are **classical geometric tools** suitable for numerical computation on standard computers. While the mathematical formalism resembles quantum theory, this is purely **classical differential geometry** without quantum physical interpretation.
69
334
 
70
335
  #### 🎯 **Core Class Renaming (Breaking Change)**
71
- - **QFrame → ComplexFrame**: More descriptive name avoiding confusion with generic "Frame"
72
- - **QFrameSpectrum → ComplexFrameSpectrum**: Consistent naming convention
336
+ - **QFrame → FourierFrame**: More descriptive name avoiding confusion with generic "Frame"
337
+ - **QFrameSpectrum → FourierFrameSpectrum**: Consistent naming convention
73
338
  - **Backward Compatibility**: All old names (QFrame, QFrameSpectrum) retained as aliases
74
339
 
75
- #### 🌟 **ComplexFrame as Mathematical Foundation**
340
+ #### 🌟 **FourierFrame as Mathematical Foundation**
76
341
 
77
- **ComplexFrame represents the mathematical language for all spectral geometry formulas:**
342
+ **FourierFrame represents the mathematical language for all spectral geometry formulas:**
78
343
 
79
- **1. ComplexFrame Algebra (复标架代数)**
344
+ **1. FourierFrame Algebra (复标架代数)**
80
345
  ```python
81
346
  # Core transformations
82
- ComplexFrame * e^{iθ} # Fourier transform (phase rotation)
83
- ComplexFrame * λ # Conformal transform (scaling)
84
- e^{tΔ} ComplexFrame # Diffusion evolution (heat equation solution)
347
+ FourierFrame * e^{iθ} # Fourier transform (phase rotation)
348
+ FourierFrame * λ # Conformal transform (scaling)
349
+ e^{tΔ} FourierFrame # Diffusion evolution (heat equation solution)
85
350
  ```
86
- - Complex extension of coordinate frames: ComplexFrame = coord3 ⊗ ℂ
351
+ - Complex extension of coordinate frames: FourierFrame = coord3 ⊗ ℂ
87
352
  - Mathematical tool for spectral analysis (not quantum states)
88
- - Laplacian operator: Δ log ComplexFrame
353
+ - Laplacian operator: Δ log FourierFrame
89
354
 
90
355
  **2. IntrinsicGradient (内禀梯度算子)**
91
356
  ```python
92
- G_μ = d/dx^μ log ComplexFrame(x)
357
+ G_μ = d/dx^μ log FourierFrame(x)
93
358
  ```
94
359
  - **Geometric meaning**: Local frame rotation rate (covariant derivative)
95
360
  - Corresponds to connection 1-form in Riemannian geometry
@@ -101,7 +366,7 @@ G_μ = d/dx^μ log ComplexFrame(x)
101
366
  ∂u/∂t = Δu (Classical heat equation)
102
367
  Tr(e^{tΔ}) ~ (4πt)^{-d/2} [a₀ + a₁t + a₂t² + ...]
103
368
  ```
104
- - **ComplexFrame evolution**: ComplexFrame(x,t) = e^{tΔ} ComplexFrame(x,0)
369
+ - **FourierFrame evolution**: FourierFrame(x,t) = e^{tΔ} FourierFrame(x,0)
105
370
  - **Classical diffusion process** (NOT quantum imaginary time)
106
371
  - Heat kernel coefficients encode geometric invariants:
107
372
  - a₀ = Volume of manifold
@@ -112,9 +377,9 @@ Tr(e^{tΔ}) ~ (4πt)^{-d/2} [a₀ + a₁t + a₂t² + ...]
112
377
  **4. SpectralDecomposition (谱分解)**
113
378
  ```python
114
379
  Δφ_n = -λ_n φ_n (Laplacian eigenvalue problem)
115
- ComplexFrame(x) = Σ_n c_n φ_n(x) ComplexFrame_n
380
+ FourierFrame(x) = Σ_n c_n φ_n(x) FourierFrame_n
116
381
  ```
117
- - **ComplexFrame as eigenstates**: Expansion in Laplacian eigenbasis
382
+ - **FourierFrame as eigenstates**: Expansion in Laplacian eigenbasis
118
383
  - **Shape DNA**: Eigenvalue spectrum {λ_n} characterizes manifold geometry
119
384
  - Weyl asymptotic law: N(λ) ~ (1/4π) Area(M) λ (2D case)
120
385
  - **Classical spectral theory**: "Can one hear the shape of a drum?" (Kac, 1966)
@@ -134,7 +399,7 @@ c₁ = (1/2π) ∬_M R_{μν} dS
134
399
  ```
135
400
  - **Topological invariant** of fiber bundle
136
401
  - Integer-valued geometric index
137
- - Characterizes global geometry of ComplexFrame field
402
+ - Characterizes global geometry of FourierFrame field
138
403
  - **Classical topology**: No quantum Hall effect interpretation here
139
404
 
140
405
  **7. CurvatureFromFrame (曲率计算)**
@@ -142,7 +407,7 @@ c₁ = (1/2π) ∬_M R_{μν} dS
142
407
  R_{μν} = [G_μ, G_ν]
143
408
  K = -Im(R_{xy}) (Gaussian curvature, for complex frames)
144
409
  ```
145
- - Curvature computed from ComplexFrame field
410
+ - Curvature computed from FourierFrame field
146
411
  - Intrinsic gradient formulation
147
412
  - **Classical differential geometry**
148
413
 
@@ -162,21 +427,21 @@ K = -Im(R_{xy}) (Gaussian curvature, for complex frames)
162
427
 
163
428
  #### 🔬 **Core Formulas Summary**
164
429
  ```
165
- ComplexFrame = coord3 ⊗ ℂ [Mathematical Foundation]
166
- G_μ = d/dx^μ log ComplexFrame(x) [Intrinsic Gradient]
430
+ FourierFrame = coord3 ⊗ ℂ [Mathematical Foundation]
431
+ G_μ = d/dx^μ log FourierFrame(x) [Intrinsic Gradient]
167
432
  R_{μν} = [G_μ, G_ν] [Curvature]
168
- Δ log ComplexFrame = ∂²/∂x² + ∂²/∂y² [Laplacian]
169
- e^{tΔ} ComplexFrame = Heat diffusion evolution [Heat Kernel]
433
+ Δ log FourierFrame = ∂²/∂x² + ∂²/∂y² [Laplacian]
434
+ e^{tΔ} FourierFrame = Heat diffusion evolution [Heat Kernel]
170
435
  Δφ_n = -λ_n φ_n [Spectral Decomposition]
171
- ComplexFrame = Σ_n c_n φ_n ComplexFrame_n [Eigenbasis Expansion]
436
+ FourierFrame = Σ_n c_n φ_n FourierFrame_n [Eigenbasis Expansion]
172
437
  γ = ∮ G_μ dx^μ [Geometric Phase]
173
438
  c₁ = (1/2π) ∬ R_{μν} dS [Chern Number]
174
439
  ```
175
440
 
176
441
  ### Breaking Changes
177
442
 
178
- - `QFrame` → `ComplexFrame` (old name works as alias)
179
- - `QFrameSpectrum` → `ComplexFrameSpectrum` (old name works as alias)
443
+ - `QFrame` → `FourierFrame` (old name works as alias)
444
+ - `QFrameSpectrum` → `FourierFrameSpectrum` (old name works as alias)
180
445
  - `qframes.py` deleted (functionality moved to `frames.py`)
181
446
  - Quantum-related classes removed (QuantumState, PathIntegral, Dirac notation)
182
447
 
@@ -187,11 +452,11 @@ c₁ = (1/2π) ∬ R_{μν} dS [Chern Number]
187
452
  from coordinate_system import QFrame, QFrameSpectrum
188
453
 
189
454
  # New code (recommended):
190
- from coordinate_system import ComplexFrame, ComplexFrameSpectrum
455
+ from coordinate_system import FourierFrame, FourierFrameSpectrum
191
456
 
192
457
  # Full classical spectral geometry toolkit:
193
458
  from coordinate_system import (
194
- ComplexFrame, ComplexFrameSpectrum,
459
+ FourierFrame, FourierFrameSpectrum,
195
460
  IntrinsicGradient, CurvatureFromFrame,
196
461
  BerryPhase, ChernNumber,
197
462
  SpectralDecomposition, HeatKernel,
@@ -201,10 +466,10 @@ from coordinate_system import (
201
466
 
202
467
  **Example: Heat Kernel Diffusion**
203
468
  ```python
204
- from coordinate_system import ComplexFrame, HeatKernel
469
+ from coordinate_system import FourierFrame, HeatKernel
205
470
 
206
- # Create a ComplexFrame field
207
- frame_field = [[ComplexFrame(q_factor=1.0 + 0.1j*(i+j))
471
+ # Create a FourierFrame field
472
+ frame_field = [[FourierFrame(q_factor=1.0 + 0.1j*(i+j))
208
473
  for j in range(10)] for i in range(10)]
209
474
 
210
475
  # Initialize heat kernel
@@ -372,17 +637,17 @@ visualize_surface(sphere, curvature_type='gaussian', show_colorbar=True)
372
637
 
373
638
  # Spectral geometry (NEW in 6.0.1)
374
639
  from coordinate_system import (
375
- ComplexFrame, IntrinsicGradient,
640
+ FourierFrame, IntrinsicGradient,
376
641
  CurvatureFromFrame, BerryPhase
377
642
  )
378
643
 
379
644
  # Create frame field
380
- frame_field = [[ComplexFrame(q_factor=1.0 + 0.1j*(i+j))
645
+ frame_field = [[FourierFrame(q_factor=1.0 + 0.1j*(i+j))
381
646
  for j in range(10)] for i in range(10)]
382
647
 
383
648
  # Compute intrinsic gradient
384
649
  grad_op = IntrinsicGradient(frame_field)
385
- G_x = grad_op.compute_at((5, 5), 0) # ∂_x log ComplexFrame
650
+ G_x = grad_op.compute_at((5, 5), 0) # ∂_x log FourierFrame
386
651
 
387
652
  # Compute curvature
388
653
  curv_calc = CurvatureFromFrame(frame_field)
@@ -403,7 +668,7 @@ gamma = berry.compute_along_path(path) # γ = ∮ G_μ dx^μ
403
668
  ```python
404
669
  from coordinate_system import (
405
670
  # Core classes
406
- ComplexFrame, QuantumState, PathIntegral, ComplexFrameSpectrum,
671
+ FourierFrame, QuantumState, PathIntegral, FourierFrameSpectrum,
407
672
 
408
673
  # Spectral geometry core
409
674
  IntrinsicGradient, CurvatureFromFrame,
@@ -422,20 +687,20 @@ from coordinate_system import (
422
687
  )
423
688
 
424
689
  # Create complex frame
425
- cf = ComplexFrame(base_coord=coord3(), q_factor=1.0+0.5j)
690
+ cf = FourierFrame(base_coord=coord3(), q_factor=1.0+0.5j)
426
691
 
427
692
  # Fourier transform (phase rotation)
428
- cf_ft = cf.fourier_transform(theta=np.pi/2) # ComplexFrame * e^{iθ}
693
+ cf_ft = cf.fourier_transform(theta=np.pi/2) # FourierFrame * e^{iθ}
429
694
 
430
695
  # Conformal transform (scaling)
431
- cf_conf = cf.conformal_transform(2.0) # ComplexFrame * λ
696
+ cf_conf = cf.conformal_transform(2.0) # FourierFrame * λ
432
697
 
433
698
  # Intrinsic gradient operator
434
- frame_field = [[ComplexFrame(q_factor=1.0 + 0.1j*(i+j))
699
+ frame_field = [[FourierFrame(q_factor=1.0 + 0.1j*(i+j))
435
700
  for j in range(16)] for i in range(16)]
436
701
  grad_op = IntrinsicGradient(frame_field)
437
- G_x = grad_op.compute_at((8, 8), 0) # G_x = ∂_x log ComplexFrame
438
- G_y = grad_op.compute_at((8, 8), 1) # G_y = ∂_y log ComplexFrame
702
+ G_x = grad_op.compute_at((8, 8), 0) # G_x = ∂_x log FourierFrame
703
+ G_y = grad_op.compute_at((8, 8), 1) # G_y = ∂_y log FourierFrame
439
704
 
440
705
  # Curvature from frame field
441
706
  curv_calc = CurvatureFromFrame(frame_field)
@@ -452,7 +717,7 @@ chern = ChernNumber(curv_calc)
452
717
  c1 = chern.compute() # c₁ = (1/2π) ∬ R_{μν} dS
453
718
 
454
719
  # Spectral decomposition
455
- # First create a ComplexFrameSpectrum from coordinate field
720
+ # First create a FourierFrameSpectrum from coordinate field
456
721
  import numpy as np
457
722
  coord_field = [[coord3(vec3(i, j, 0)) for j in range(16)] for i in range(16)]
458
723
  spectrum = spectral_transform(coord_field)
@@ -545,7 +810,7 @@ visualize_surface(
545
810
 
546
811
  ```python
547
812
  from coordinate_system import (
548
- ComplexFrame, IntrinsicGradient,
813
+ FourierFrame, IntrinsicGradient,
549
814
  CurvatureFromFrame, BerryPhase, ChernNumber,
550
815
  SpectralDecomposition, spectral_transform
551
816
  )
@@ -560,7 +825,7 @@ for i in range(ny):
560
825
  phase = 2*np.pi*(i/ny + j/nx)
561
826
  amplitude = 1.0 + 0.3*np.sin(2*np.pi*i/ny)*np.cos(2*np.pi*j/nx)
562
827
  q = amplitude * np.exp(1j * phase)
563
- row.append(ComplexFrame(q_factor=q))
828
+ row.append(FourierFrame(q_factor=q))
564
829
  frame_field.append(row)
565
830
 
566
831
  # 1. Intrinsic gradient
@@ -656,10 +921,25 @@ Benchmark on Intel i7-10700K @ 3.8GHz:
656
921
 
657
922
  ## Changelog
658
923
 
924
+ ### Version 6.0.3 (2025-12-04)
925
+ - 🚀 **U(3) GAUGE THEORY FRAMEWORK**: Complete implementation of unified gauge field theory
926
+ - ✨ **U3Frame Class**: Full 3×3 unitary matrix representation (U(3) group)
927
+ - ✨ **Symmetry Decomposition**: U(3) → SU(3) × SU(2) × U(1) breaking chain
928
+ - 🎨 **Color-Space Duality**: RGB color phases ↔ Spatial axes correspondence
929
+ - 🌟 **GaugeConnection**: Unified gauge potential A_μ = A^{SU(3)} + A^{SU(2)} + A^{U(1)}
930
+ - 🌟 **FieldStrength**: Yang-Mills field tensor F_μν with action & topological charge
931
+ - 🔬 **Gell-Mann Matrices**: Complete SU(3) generators (8 matrices)
932
+ - 🔬 **Pauli Matrices**: SU(2) generators (3 matrices)
933
+ - 🎯 **Quaternion ↔ SU(2)**: Direct correspondence interface
934
+ - ⚛️ **Imaginary Time Evolution**: U(τ) = exp(-τĤ) U(0) with Wick rotation
935
+ - 🔮 **Symmetry Breaking**: Higgs-type potential with vacuum state finder
936
+ - 📚 **Complete Documentation**: Theory guide, upgrade summary, demo programs
937
+ - 🗑️ **Cleanup**: Removed obsolete build files and created .gitignore
938
+
659
939
  ### Version 6.0.1 (2025-12-04)
660
940
  - 🎯 **COMPLETE SPECTRAL GEOMETRY**: Full implementation of quantum spectral geometry framework
661
- - ✨ **ComplexFrame Renaming**: QFrame → ComplexFrame (clearer naming)
662
- - 🌟 **IntrinsicGradient**: G_μ = d/dx^μ log ComplexFrame(x)
941
+ - ✨ **FourierFrame Renaming**: QFrame → FourierFrame (clearer naming)
942
+ - 🌟 **IntrinsicGradient**: G_μ = d/dx^μ log FourierFrame(x)
663
943
  - 🌟 **CurvatureFromFrame**: R_{μν} = [G_μ, G_ν]
664
944
  - 🌟 **BerryPhase**: γ = ∮ G_μ dx^μ (geometric phase)
665
945
  - 🌟 **ChernNumber**: c₁ = (1/2π) ∬ R_{μν} dS (topological invariant)