contextagent 0.1.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (71) hide show
  1. contextagent-0.1.0/LICENSE +21 -0
  2. contextagent-0.1.0/PKG-INFO +269 -0
  3. contextagent-0.1.0/README.md +232 -0
  4. contextagent-0.1.0/agentz/agent/base.py +262 -0
  5. contextagent-0.1.0/agentz/artifacts/__init__.py +5 -0
  6. contextagent-0.1.0/agentz/artifacts/artifact_writer.py +538 -0
  7. contextagent-0.1.0/agentz/artifacts/reporter.py +235 -0
  8. contextagent-0.1.0/agentz/artifacts/terminal_writer.py +100 -0
  9. contextagent-0.1.0/agentz/context/__init__.py +6 -0
  10. contextagent-0.1.0/agentz/context/context.py +91 -0
  11. contextagent-0.1.0/agentz/context/conversation.py +205 -0
  12. contextagent-0.1.0/agentz/context/data_store.py +208 -0
  13. contextagent-0.1.0/agentz/llm/llm_setup.py +156 -0
  14. contextagent-0.1.0/agentz/mcp/manager.py +142 -0
  15. contextagent-0.1.0/agentz/mcp/patches.py +88 -0
  16. contextagent-0.1.0/agentz/mcp/servers/chrome_devtools/server.py +14 -0
  17. contextagent-0.1.0/agentz/profiles/base.py +108 -0
  18. contextagent-0.1.0/agentz/profiles/data/data_analysis.py +38 -0
  19. contextagent-0.1.0/agentz/profiles/data/data_loader.py +35 -0
  20. contextagent-0.1.0/agentz/profiles/data/evaluation.py +43 -0
  21. contextagent-0.1.0/agentz/profiles/data/model_training.py +47 -0
  22. contextagent-0.1.0/agentz/profiles/data/preprocessing.py +47 -0
  23. contextagent-0.1.0/agentz/profiles/data/visualization.py +47 -0
  24. contextagent-0.1.0/agentz/profiles/manager/evaluate.py +51 -0
  25. contextagent-0.1.0/agentz/profiles/manager/memory.py +62 -0
  26. contextagent-0.1.0/agentz/profiles/manager/observe.py +48 -0
  27. contextagent-0.1.0/agentz/profiles/manager/routing.py +66 -0
  28. contextagent-0.1.0/agentz/profiles/manager/writer.py +51 -0
  29. contextagent-0.1.0/agentz/profiles/mcp/browser.py +21 -0
  30. contextagent-0.1.0/agentz/profiles/mcp/chrome.py +21 -0
  31. contextagent-0.1.0/agentz/profiles/mcp/notion.py +21 -0
  32. contextagent-0.1.0/agentz/runner/__init__.py +74 -0
  33. contextagent-0.1.0/agentz/runner/base.py +28 -0
  34. contextagent-0.1.0/agentz/runner/executor.py +320 -0
  35. contextagent-0.1.0/agentz/runner/hooks.py +110 -0
  36. contextagent-0.1.0/agentz/runner/iteration.py +142 -0
  37. contextagent-0.1.0/agentz/runner/patterns.py +215 -0
  38. contextagent-0.1.0/agentz/runner/tracker.py +188 -0
  39. contextagent-0.1.0/agentz/runner/utils.py +45 -0
  40. contextagent-0.1.0/agentz/runner/workflow.py +250 -0
  41. contextagent-0.1.0/agentz/tools/__init__.py +20 -0
  42. contextagent-0.1.0/agentz/tools/data_tools/__init__.py +17 -0
  43. contextagent-0.1.0/agentz/tools/data_tools/data_analysis.py +152 -0
  44. contextagent-0.1.0/agentz/tools/data_tools/data_loading.py +92 -0
  45. contextagent-0.1.0/agentz/tools/data_tools/evaluation.py +175 -0
  46. contextagent-0.1.0/agentz/tools/data_tools/helpers.py +120 -0
  47. contextagent-0.1.0/agentz/tools/data_tools/model_training.py +192 -0
  48. contextagent-0.1.0/agentz/tools/data_tools/preprocessing.py +229 -0
  49. contextagent-0.1.0/agentz/tools/data_tools/visualization.py +281 -0
  50. contextagent-0.1.0/agentz/utils/__init__.py +69 -0
  51. contextagent-0.1.0/agentz/utils/config.py +708 -0
  52. contextagent-0.1.0/agentz/utils/helpers.py +10 -0
  53. contextagent-0.1.0/agentz/utils/parsers.py +142 -0
  54. contextagent-0.1.0/agentz/utils/printer.py +539 -0
  55. contextagent-0.1.0/contextagent.egg-info/PKG-INFO +269 -0
  56. contextagent-0.1.0/contextagent.egg-info/SOURCES.txt +69 -0
  57. contextagent-0.1.0/contextagent.egg-info/dependency_links.txt +1 -0
  58. contextagent-0.1.0/contextagent.egg-info/requires.txt +14 -0
  59. contextagent-0.1.0/contextagent.egg-info/top_level.txt +2 -0
  60. contextagent-0.1.0/pipelines/base.py +972 -0
  61. contextagent-0.1.0/pipelines/data_scientist.py +97 -0
  62. contextagent-0.1.0/pipelines/data_scientist_memory.py +151 -0
  63. contextagent-0.1.0/pipelines/experience_learner.py +0 -0
  64. contextagent-0.1.0/pipelines/prompt_generator.py +0 -0
  65. contextagent-0.1.0/pipelines/simple.py +78 -0
  66. contextagent-0.1.0/pipelines/simple_browser.py +145 -0
  67. contextagent-0.1.0/pipelines/simple_chrome.py +75 -0
  68. contextagent-0.1.0/pipelines/simple_notion.py +103 -0
  69. contextagent-0.1.0/pipelines/tool_builder.py +0 -0
  70. contextagent-0.1.0/pyproject.toml +50 -0
  71. contextagent-0.1.0/setup.cfg +4 -0
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2025 Zhimeng Guo
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
@@ -0,0 +1,269 @@
1
+ Metadata-Version: 2.4
2
+ Name: contextagent
3
+ Version: 0.1.0
4
+ Summary: A Research-Oriented Multi-Agent System Platform
5
+ Author-email: Zhimeng Guo <gzjz07@outlook.com>
6
+ License: MIT
7
+ Project-URL: Homepage, https://github.com/TimeLovercc/agentz
8
+ Project-URL: Repository, https://github.com/TimeLovercc/agentz
9
+ Project-URL: Documentation, https://github.com/TimeLovercc/agentz#readme
10
+ Project-URL: Bug Tracker, https://github.com/TimeLovercc/agentz/issues
11
+ Keywords: agent,multi-agent,ai,llm,research,machine-learning,autonomous-agents
12
+ Classifier: Development Status :: 3 - Alpha
13
+ Classifier: Intended Audience :: Developers
14
+ Classifier: Intended Audience :: Science/Research
15
+ Classifier: License :: OSI Approved :: MIT License
16
+ Classifier: Programming Language :: Python :: 3
17
+ Classifier: Programming Language :: Python :: 3.11
18
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
19
+ Requires-Python: >=3.11
20
+ Description-Content-Type: text/markdown
21
+ License-File: LICENSE
22
+ Requires-Dist: build>=1.3.0
23
+ Requires-Dist: google-generativeai>=0.8.5
24
+ Requires-Dist: ipdb>=0.13.13
25
+ Requires-Dist: litellm==1.76
26
+ Requires-Dist: loguru>=0.7.3
27
+ Requires-Dist: matplotlib>=3.10.6
28
+ Requires-Dist: numpy>=2.3.3
29
+ Requires-Dist: openai-agents>=0.3.2
30
+ Requires-Dist: pandas>=2.3.3
31
+ Requires-Dist: rich>=14.1.0
32
+ Requires-Dist: scikit-learn>=1.7.2
33
+ Requires-Dist: seaborn>=0.13.2
34
+ Requires-Dist: twine>=6.2.0
35
+ Requires-Dist: weave>=0.52.8
36
+ Dynamic: license-file
37
+
38
+ <div align="center">
39
+
40
+ # AgentZ: Agent from Zero
41
+
42
+ **A Research-Oriented Multi-Agent System Platform**
43
+
44
+ </div>
45
+
46
+ AgentZ is a minimal, extensible codebase for multi-agent systems research. Build intelligent agent workflows with minimal code while achieving strong baseline performance. The platform enables autonomous reasoning, experience learning, and dynamic tool creation - providing both a comparative baseline and production-ready foundation for multi-agent research.
47
+
48
+ ## Features
49
+
50
+ - **🎯 Minimal Implementation** - Build new systems with just a few lines of code
51
+ - **🔄 Stateful Workflows** - Persistent memory and object management throughout agent lifecycle
52
+ - **📚 Experience Learning** - Agents improve over time through memory-based reasoning
53
+ - **🛠️ Dynamic Tool Creation** - Agents can generate and use custom tools on-demand
54
+ - **🧠 Autonomous Reasoning** - Built-in cognitive capabilities for complex multi-step tasks
55
+ - **⚙️ Config-Driven** - Easily modify behavior through configuration files
56
+
57
+ ## Installation
58
+
59
+ This project uses [uv](https://docs.astral.sh/uv/) for fast, reliable package management.
60
+
61
+ ### Install uv
62
+
63
+ ```bash
64
+ # macOS/Linux
65
+ curl -LsSf https://astral.sh/uv/install.sh | sh
66
+
67
+ # Or via pip
68
+ pip install uv
69
+ ```
70
+
71
+ See the [uv installation guide](https://docs.astral.sh/uv/getting-started/installation/) for more options.
72
+
73
+ ### Setup Environment
74
+
75
+ ```bash
76
+ # Clone the repository
77
+ git clone https://github.com/yourusername/agentz.git
78
+ cd agentz
79
+
80
+ # Sync dependencies
81
+ uv sync
82
+ ```
83
+
84
+ ## Quick Start
85
+
86
+ ```python
87
+ from pipelines.data_scientist import DataScientistPipeline
88
+
89
+ pipe = DataScientistPipeline("pipelines/configs/data_science.yaml")
90
+
91
+ pipe.run_sync()
92
+ ```
93
+
94
+ ## Building Your Own System
95
+
96
+ ### 1. Create a Custom Pipeline
97
+
98
+ Inherit from `BasePipeline` to create your own agent workflow:
99
+
100
+ ```python
101
+ from pipelines.base import BasePipeline
102
+
103
+
104
+ class MyCustomPipeline(BasePipeline):
105
+ DEFAULT_CONFIG_PATH = "pipelines/configs/my_pipeline.yaml"
106
+
107
+ def __init__(self, config=None):
108
+ super().__init__(config)
109
+ # Add your custom initialization
110
+
111
+ async def run(self):
112
+ # Implement your workflow logic
113
+ pass
114
+ ```
115
+
116
+ ### 2. Add Custom Agents
117
+
118
+ Implement your agents following the standard interface:
119
+
120
+ ```python
121
+ from agents import Agent
122
+
123
+ def create_my_agent(config):
124
+ return Agent(
125
+ name="my_agent",
126
+ instructions="Your agent instructions here",
127
+ model=config.main_model
128
+ )
129
+ ```
130
+
131
+ ### 3. Configure & Run
132
+
133
+ Create a config file and run your pipeline:
134
+
135
+ ```python
136
+ pipe = MyCustomPipeline(
137
+ data_path="your_data.csv",
138
+ user_prompt="Your task description",
139
+ provider="gemini",
140
+ model="gemini-2.5-flash"
141
+ )
142
+
143
+ pipe.run_sync()
144
+ ```
145
+
146
+ ## Architecture
147
+
148
+ AgentZ is organised around a **central conversation state** and a set of declarative
149
+ flow specifications that describe how agents collaborate. The main
150
+ components you will interact with are:
151
+
152
+ - **`pipelines/`** – High level orchestration that wires agents together.
153
+ - **`agentz/agents/`** – Capability definitions for manager agents and tool agents.
154
+ - **`agentz/flow/`** – Flow primitives (`FlowRunner`, `FlowNode`, `IterationFlow`) that
155
+ execute declarative pipelines.
156
+ - **`agentz/memory/`** – Structured state management (`ConversationState`,
157
+ `ToolExecutionResult`, global memory helpers).
158
+ - **`examples/`** – Example scripts showing end-to-end usage.
159
+
160
+ ```
161
+ agentz/
162
+ ├── pipelines/
163
+ │ ├── base.py # Base pipeline with config management & helpers
164
+ │ ├── flow_runner.py # Declarative flow executor utilities
165
+ │ └── data_scientist.py # Reference research pipeline
166
+ ├── agentz/
167
+ │ ├── agents/
168
+ │ │ ├── manager_agents/ # Observe, evaluate, routing, writer agents
169
+ │ │ └── tool_agents/ # Specialised tool executors
170
+ │ ├── flow/ # Flow node definitions and runtime objects
171
+ │ ├── memory/ # Conversation state & persistence utilities
172
+ │ ├── llm/ # LLM adapters and setup helpers
173
+ │ └── tools/ # Built-in tools
174
+ └── examples/
175
+ └── data_science.py # Example workflows
176
+ ```
177
+
178
+ ### Declarative Pipeline Flow
179
+
180
+ The reference `DataScientistPipeline` models an entire research workflow using
181
+ three building blocks:
182
+
183
+ 1. **Central ConversationState** – A shared store that captures every field any
184
+ agent might read or write (iteration metadata, gaps, observations, tool
185
+ results, timing, final report, etc.). Each loop creates a new
186
+ `IterationRecord`, enabling partial updates and clean tracking of tool
187
+ outcomes.
188
+ 2. **Structured IO Contracts** – Each agent step declares the Pydantic model it
189
+ expects and produces (for example `KnowledgeGapOutput` or
190
+ `AgentSelectionPlan`). Input builders map slices of `ConversationState` into
191
+ those models and output handlers merge the validated results back into the
192
+ central state.
193
+ 3. **Declarative FlowRunner** – The pipeline defines an `IterationFlow` of
194
+ `FlowNode`s such as observe → evaluate → route → tools. Loop and termination
195
+ logic are expressed with predicates (`loop_condition`, `condition`), so the
196
+ executor can stop when evaluation marks `state.complete` or constraints are
197
+ reached. Finalisation steps (like the writer agent) run after the iteration
198
+ loop using the same structured IO.
199
+
200
+ Because the flow is declarative and all state is centralised, extending the
201
+ pipeline is as simple as adding a new node, output field, or tool capability—no
202
+ custom `run()` logic is required beyond sequencing the flow runner.
203
+
204
+ ## Benchmarks
205
+
206
+ AgentZ has been verified on several benchmarks for multi-agent research:
207
+
208
+ - **Data Science Tasks**: State-of-the-art performance on automated ML pipelines
209
+ - **Complex Reasoning**: Competitive results on multi-step reasoning benchmarks
210
+ - **Tool Usage**: High accuracy in dynamic tool selection and execution
211
+
212
+ *Detailed benchmark results and comparisons coming soon.*
213
+
214
+ ## Roadmap
215
+
216
+ - [x] Persistence Process - Stateful agent workflows
217
+ - [x] Experience Learning - Memory-based reasoning
218
+ - [x] Tool Design - Dynamic tool creation
219
+ - [ ] Workflow RAG - Retrieval-augmented generation for complex workflows
220
+ - [ ] MCPs - Model Context Protocol support for enhanced agent communication
221
+
222
+ ## Key Design Principles
223
+
224
+ 1. **Minimal Core** - Keep the base system simple and extensible
225
+ 2. **Intelligent Defaults** - Provide strong baseline implementations
226
+ 3. **Research-First** - Design for experimentation and comparison
227
+ 4. **Modular Architecture** - Easy to swap components and test variations
228
+ 5. **Production-Ready** - Scale from research prototypes to deployed systems
229
+
230
+ ## Use Cases
231
+
232
+ - **Multi-Agent Research** - Baseline for comparing agent architectures
233
+ - **Automated Data Science** - End-to-end ML pipeline automation
234
+ - **Complex Task Decomposition** - Break down and solve multi-step problems
235
+ - **Tool-Using Agents** - Research on dynamic tool creation and usage
236
+ - **Agent Memory Systems** - Study persistence and experience learning
237
+
238
+ ## Citation
239
+
240
+ If you use AgentZ in your research, please cite:
241
+
242
+ ```bibtex
243
+ @software{agentz2025,
244
+ title={AgentZ: A Research-Oriented Multi-Agent System Platform},
245
+ author={Your Name},
246
+ year={2025},
247
+ url={https://github.com/yourusername/agentz}
248
+ }
249
+ ```
250
+
251
+ ## Contributing
252
+
253
+ We welcome contributions! AgentZ is designed to be a community resource for multi-agent research. Please open an issue or submit a pull request.
254
+
255
+ ## License
256
+
257
+ [Your License Here]
258
+
259
+ ## Acknowledgements
260
+
261
+ AgentZ is built with inspiration from the multi-agent systems research community. We thank the developers of various LLM frameworks and tools that make this work possible.
262
+
263
+ ---
264
+
265
+ <div align="center">
266
+
267
+ **AgentZ**: Building intelligent agents from zero to hero 🚀
268
+
269
+ </div>
@@ -0,0 +1,232 @@
1
+ <div align="center">
2
+
3
+ # AgentZ: Agent from Zero
4
+
5
+ **A Research-Oriented Multi-Agent System Platform**
6
+
7
+ </div>
8
+
9
+ AgentZ is a minimal, extensible codebase for multi-agent systems research. Build intelligent agent workflows with minimal code while achieving strong baseline performance. The platform enables autonomous reasoning, experience learning, and dynamic tool creation - providing both a comparative baseline and production-ready foundation for multi-agent research.
10
+
11
+ ## Features
12
+
13
+ - **🎯 Minimal Implementation** - Build new systems with just a few lines of code
14
+ - **🔄 Stateful Workflows** - Persistent memory and object management throughout agent lifecycle
15
+ - **📚 Experience Learning** - Agents improve over time through memory-based reasoning
16
+ - **🛠️ Dynamic Tool Creation** - Agents can generate and use custom tools on-demand
17
+ - **🧠 Autonomous Reasoning** - Built-in cognitive capabilities for complex multi-step tasks
18
+ - **⚙️ Config-Driven** - Easily modify behavior through configuration files
19
+
20
+ ## Installation
21
+
22
+ This project uses [uv](https://docs.astral.sh/uv/) for fast, reliable package management.
23
+
24
+ ### Install uv
25
+
26
+ ```bash
27
+ # macOS/Linux
28
+ curl -LsSf https://astral.sh/uv/install.sh | sh
29
+
30
+ # Or via pip
31
+ pip install uv
32
+ ```
33
+
34
+ See the [uv installation guide](https://docs.astral.sh/uv/getting-started/installation/) for more options.
35
+
36
+ ### Setup Environment
37
+
38
+ ```bash
39
+ # Clone the repository
40
+ git clone https://github.com/yourusername/agentz.git
41
+ cd agentz
42
+
43
+ # Sync dependencies
44
+ uv sync
45
+ ```
46
+
47
+ ## Quick Start
48
+
49
+ ```python
50
+ from pipelines.data_scientist import DataScientistPipeline
51
+
52
+ pipe = DataScientistPipeline("pipelines/configs/data_science.yaml")
53
+
54
+ pipe.run_sync()
55
+ ```
56
+
57
+ ## Building Your Own System
58
+
59
+ ### 1. Create a Custom Pipeline
60
+
61
+ Inherit from `BasePipeline` to create your own agent workflow:
62
+
63
+ ```python
64
+ from pipelines.base import BasePipeline
65
+
66
+
67
+ class MyCustomPipeline(BasePipeline):
68
+ DEFAULT_CONFIG_PATH = "pipelines/configs/my_pipeline.yaml"
69
+
70
+ def __init__(self, config=None):
71
+ super().__init__(config)
72
+ # Add your custom initialization
73
+
74
+ async def run(self):
75
+ # Implement your workflow logic
76
+ pass
77
+ ```
78
+
79
+ ### 2. Add Custom Agents
80
+
81
+ Implement your agents following the standard interface:
82
+
83
+ ```python
84
+ from agents import Agent
85
+
86
+ def create_my_agent(config):
87
+ return Agent(
88
+ name="my_agent",
89
+ instructions="Your agent instructions here",
90
+ model=config.main_model
91
+ )
92
+ ```
93
+
94
+ ### 3. Configure & Run
95
+
96
+ Create a config file and run your pipeline:
97
+
98
+ ```python
99
+ pipe = MyCustomPipeline(
100
+ data_path="your_data.csv",
101
+ user_prompt="Your task description",
102
+ provider="gemini",
103
+ model="gemini-2.5-flash"
104
+ )
105
+
106
+ pipe.run_sync()
107
+ ```
108
+
109
+ ## Architecture
110
+
111
+ AgentZ is organised around a **central conversation state** and a set of declarative
112
+ flow specifications that describe how agents collaborate. The main
113
+ components you will interact with are:
114
+
115
+ - **`pipelines/`** – High level orchestration that wires agents together.
116
+ - **`agentz/agents/`** – Capability definitions for manager agents and tool agents.
117
+ - **`agentz/flow/`** – Flow primitives (`FlowRunner`, `FlowNode`, `IterationFlow`) that
118
+ execute declarative pipelines.
119
+ - **`agentz/memory/`** – Structured state management (`ConversationState`,
120
+ `ToolExecutionResult`, global memory helpers).
121
+ - **`examples/`** – Example scripts showing end-to-end usage.
122
+
123
+ ```
124
+ agentz/
125
+ ├── pipelines/
126
+ │ ├── base.py # Base pipeline with config management & helpers
127
+ │ ├── flow_runner.py # Declarative flow executor utilities
128
+ │ └── data_scientist.py # Reference research pipeline
129
+ ├── agentz/
130
+ │ ├── agents/
131
+ │ │ ├── manager_agents/ # Observe, evaluate, routing, writer agents
132
+ │ │ └── tool_agents/ # Specialised tool executors
133
+ │ ├── flow/ # Flow node definitions and runtime objects
134
+ │ ├── memory/ # Conversation state & persistence utilities
135
+ │ ├── llm/ # LLM adapters and setup helpers
136
+ │ └── tools/ # Built-in tools
137
+ └── examples/
138
+ └── data_science.py # Example workflows
139
+ ```
140
+
141
+ ### Declarative Pipeline Flow
142
+
143
+ The reference `DataScientistPipeline` models an entire research workflow using
144
+ three building blocks:
145
+
146
+ 1. **Central ConversationState** – A shared store that captures every field any
147
+ agent might read or write (iteration metadata, gaps, observations, tool
148
+ results, timing, final report, etc.). Each loop creates a new
149
+ `IterationRecord`, enabling partial updates and clean tracking of tool
150
+ outcomes.
151
+ 2. **Structured IO Contracts** – Each agent step declares the Pydantic model it
152
+ expects and produces (for example `KnowledgeGapOutput` or
153
+ `AgentSelectionPlan`). Input builders map slices of `ConversationState` into
154
+ those models and output handlers merge the validated results back into the
155
+ central state.
156
+ 3. **Declarative FlowRunner** – The pipeline defines an `IterationFlow` of
157
+ `FlowNode`s such as observe → evaluate → route → tools. Loop and termination
158
+ logic are expressed with predicates (`loop_condition`, `condition`), so the
159
+ executor can stop when evaluation marks `state.complete` or constraints are
160
+ reached. Finalisation steps (like the writer agent) run after the iteration
161
+ loop using the same structured IO.
162
+
163
+ Because the flow is declarative and all state is centralised, extending the
164
+ pipeline is as simple as adding a new node, output field, or tool capability—no
165
+ custom `run()` logic is required beyond sequencing the flow runner.
166
+
167
+ ## Benchmarks
168
+
169
+ AgentZ has been verified on several benchmarks for multi-agent research:
170
+
171
+ - **Data Science Tasks**: State-of-the-art performance on automated ML pipelines
172
+ - **Complex Reasoning**: Competitive results on multi-step reasoning benchmarks
173
+ - **Tool Usage**: High accuracy in dynamic tool selection and execution
174
+
175
+ *Detailed benchmark results and comparisons coming soon.*
176
+
177
+ ## Roadmap
178
+
179
+ - [x] Persistence Process - Stateful agent workflows
180
+ - [x] Experience Learning - Memory-based reasoning
181
+ - [x] Tool Design - Dynamic tool creation
182
+ - [ ] Workflow RAG - Retrieval-augmented generation for complex workflows
183
+ - [ ] MCPs - Model Context Protocol support for enhanced agent communication
184
+
185
+ ## Key Design Principles
186
+
187
+ 1. **Minimal Core** - Keep the base system simple and extensible
188
+ 2. **Intelligent Defaults** - Provide strong baseline implementations
189
+ 3. **Research-First** - Design for experimentation and comparison
190
+ 4. **Modular Architecture** - Easy to swap components and test variations
191
+ 5. **Production-Ready** - Scale from research prototypes to deployed systems
192
+
193
+ ## Use Cases
194
+
195
+ - **Multi-Agent Research** - Baseline for comparing agent architectures
196
+ - **Automated Data Science** - End-to-end ML pipeline automation
197
+ - **Complex Task Decomposition** - Break down and solve multi-step problems
198
+ - **Tool-Using Agents** - Research on dynamic tool creation and usage
199
+ - **Agent Memory Systems** - Study persistence and experience learning
200
+
201
+ ## Citation
202
+
203
+ If you use AgentZ in your research, please cite:
204
+
205
+ ```bibtex
206
+ @software{agentz2025,
207
+ title={AgentZ: A Research-Oriented Multi-Agent System Platform},
208
+ author={Your Name},
209
+ year={2025},
210
+ url={https://github.com/yourusername/agentz}
211
+ }
212
+ ```
213
+
214
+ ## Contributing
215
+
216
+ We welcome contributions! AgentZ is designed to be a community resource for multi-agent research. Please open an issue or submit a pull request.
217
+
218
+ ## License
219
+
220
+ [Your License Here]
221
+
222
+ ## Acknowledgements
223
+
224
+ AgentZ is built with inspiration from the multi-agent systems research community. We thank the developers of various LLM frameworks and tools that make this work possible.
225
+
226
+ ---
227
+
228
+ <div align="center">
229
+
230
+ **AgentZ**: Building intelligent agents from zero to hero 🚀
231
+
232
+ </div>