continualcode 0.1.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- continualcode-0.1.0/.gitignore +11 -0
- continualcode-0.1.0/LICENSE +21 -0
- continualcode-0.1.0/PKG-INFO +115 -0
- continualcode-0.1.0/README.md +86 -0
- continualcode-0.1.0/demo_project/README.md +47 -0
- continualcode-0.1.0/pyproject.toml +71 -0
- continualcode-0.1.0/src/continualcode/__init__.py +17 -0
- continualcode-0.1.0/src/continualcode/cli.py +67 -0
- continualcode-0.1.0/src/continualcode/session.py +357 -0
- continualcode-0.1.0/src/continualcode/tools.py +230 -0
- continualcode-0.1.0/src/continualcode/tui.py +994 -0
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2025 Surya Dantuluri
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
|
@@ -0,0 +1,115 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: continualcode
|
|
3
|
+
Version: 0.1.0
|
|
4
|
+
Summary: Human-in-the-loop coding agent with online learning via prompt distillation
|
|
5
|
+
Project-URL: Homepage, https://github.com/sdan/continualcode
|
|
6
|
+
Project-URL: Repository, https://github.com/sdan/continualcode
|
|
7
|
+
Author-email: Surya Dantuluri <surya@prava.dev>
|
|
8
|
+
License-Expression: MIT
|
|
9
|
+
License-File: LICENSE
|
|
10
|
+
Keywords: claude-code,coding-agent,context-distillation,fine-tuning,llm,prompt-distillation,rlhf,tui
|
|
11
|
+
Classifier: Development Status :: 3 - Alpha
|
|
12
|
+
Classifier: Environment :: Console
|
|
13
|
+
Classifier: Intended Audience :: Developers
|
|
14
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
15
|
+
Classifier: Programming Language :: Python :: 3
|
|
16
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
17
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
18
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
19
|
+
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
20
|
+
Classifier: Topic :: Software Development
|
|
21
|
+
Requires-Python: >=3.10
|
|
22
|
+
Requires-Dist: textual>=0.40.0
|
|
23
|
+
Requires-Dist: tinker-cookbook>=0.1.0
|
|
24
|
+
Requires-Dist: torch>=2.0.0
|
|
25
|
+
Provides-Extra: dev
|
|
26
|
+
Requires-Dist: pytest>=7.0.0; extra == 'dev'
|
|
27
|
+
Requires-Dist: ruff>=0.1.0; extra == 'dev'
|
|
28
|
+
Description-Content-Type: text/markdown
|
|
29
|
+
|
|
30
|
+
# ContinualCode
|
|
31
|
+
|
|
32
|
+
Human-in-the-loop coding agent with online learning via prompt distillation.
|
|
33
|
+
|
|
34
|
+
A Claude Code-style TUI that learns from your approvals. When you approve or edit a tool call, the model trains on that feedback in real-time.
|
|
35
|
+
|
|
36
|
+
## Features
|
|
37
|
+
|
|
38
|
+
- **Claude Code-style approval UI** - 4-option selection with keyboard navigation
|
|
39
|
+
- **Online prompt distillation** - Model learns to internalize policy without needing the policy prompt
|
|
40
|
+
- **Permission memory** - "Don't ask again" for trusted directories
|
|
41
|
+
- **Correction feedback** - Type what the model should have done (for DPO training)
|
|
42
|
+
- **Checkpoint save/load** - Ctrl+S to save, resume later with `--checkpoint`
|
|
43
|
+
|
|
44
|
+
## Install
|
|
45
|
+
|
|
46
|
+
```bash
|
|
47
|
+
pip install continualcode
|
|
48
|
+
```
|
|
49
|
+
|
|
50
|
+
## Quick Start
|
|
51
|
+
|
|
52
|
+
```bash
|
|
53
|
+
# Run the TUI
|
|
54
|
+
continualcode
|
|
55
|
+
|
|
56
|
+
# With a custom policy file
|
|
57
|
+
continualcode --policy ./my_rules.md
|
|
58
|
+
|
|
59
|
+
# Resume from checkpoint
|
|
60
|
+
continualcode --checkpoint ./checkpoints/step_000100
|
|
61
|
+
|
|
62
|
+
# Inference only (no training)
|
|
63
|
+
continualcode --no-training
|
|
64
|
+
```
|
|
65
|
+
|
|
66
|
+
## Environment Variables
|
|
67
|
+
|
|
68
|
+
| Variable | Default | Description |
|
|
69
|
+
|----------|---------|-------------|
|
|
70
|
+
| `MODEL` | `Qwen/Qwen3-4B-Instruct-2507` | Base model |
|
|
71
|
+
| `TINKER_URL` | `None` | Tinker service URL |
|
|
72
|
+
| `TINKER_API_KEY` | `None` | Tinker API key |
|
|
73
|
+
| `ENABLE_TRAINING` | `1` | Enable LoRA training |
|
|
74
|
+
| `LEARNING_RATE` | `1e-5` | Adam learning rate |
|
|
75
|
+
| `LORA_RANK` | `32` | LoRA rank |
|
|
76
|
+
| `POLICY_PATH` | `./policy_memory.md` | Policy file injected into teacher prefix |
|
|
77
|
+
| `DISTILL_MODE` | `on_policy` | `on_policy` or `off_policy` |
|
|
78
|
+
| `CHECKPOINT_DIR` | `./checkpoints` | Where Ctrl+S saves checkpoints |
|
|
79
|
+
| `LOAD_CHECKPOINT` | `""` | Checkpoint to load on startup |
|
|
80
|
+
|
|
81
|
+
## How It Works
|
|
82
|
+
|
|
83
|
+
**Prompt distillation** trains a model to behave *as if* it had access to a long policy prompt, without actually needing it at inference time:
|
|
84
|
+
|
|
85
|
+
1. **Generation** uses a "teacher" prefix that includes your policy file
|
|
86
|
+
2. **Training** uses a "student" prefix without the policy
|
|
87
|
+
3. The model learns to produce the same (approved) outputs without the policy context
|
|
88
|
+
|
|
89
|
+
Two distillation modes:
|
|
90
|
+
- `off_policy`: Classic SFT on approved outputs
|
|
91
|
+
- `on_policy`: Sample from student, score with teacher logprobs, update via importance sampling
|
|
92
|
+
|
|
93
|
+
## Keybindings
|
|
94
|
+
|
|
95
|
+
| Key | Action |
|
|
96
|
+
|-----|--------|
|
|
97
|
+
| `Enter` | Send message |
|
|
98
|
+
| `Ctrl+S` | Save checkpoint |
|
|
99
|
+
| `Ctrl+L` | Clear conversation |
|
|
100
|
+
| `Ctrl+C` | Quit |
|
|
101
|
+
| `?` | Show help |
|
|
102
|
+
|
|
103
|
+
**Approval UI:**
|
|
104
|
+
| Key | Action |
|
|
105
|
+
|-----|--------|
|
|
106
|
+
| `1` / `y` | Approve |
|
|
107
|
+
| `2` / `Shift+Tab` | Approve + remember |
|
|
108
|
+
| `3` / `n` / `Esc` | Deny |
|
|
109
|
+
| `4` / `Tab` | Type correction |
|
|
110
|
+
| `e` | Edit args in $EDITOR |
|
|
111
|
+
| Arrow keys | Navigate options |
|
|
112
|
+
|
|
113
|
+
## License
|
|
114
|
+
|
|
115
|
+
MIT
|
|
@@ -0,0 +1,86 @@
|
|
|
1
|
+
# ContinualCode
|
|
2
|
+
|
|
3
|
+
Human-in-the-loop coding agent with online learning via prompt distillation.
|
|
4
|
+
|
|
5
|
+
A Claude Code-style TUI that learns from your approvals. When you approve or edit a tool call, the model trains on that feedback in real-time.
|
|
6
|
+
|
|
7
|
+
## Features
|
|
8
|
+
|
|
9
|
+
- **Claude Code-style approval UI** - 4-option selection with keyboard navigation
|
|
10
|
+
- **Online prompt distillation** - Model learns to internalize policy without needing the policy prompt
|
|
11
|
+
- **Permission memory** - "Don't ask again" for trusted directories
|
|
12
|
+
- **Correction feedback** - Type what the model should have done (for DPO training)
|
|
13
|
+
- **Checkpoint save/load** - Ctrl+S to save, resume later with `--checkpoint`
|
|
14
|
+
|
|
15
|
+
## Install
|
|
16
|
+
|
|
17
|
+
```bash
|
|
18
|
+
pip install continualcode
|
|
19
|
+
```
|
|
20
|
+
|
|
21
|
+
## Quick Start
|
|
22
|
+
|
|
23
|
+
```bash
|
|
24
|
+
# Run the TUI
|
|
25
|
+
continualcode
|
|
26
|
+
|
|
27
|
+
# With a custom policy file
|
|
28
|
+
continualcode --policy ./my_rules.md
|
|
29
|
+
|
|
30
|
+
# Resume from checkpoint
|
|
31
|
+
continualcode --checkpoint ./checkpoints/step_000100
|
|
32
|
+
|
|
33
|
+
# Inference only (no training)
|
|
34
|
+
continualcode --no-training
|
|
35
|
+
```
|
|
36
|
+
|
|
37
|
+
## Environment Variables
|
|
38
|
+
|
|
39
|
+
| Variable | Default | Description |
|
|
40
|
+
|----------|---------|-------------|
|
|
41
|
+
| `MODEL` | `Qwen/Qwen3-4B-Instruct-2507` | Base model |
|
|
42
|
+
| `TINKER_URL` | `None` | Tinker service URL |
|
|
43
|
+
| `TINKER_API_KEY` | `None` | Tinker API key |
|
|
44
|
+
| `ENABLE_TRAINING` | `1` | Enable LoRA training |
|
|
45
|
+
| `LEARNING_RATE` | `1e-5` | Adam learning rate |
|
|
46
|
+
| `LORA_RANK` | `32` | LoRA rank |
|
|
47
|
+
| `POLICY_PATH` | `./policy_memory.md` | Policy file injected into teacher prefix |
|
|
48
|
+
| `DISTILL_MODE` | `on_policy` | `on_policy` or `off_policy` |
|
|
49
|
+
| `CHECKPOINT_DIR` | `./checkpoints` | Where Ctrl+S saves checkpoints |
|
|
50
|
+
| `LOAD_CHECKPOINT` | `""` | Checkpoint to load on startup |
|
|
51
|
+
|
|
52
|
+
## How It Works
|
|
53
|
+
|
|
54
|
+
**Prompt distillation** trains a model to behave *as if* it had access to a long policy prompt, without actually needing it at inference time:
|
|
55
|
+
|
|
56
|
+
1. **Generation** uses a "teacher" prefix that includes your policy file
|
|
57
|
+
2. **Training** uses a "student" prefix without the policy
|
|
58
|
+
3. The model learns to produce the same (approved) outputs without the policy context
|
|
59
|
+
|
|
60
|
+
Two distillation modes:
|
|
61
|
+
- `off_policy`: Classic SFT on approved outputs
|
|
62
|
+
- `on_policy`: Sample from student, score with teacher logprobs, update via importance sampling
|
|
63
|
+
|
|
64
|
+
## Keybindings
|
|
65
|
+
|
|
66
|
+
| Key | Action |
|
|
67
|
+
|-----|--------|
|
|
68
|
+
| `Enter` | Send message |
|
|
69
|
+
| `Ctrl+S` | Save checkpoint |
|
|
70
|
+
| `Ctrl+L` | Clear conversation |
|
|
71
|
+
| `Ctrl+C` | Quit |
|
|
72
|
+
| `?` | Show help |
|
|
73
|
+
|
|
74
|
+
**Approval UI:**
|
|
75
|
+
| Key | Action |
|
|
76
|
+
|-----|--------|
|
|
77
|
+
| `1` / `y` | Approve |
|
|
78
|
+
| `2` / `Shift+Tab` | Approve + remember |
|
|
79
|
+
| `3` / `n` / `Esc` | Deny |
|
|
80
|
+
| `4` / `Tab` | Type correction |
|
|
81
|
+
| `e` | Edit args in $EDITOR |
|
|
82
|
+
| Arrow keys | Navigate options |
|
|
83
|
+
|
|
84
|
+
## License
|
|
85
|
+
|
|
86
|
+
MIT
|
|
@@ -0,0 +1,47 @@
|
|
|
1
|
+
# Demo: Async Worker Pool Bug
|
|
2
|
+
|
|
3
|
+
A subtle concurrency bug that would trip up experienced systems programmers.
|
|
4
|
+
|
|
5
|
+
## The Bug
|
|
6
|
+
|
|
7
|
+
`async_pool.py` has a race condition in task submission. The bug:
|
|
8
|
+
|
|
9
|
+
```python
|
|
10
|
+
async def submit(self, coro_fn, *args, **kwargs) -> int:
|
|
11
|
+
task_id = self._task_counter
|
|
12
|
+
self._task_counter += 1
|
|
13
|
+
|
|
14
|
+
asyncio.create_task(self._run_task(task_id, coro_fn, *args, **kwargs))
|
|
15
|
+
return task_id
|
|
16
|
+
```
|
|
17
|
+
|
|
18
|
+
**Problem**: `create_task()` schedules the coroutine but doesn't `await` it. The task
|
|
19
|
+
starts running immediately (or on next tick). If the task completes *before* the caller
|
|
20
|
+
adds `task_id` to their tracking list, and `gather_all` is called right after, there's
|
|
21
|
+
a window where results can be missed.
|
|
22
|
+
|
|
23
|
+
More subtly: the `_task_counter` increment and task creation aren't atomic with respect
|
|
24
|
+
to the event loop. Under high concurrency with very fast tasks, IDs can get reused or
|
|
25
|
+
results can land in `_results` before the caller even knows what ID they got.
|
|
26
|
+
|
|
27
|
+
## How to Trigger
|
|
28
|
+
|
|
29
|
+
Run with many fast tasks:
|
|
30
|
+
```bash
|
|
31
|
+
python async_pool.py
|
|
32
|
+
```
|
|
33
|
+
|
|
34
|
+
The bug is intermittent - it depends on task timing and event loop scheduling.
|
|
35
|
+
|
|
36
|
+
## The Fix
|
|
37
|
+
|
|
38
|
+
The `submit()` method should await the task being tracked properly, or use a different
|
|
39
|
+
pattern like returning a `Future` that the caller can await, rather than an ID-based
|
|
40
|
+
lookup system that races with task completion.
|
|
41
|
+
|
|
42
|
+
## Demo Prompt
|
|
43
|
+
|
|
44
|
+
```
|
|
45
|
+
There's a race condition in async_pool.py where tasks occasionally get lost under
|
|
46
|
+
high concurrency. The pool reports fewer results than tasks submitted. Find and fix it.
|
|
47
|
+
```
|
|
@@ -0,0 +1,71 @@
|
|
|
1
|
+
[build-system]
|
|
2
|
+
requires = ["hatchling"]
|
|
3
|
+
build-backend = "hatchling.build"
|
|
4
|
+
|
|
5
|
+
[project]
|
|
6
|
+
name = "continualcode"
|
|
7
|
+
version = "0.1.0"
|
|
8
|
+
description = "Human-in-the-loop coding agent with online learning via prompt distillation"
|
|
9
|
+
readme = "README.md"
|
|
10
|
+
license = "MIT"
|
|
11
|
+
authors = [
|
|
12
|
+
{ name = "Surya Dantuluri", email = "surya@prava.dev" }
|
|
13
|
+
]
|
|
14
|
+
keywords = [
|
|
15
|
+
"llm",
|
|
16
|
+
"coding-agent",
|
|
17
|
+
"fine-tuning",
|
|
18
|
+
"rlhf",
|
|
19
|
+
"prompt-distillation",
|
|
20
|
+
"context-distillation",
|
|
21
|
+
"tui",
|
|
22
|
+
"claude-code",
|
|
23
|
+
]
|
|
24
|
+
classifiers = [
|
|
25
|
+
"Development Status :: 3 - Alpha",
|
|
26
|
+
"Environment :: Console",
|
|
27
|
+
"Intended Audience :: Developers",
|
|
28
|
+
"License :: OSI Approved :: MIT License",
|
|
29
|
+
"Programming Language :: Python :: 3",
|
|
30
|
+
"Programming Language :: Python :: 3.10",
|
|
31
|
+
"Programming Language :: Python :: 3.11",
|
|
32
|
+
"Programming Language :: Python :: 3.12",
|
|
33
|
+
"Topic :: Software Development",
|
|
34
|
+
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
|
35
|
+
]
|
|
36
|
+
requires-python = ">=3.10"
|
|
37
|
+
dependencies = [
|
|
38
|
+
"textual>=0.40.0",
|
|
39
|
+
"tinker-cookbook>=0.1.0",
|
|
40
|
+
"torch>=2.0.0",
|
|
41
|
+
]
|
|
42
|
+
|
|
43
|
+
[project.optional-dependencies]
|
|
44
|
+
dev = [
|
|
45
|
+
"pytest>=7.0.0",
|
|
46
|
+
"ruff>=0.1.0",
|
|
47
|
+
]
|
|
48
|
+
|
|
49
|
+
[project.urls]
|
|
50
|
+
Homepage = "https://github.com/sdan/continualcode"
|
|
51
|
+
Repository = "https://github.com/sdan/continualcode"
|
|
52
|
+
|
|
53
|
+
[project.scripts]
|
|
54
|
+
continualcode = "continualcode.cli:main"
|
|
55
|
+
|
|
56
|
+
[tool.hatch.build.targets.wheel]
|
|
57
|
+
packages = ["src/continualcode"]
|
|
58
|
+
|
|
59
|
+
[tool.hatch.build.targets.sdist]
|
|
60
|
+
include = [
|
|
61
|
+
"src/continualcode",
|
|
62
|
+
"README.md",
|
|
63
|
+
"LICENSE",
|
|
64
|
+
]
|
|
65
|
+
|
|
66
|
+
[tool.ruff]
|
|
67
|
+
line-length = 100
|
|
68
|
+
target-version = "py310"
|
|
69
|
+
|
|
70
|
+
[tool.ruff.lint]
|
|
71
|
+
select = ["E", "F", "I", "W"]
|
|
@@ -0,0 +1,17 @@
|
|
|
1
|
+
"""
|
|
2
|
+
ContinualCode - Human-in-the-loop coding agent with online learning.
|
|
3
|
+
|
|
4
|
+
A Claude Code-style TUI that learns from your approvals via prompt distillation.
|
|
5
|
+
"""
|
|
6
|
+
|
|
7
|
+
__version__ = "0.1.0"
|
|
8
|
+
|
|
9
|
+
from continualcode.session import ContextDistillSession
|
|
10
|
+
from continualcode.tools import TOOL_SPECS, READONLY_TOOLS, execute_tool
|
|
11
|
+
|
|
12
|
+
__all__ = [
|
|
13
|
+
"ContextDistillSession",
|
|
14
|
+
"TOOL_SPECS",
|
|
15
|
+
"READONLY_TOOLS",
|
|
16
|
+
"execute_tool",
|
|
17
|
+
]
|
|
@@ -0,0 +1,67 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
"""
|
|
3
|
+
CLI entry point for ContinualCode.
|
|
4
|
+
|
|
5
|
+
Usage:
|
|
6
|
+
continualcode # Run the TUI
|
|
7
|
+
continualcode --help # Show help
|
|
8
|
+
continualcode --version # Show version
|
|
9
|
+
"""
|
|
10
|
+
|
|
11
|
+
import argparse
|
|
12
|
+
import sys
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
def main() -> int:
|
|
16
|
+
parser = argparse.ArgumentParser(
|
|
17
|
+
prog="continualcode",
|
|
18
|
+
description="Human-in-the-loop coding agent with online learning via prompt distillation",
|
|
19
|
+
)
|
|
20
|
+
parser.add_argument(
|
|
21
|
+
"--version",
|
|
22
|
+
action="version",
|
|
23
|
+
version="%(prog)s 0.1.0",
|
|
24
|
+
)
|
|
25
|
+
parser.add_argument(
|
|
26
|
+
"--model",
|
|
27
|
+
default=None,
|
|
28
|
+
help="Override MODEL environment variable",
|
|
29
|
+
)
|
|
30
|
+
parser.add_argument(
|
|
31
|
+
"--policy",
|
|
32
|
+
default=None,
|
|
33
|
+
help="Path to policy file (default: ./policy_memory.md)",
|
|
34
|
+
)
|
|
35
|
+
parser.add_argument(
|
|
36
|
+
"--checkpoint",
|
|
37
|
+
default=None,
|
|
38
|
+
help="Load checkpoint on startup",
|
|
39
|
+
)
|
|
40
|
+
parser.add_argument(
|
|
41
|
+
"--no-training",
|
|
42
|
+
action="store_true",
|
|
43
|
+
help="Disable training (inference only)",
|
|
44
|
+
)
|
|
45
|
+
|
|
46
|
+
args = parser.parse_args()
|
|
47
|
+
|
|
48
|
+
# Set environment variables from CLI args
|
|
49
|
+
import os
|
|
50
|
+
if args.model:
|
|
51
|
+
os.environ["MODEL"] = args.model
|
|
52
|
+
if args.policy:
|
|
53
|
+
os.environ["POLICY_PATH"] = args.policy
|
|
54
|
+
if args.checkpoint:
|
|
55
|
+
os.environ["LOAD_CHECKPOINT"] = args.checkpoint
|
|
56
|
+
if args.no_training:
|
|
57
|
+
os.environ["ENABLE_TRAINING"] = "0"
|
|
58
|
+
|
|
59
|
+
# Import and run the TUI
|
|
60
|
+
from continualcode.tui import TinkerCodeApp
|
|
61
|
+
app = TinkerCodeApp()
|
|
62
|
+
app.run()
|
|
63
|
+
return 0
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
if __name__ == "__main__":
|
|
67
|
+
sys.exit(main())
|