compressed-tensors 0.3.3__tar.gz → 0.4.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {compressed-tensors-0.3.3/src/compressed_tensors.egg-info → compressed-tensors-0.4.0}/PKG-INFO +41 -3
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/README.md +42 -1
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/setup.py +25 -4
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/src/compressed_tensors/base.py +2 -1
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/src/compressed_tensors/compressors/__init__.py +5 -1
- compressed-tensors-0.4.0/src/compressed_tensors/compressors/base.py +60 -0
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/src/compressed_tensors/compressors/dense.py +4 -4
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/src/compressed_tensors/compressors/helpers.py +12 -12
- compressed-tensors-0.4.0/src/compressed_tensors/compressors/int_quantized.py +126 -0
- compressed-tensors-0.4.0/src/compressed_tensors/compressors/marlin_24.py +250 -0
- compressed-tensors-0.4.0/src/compressed_tensors/compressors/model_compressor.py +315 -0
- compressed-tensors-0.4.0/src/compressed_tensors/compressors/pack_quantized.py +212 -0
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/src/compressed_tensors/compressors/sparse_bitmask.py +3 -3
- compressed-tensors-0.4.0/src/compressed_tensors/compressors/utils/__init__.py +19 -0
- compressed-tensors-0.4.0/src/compressed_tensors/compressors/utils/helpers.py +43 -0
- compressed-tensors-0.4.0/src/compressed_tensors/compressors/utils/permutations_24.py +65 -0
- compressed-tensors-0.4.0/src/compressed_tensors/compressors/utils/semi_structured_conversions.py +341 -0
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/src/compressed_tensors/config/base.py +7 -4
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/src/compressed_tensors/config/dense.py +4 -4
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/src/compressed_tensors/config/sparse_bitmask.py +3 -3
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/src/compressed_tensors/quantization/lifecycle/__init__.py +1 -0
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/src/compressed_tensors/quantization/lifecycle/apply.py +62 -11
- compressed-tensors-0.4.0/src/compressed_tensors/quantization/lifecycle/compressed.py +69 -0
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/src/compressed_tensors/quantization/lifecycle/forward.py +161 -54
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/src/compressed_tensors/quantization/lifecycle/frozen.py +4 -0
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/src/compressed_tensors/quantization/lifecycle/initialize.py +33 -5
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/src/compressed_tensors/quantization/observers/base.py +31 -27
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/src/compressed_tensors/quantization/observers/helpers.py +6 -1
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/src/compressed_tensors/quantization/observers/memoryless.py +17 -9
- compressed-tensors-0.4.0/src/compressed_tensors/quantization/observers/min_max.py +96 -0
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/src/compressed_tensors/quantization/quant_args.py +2 -2
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/src/compressed_tensors/quantization/quant_config.py +69 -21
- compressed-tensors-0.4.0/src/compressed_tensors/quantization/quant_scheme.py +119 -0
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/src/compressed_tensors/quantization/utils/helpers.py +76 -8
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/src/compressed_tensors/utils/helpers.py +24 -6
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/src/compressed_tensors/utils/safetensors_load.py +3 -2
- compressed-tensors-0.4.0/src/compressed_tensors/version.py +53 -0
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0/src/compressed_tensors.egg-info}/PKG-INFO +41 -3
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/src/compressed_tensors.egg-info/SOURCES.txt +11 -3
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/src/compressed_tensors.egg-info/requires.txt +5 -5
- compressed-tensors-0.3.3/src/compressed_tensors/compressors/base.py +0 -103
- compressed-tensors-0.3.3/src/compressed_tensors/quantization/observers/min_max.py +0 -65
- compressed-tensors-0.3.3/src/compressed_tensors/quantization/quant_scheme.py +0 -39
- compressed-tensors-0.3.3/tests/test_bitmask.py +0 -120
- compressed-tensors-0.3.3/tests/test_registry.py +0 -53
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/LICENSE +0 -0
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/pyproject.toml +0 -0
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/setup.cfg +0 -0
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/src/compressed_tensors/__init__.py +0 -0
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/src/compressed_tensors/config/__init__.py +0 -0
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/src/compressed_tensors/quantization/__init__.py +0 -0
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/src/compressed_tensors/quantization/lifecycle/calibration.py +0 -0
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/src/compressed_tensors/quantization/observers/__init__.py +0 -0
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/src/compressed_tensors/quantization/utils/__init__.py +0 -0
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/src/compressed_tensors/registry/__init__.py +0 -0
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/src/compressed_tensors/registry/registry.py +0 -0
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/src/compressed_tensors/utils/__init__.py +0 -0
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/src/compressed_tensors.egg-info/dependency_links.txt +0 -0
- {compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/src/compressed_tensors.egg-info/top_level.txt +0 -0
{compressed-tensors-0.3.3/src/compressed_tensors.egg-info → compressed-tensors-0.4.0}/PKG-INFO
RENAMED
@@ -1,12 +1,11 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: compressed-tensors
|
3
|
-
Version: 0.
|
3
|
+
Version: 0.4.0
|
4
4
|
Summary: Library for utilization of compressed safetensors of neural network models
|
5
5
|
Home-page: https://github.com/neuralmagic/compressed-tensors
|
6
6
|
Author: Neuralmagic, Inc.
|
7
7
|
Author-email: support@neuralmagic.com
|
8
8
|
License: Apache 2.0
|
9
|
-
Platform: UNKNOWN
|
10
9
|
Description-Content-Type: text/markdown
|
11
10
|
Provides-Extra: dev
|
12
11
|
License-File: LICENSE
|
@@ -81,7 +80,7 @@ from compressed_tensors import save_compressed_model, load_compressed, BitmaskCo
|
|
81
80
|
from transformers import AutoModelForCausalLM
|
82
81
|
|
83
82
|
model_name = "neuralmagic/llama2.c-stories110M-pruned50"
|
84
|
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
83
|
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto")
|
85
84
|
|
86
85
|
original_state_dict = model.state_dict()
|
87
86
|
|
@@ -97,3 +96,42 @@ state_dict = dict(load_compressed("compressed_model.safetensors", compression_co
|
|
97
96
|
For more in-depth tutorial on bitmask compression, refer to the [notebook](https://github.com/neuralmagic/compressed-tensors/blob/d707c5b84bc3fef164aebdcd97cb6eaa571982f8/examples/bitmask_compression.ipynb).
|
98
97
|
|
99
98
|
|
99
|
+
## Saving a Compressed Model with PTQ
|
100
|
+
|
101
|
+
We can use compressed-tensors to run basic post training quantization (PTQ) and save the quantized model compressed on disk
|
102
|
+
|
103
|
+
```python
|
104
|
+
model_name = "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T"
|
105
|
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="cuda:0", torch_dtype="auto")
|
106
|
+
|
107
|
+
config = QuantizationConfig.parse_file("./examples/bit_packing/int4_config.json")
|
108
|
+
config.quantization_status = QuantizationStatus.CALIBRATION
|
109
|
+
apply_quantization_config(model, config)
|
110
|
+
|
111
|
+
dataset = load_dataset("ptb_text_only")["train"]
|
112
|
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
113
|
+
|
114
|
+
def tokenize_function(examples):
|
115
|
+
return tokenizer(examples["sentence"], padding=False, truncation=True, max_length=1024)
|
116
|
+
|
117
|
+
tokenized_dataset = dataset.map(tokenize_function, batched=True)
|
118
|
+
data_loader = DataLoader(tokenized_dataset, batch_size=1, collate_fn=DefaultDataCollator())
|
119
|
+
|
120
|
+
with torch.no_grad():
|
121
|
+
for idx, sample in tqdm(enumerate(data_loader), desc="Running calibration"):
|
122
|
+
sample = {key: value.to(device) for key,value in sample.items()}
|
123
|
+
_ = model(**sample)
|
124
|
+
|
125
|
+
if idx >= 512:
|
126
|
+
break
|
127
|
+
|
128
|
+
model.apply(freeze_module_quantization)
|
129
|
+
model.apply(compress_quantized_weights)
|
130
|
+
|
131
|
+
output_dir = "./ex_llama1.1b_w4a16_packed_quantize"
|
132
|
+
compressor = ModelCompressor(quantization_config=config)
|
133
|
+
compressed_state_dict = compressor.compress(model)
|
134
|
+
model.save_pretrained(output_dir, state_dict=compressed_state_dict)
|
135
|
+
```
|
136
|
+
|
137
|
+
For more in-depth tutorial on quantization compression, refer to the [notebook](./examples/quantize_and_pack_int4.ipynb).
|
@@ -68,7 +68,7 @@ from compressed_tensors import save_compressed_model, load_compressed, BitmaskCo
|
|
68
68
|
from transformers import AutoModelForCausalLM
|
69
69
|
|
70
70
|
model_name = "neuralmagic/llama2.c-stories110M-pruned50"
|
71
|
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
71
|
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto")
|
72
72
|
|
73
73
|
original_state_dict = model.state_dict()
|
74
74
|
|
@@ -82,3 +82,44 @@ state_dict = dict(load_compressed("compressed_model.safetensors", compression_co
|
|
82
82
|
```
|
83
83
|
|
84
84
|
For more in-depth tutorial on bitmask compression, refer to the [notebook](https://github.com/neuralmagic/compressed-tensors/blob/d707c5b84bc3fef164aebdcd97cb6eaa571982f8/examples/bitmask_compression.ipynb).
|
85
|
+
|
86
|
+
|
87
|
+
## Saving a Compressed Model with PTQ
|
88
|
+
|
89
|
+
We can use compressed-tensors to run basic post training quantization (PTQ) and save the quantized model compressed on disk
|
90
|
+
|
91
|
+
```python
|
92
|
+
model_name = "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T"
|
93
|
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="cuda:0", torch_dtype="auto")
|
94
|
+
|
95
|
+
config = QuantizationConfig.parse_file("./examples/bit_packing/int4_config.json")
|
96
|
+
config.quantization_status = QuantizationStatus.CALIBRATION
|
97
|
+
apply_quantization_config(model, config)
|
98
|
+
|
99
|
+
dataset = load_dataset("ptb_text_only")["train"]
|
100
|
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
101
|
+
|
102
|
+
def tokenize_function(examples):
|
103
|
+
return tokenizer(examples["sentence"], padding=False, truncation=True, max_length=1024)
|
104
|
+
|
105
|
+
tokenized_dataset = dataset.map(tokenize_function, batched=True)
|
106
|
+
data_loader = DataLoader(tokenized_dataset, batch_size=1, collate_fn=DefaultDataCollator())
|
107
|
+
|
108
|
+
with torch.no_grad():
|
109
|
+
for idx, sample in tqdm(enumerate(data_loader), desc="Running calibration"):
|
110
|
+
sample = {key: value.to(device) for key,value in sample.items()}
|
111
|
+
_ = model(**sample)
|
112
|
+
|
113
|
+
if idx >= 512:
|
114
|
+
break
|
115
|
+
|
116
|
+
model.apply(freeze_module_quantization)
|
117
|
+
model.apply(compress_quantized_weights)
|
118
|
+
|
119
|
+
output_dir = "./ex_llama1.1b_w4a16_packed_quantize"
|
120
|
+
compressor = ModelCompressor(quantization_config=config)
|
121
|
+
compressed_state_dict = compressor.compress(model)
|
122
|
+
model.save_pretrained(output_dir, state_dict=compressed_state_dict)
|
123
|
+
```
|
124
|
+
|
125
|
+
For more in-depth tutorial on quantization compression, refer to the [notebook](./examples/quantize_and_pack_int4.ipynb).
|
@@ -12,9 +12,30 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
|
15
|
-
|
15
|
+
import os
|
16
16
|
from setuptools import setup, find_packages
|
17
17
|
from typing import List, Dict, Tuple
|
18
|
+
from utils.artifacts import get_release_and_version
|
19
|
+
|
20
|
+
|
21
|
+
package_path = os.path.join(
|
22
|
+
os.path.dirname(os.path.realpath(__file__)), "src", "compressed_tensors"
|
23
|
+
)
|
24
|
+
(
|
25
|
+
is_release,
|
26
|
+
version,
|
27
|
+
version_major,
|
28
|
+
version_minor,
|
29
|
+
version_bug,
|
30
|
+
) = get_release_and_version(package_path)
|
31
|
+
|
32
|
+
version_nm_deps = f"{version_major}.{version_minor}.0"
|
33
|
+
|
34
|
+
if is_release:
|
35
|
+
_PACKAGE_NAME = "compressed-tensors"
|
36
|
+
else:
|
37
|
+
_PACKAGE_NAME = "compressed-tensors-nightly"
|
38
|
+
|
18
39
|
|
19
40
|
def _setup_long_description() -> Tuple[str, str]:
|
20
41
|
return open("README.md", "r", encoding="utf-8").read(), "text/markdown"
|
@@ -25,14 +46,14 @@ def _setup_packages() -> List:
|
|
25
46
|
)
|
26
47
|
|
27
48
|
def _setup_install_requires() -> List:
|
28
|
-
return ["torch>=1.7.0", "transformers
|
49
|
+
return ["torch>=1.7.0", "transformers", "pydantic>=2.0"]
|
29
50
|
|
30
51
|
def _setup_extras() -> Dict:
|
31
52
|
return {"dev": ["black==22.12.0", "isort==5.8.0", "wheel>=0.36.2", "flake8>=3.8.3", "pytest>=6.0.0", "nbconvert>=7.16.3"]}
|
32
53
|
|
33
54
|
setup(
|
34
|
-
name=
|
35
|
-
version=
|
55
|
+
name=_PACKAGE_NAME,
|
56
|
+
version=version,
|
36
57
|
author="Neuralmagic, Inc.",
|
37
58
|
author_email="support@neuralmagic.com",
|
38
59
|
license="Apache 2.0",
|
{compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/src/compressed_tensors/compressors/__init__.py
RENAMED
@@ -14,7 +14,11 @@
|
|
14
14
|
|
15
15
|
# flake8: noqa
|
16
16
|
|
17
|
-
from .base import
|
17
|
+
from .base import Compressor
|
18
18
|
from .dense import DenseCompressor
|
19
19
|
from .helpers import load_compressed, save_compressed, save_compressed_model
|
20
|
+
from .int_quantized import IntQuantizationCompressor
|
21
|
+
from .marlin_24 import Marlin24Compressor
|
22
|
+
from .model_compressor import ModelCompressor, map_modules_to_quant_args
|
23
|
+
from .pack_quantized import PackedQuantizationCompressor
|
20
24
|
from .sparse_bitmask import BitmaskCompressor, BitmaskTensor
|
@@ -0,0 +1,60 @@
|
|
1
|
+
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing,
|
10
|
+
# software distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
from typing import Dict, Generator, Tuple, Union
|
16
|
+
|
17
|
+
from compressed_tensors.config import SparsityCompressionConfig
|
18
|
+
from compressed_tensors.quantization import QuantizationConfig
|
19
|
+
from compressed_tensors.registry import RegistryMixin
|
20
|
+
from torch import Tensor
|
21
|
+
|
22
|
+
|
23
|
+
__all__ = ["Compressor"]
|
24
|
+
|
25
|
+
|
26
|
+
class Compressor(RegistryMixin):
|
27
|
+
"""
|
28
|
+
Base class representing a model compression algorithm
|
29
|
+
|
30
|
+
:param config: config specifying compression parameters
|
31
|
+
"""
|
32
|
+
|
33
|
+
def __init__(
|
34
|
+
self, config: Union[SparsityCompressionConfig, QuantizationConfig, None] = None
|
35
|
+
):
|
36
|
+
self.config = config
|
37
|
+
|
38
|
+
def compress(self, model_state: Dict[str, Tensor], **kwargs) -> Dict[str, Tensor]:
|
39
|
+
"""
|
40
|
+
Compresses a dense state dict
|
41
|
+
|
42
|
+
:param model_state: state dict of uncompressed model
|
43
|
+
:return: compressed state dict
|
44
|
+
"""
|
45
|
+
raise NotImplementedError()
|
46
|
+
|
47
|
+
def decompress(
|
48
|
+
self, path_to_model_or_tensors: str, device: str = "cpu"
|
49
|
+
) -> Generator[Tuple[str, Tensor], None, None]:
|
50
|
+
"""
|
51
|
+
Reads a compressed state dict located at path_to_model_or_tensors
|
52
|
+
and returns a generator for sequentially decompressing back to a
|
53
|
+
dense state dict
|
54
|
+
|
55
|
+
:param model_path: path to compressed safetensors model (directory with
|
56
|
+
one or more safetensors files) or compressed tensors file
|
57
|
+
:param device: optional device to load intermediate weights into
|
58
|
+
:return: compressed state dict
|
59
|
+
"""
|
60
|
+
raise NotImplementedError()
|
{compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/src/compressed_tensors/compressors/dense.py
RENAMED
@@ -14,18 +14,18 @@
|
|
14
14
|
|
15
15
|
from typing import Dict, Generator, Tuple
|
16
16
|
|
17
|
-
from compressed_tensors.compressors import
|
17
|
+
from compressed_tensors.compressors import Compressor
|
18
18
|
from compressed_tensors.config import CompressionFormat
|
19
19
|
from torch import Tensor
|
20
20
|
|
21
21
|
|
22
|
-
@
|
23
|
-
class DenseCompressor(
|
22
|
+
@Compressor.register(name=CompressionFormat.dense.value)
|
23
|
+
class DenseCompressor(Compressor):
|
24
24
|
"""
|
25
25
|
Identity compressor for dense models, returns the original state_dict
|
26
26
|
"""
|
27
27
|
|
28
|
-
def compress(self, model_state: Dict[str, Tensor]) -> Dict[str, Tensor]:
|
28
|
+
def compress(self, model_state: Dict[str, Tensor], **kwargs) -> Dict[str, Tensor]:
|
29
29
|
return model_state
|
30
30
|
|
31
31
|
def decompress(
|
{compressed-tensors-0.3.3 → compressed-tensors-0.4.0}/src/compressed_tensors/compressors/helpers.py
RENAMED
@@ -16,8 +16,8 @@ from pathlib import Path
|
|
16
16
|
from typing import Dict, Generator, Optional, Tuple, Union
|
17
17
|
|
18
18
|
import torch
|
19
|
-
from compressed_tensors.compressors import
|
20
|
-
from compressed_tensors.config import
|
19
|
+
from compressed_tensors.compressors import Compressor
|
20
|
+
from compressed_tensors.config import CompressionFormat, SparsityCompressionConfig
|
21
21
|
from compressed_tensors.utils.safetensors_load import get_weight_mappings
|
22
22
|
from safetensors import safe_open
|
23
23
|
from safetensors.torch import save_file
|
@@ -48,20 +48,20 @@ def save_compressed(
|
|
48
48
|
if tensors is None or len(tensors) == 0:
|
49
49
|
raise ValueError("No tensors or empty tensors provided to compress")
|
50
50
|
|
51
|
-
# if no compression_format specified, default to `
|
52
|
-
compression_format = compression_format or CompressionFormat.
|
51
|
+
# if no compression_format specified, default to `dense`
|
52
|
+
compression_format = compression_format or CompressionFormat.dense.value
|
53
53
|
|
54
54
|
if not (
|
55
|
-
compression_format in
|
56
|
-
or compression_format in
|
55
|
+
compression_format in Compressor.registered_names()
|
56
|
+
or compression_format in Compressor.registered_aliases()
|
57
57
|
):
|
58
58
|
raise ValueError(
|
59
59
|
f"Unknown compression format: {compression_format}. "
|
60
|
-
f"Must be one of {set(
|
60
|
+
f"Must be one of {set(Compressor.registered_names() + Compressor.registered_aliases())}" # noqa E501
|
61
61
|
)
|
62
62
|
|
63
63
|
# compress
|
64
|
-
compressor =
|
64
|
+
compressor = Compressor.load_from_registry(compression_format)
|
65
65
|
# save compressed tensors
|
66
66
|
compressed_tensors = compressor.compress(tensors)
|
67
67
|
save_file(compressed_tensors, save_path)
|
@@ -69,7 +69,7 @@ def save_compressed(
|
|
69
69
|
|
70
70
|
def load_compressed(
|
71
71
|
compressed_tensors: Union[str, Path],
|
72
|
-
compression_config:
|
72
|
+
compression_config: SparsityCompressionConfig = None,
|
73
73
|
device: Optional[str] = "cpu",
|
74
74
|
) -> Generator[Tuple[str, Tensor], None, None]:
|
75
75
|
"""
|
@@ -90,9 +90,9 @@ def load_compressed(
|
|
90
90
|
|
91
91
|
if (
|
92
92
|
compression_config is None
|
93
|
-
or compression_config.format == CompressionFormat.
|
93
|
+
or compression_config.format == CompressionFormat.dense.value
|
94
94
|
):
|
95
|
-
# if no compression_config specified, or `
|
95
|
+
# if no compression_config specified, or `dense` format specified,
|
96
96
|
# assume tensors are not compressed on disk
|
97
97
|
weight_mappings = get_weight_mappings(compressed_tensors)
|
98
98
|
for weight_name, file_with_weight_name in weight_mappings.items():
|
@@ -102,7 +102,7 @@ def load_compressed(
|
|
102
102
|
else:
|
103
103
|
# decompress tensors
|
104
104
|
compression_format = compression_config.format
|
105
|
-
compressor =
|
105
|
+
compressor = Compressor.load_from_registry(
|
106
106
|
compression_format, config=compression_config
|
107
107
|
)
|
108
108
|
yield from compressor.decompress(compressed_tensors, device=device)
|
@@ -0,0 +1,126 @@
|
|
1
|
+
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing,
|
10
|
+
# software distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
import logging
|
16
|
+
from typing import Dict, Generator, Tuple
|
17
|
+
|
18
|
+
import torch
|
19
|
+
from compressed_tensors.compressors import Compressor
|
20
|
+
from compressed_tensors.config import CompressionFormat
|
21
|
+
from compressed_tensors.quantization import QuantizationArgs
|
22
|
+
from compressed_tensors.quantization.lifecycle.forward import dequantize, quantize
|
23
|
+
from compressed_tensors.quantization.utils import can_quantize
|
24
|
+
from compressed_tensors.utils import get_nested_weight_mappings, merge_names
|
25
|
+
from safetensors import safe_open
|
26
|
+
from torch import Tensor
|
27
|
+
from tqdm import tqdm
|
28
|
+
|
29
|
+
|
30
|
+
__all__ = ["IntQuantizationCompressor"]
|
31
|
+
|
32
|
+
_LOGGER: logging.Logger = logging.getLogger(__name__)
|
33
|
+
|
34
|
+
|
35
|
+
@Compressor.register(name=CompressionFormat.int_quantized.value)
|
36
|
+
class IntQuantizationCompressor(Compressor):
|
37
|
+
"""
|
38
|
+
Integer compression for quantized models. Weight of each quantized layer is
|
39
|
+
converted from its original float type to the format specified by the layer's
|
40
|
+
quantization scheme.
|
41
|
+
"""
|
42
|
+
|
43
|
+
COMPRESSION_PARAM_NAMES = ["weight", "weight_scale", "weight_zero_point"]
|
44
|
+
|
45
|
+
def compress(
|
46
|
+
self,
|
47
|
+
model_state: Dict[str, Tensor],
|
48
|
+
model_quant_args: Dict[str, QuantizationArgs],
|
49
|
+
**kwargs,
|
50
|
+
) -> Dict[str, Tensor]:
|
51
|
+
"""
|
52
|
+
Compresses a dense state dict
|
53
|
+
|
54
|
+
:param model_state: state dict of uncompressed model
|
55
|
+
:param model_quant_args: quantization args for each quantized weight, needed for
|
56
|
+
quantize function to calculate bit depth
|
57
|
+
:return: compressed state dict
|
58
|
+
"""
|
59
|
+
compressed_dict = {}
|
60
|
+
weight_suffix = ".weight"
|
61
|
+
_LOGGER.debug(
|
62
|
+
f"Compressing model with {len(model_state)} parameterized layers..."
|
63
|
+
)
|
64
|
+
|
65
|
+
for name, value in tqdm(model_state.items(), desc="Compressing model"):
|
66
|
+
if name.endswith(weight_suffix):
|
67
|
+
prefix = name[: -(len(weight_suffix))]
|
68
|
+
scale = model_state.get(merge_names(prefix, "weight_scale"), None)
|
69
|
+
zp = model_state.get(merge_names(prefix, "weight_zero_point"), None)
|
70
|
+
if scale is not None and zp is not None:
|
71
|
+
# weight is quantized, compress it
|
72
|
+
quant_args = model_quant_args[prefix]
|
73
|
+
if can_quantize(value, quant_args):
|
74
|
+
# only quantize if not already quantized
|
75
|
+
value = quantize(
|
76
|
+
x=value,
|
77
|
+
scale=scale,
|
78
|
+
zero_point=zp,
|
79
|
+
args=quant_args,
|
80
|
+
dtype=torch.int8,
|
81
|
+
)
|
82
|
+
elif name.endswith("zero_point"):
|
83
|
+
if torch.all(value == 0):
|
84
|
+
# all zero_points are 0, no need to include in
|
85
|
+
# compressed state_dict
|
86
|
+
continue
|
87
|
+
compressed_dict[name] = value.to("cpu")
|
88
|
+
|
89
|
+
return compressed_dict
|
90
|
+
|
91
|
+
def decompress(
|
92
|
+
self, path_to_model_or_tensors: str, device: str = "cpu"
|
93
|
+
) -> Generator[Tuple[str, Tensor], None, None]:
|
94
|
+
"""
|
95
|
+
Reads a compressed state dict located at path_to_model_or_tensors
|
96
|
+
and returns a generator for sequentially decompressing back to a
|
97
|
+
dense state dict
|
98
|
+
|
99
|
+
:param model_path: path to compressed safetensors model (directory with
|
100
|
+
one or more safetensors files) or compressed tensors file
|
101
|
+
:param device: optional device to load intermediate weights into
|
102
|
+
:return: compressed state dict
|
103
|
+
"""
|
104
|
+
weight_mappings = get_nested_weight_mappings(
|
105
|
+
path_to_model_or_tensors, self.COMPRESSION_PARAM_NAMES
|
106
|
+
)
|
107
|
+
for weight_name in weight_mappings.keys():
|
108
|
+
weight_data = {}
|
109
|
+
for param_name, safe_path in weight_mappings[weight_name].items():
|
110
|
+
full_name = merge_names(weight_name, param_name)
|
111
|
+
with safe_open(safe_path, framework="pt", device=device) as f:
|
112
|
+
weight_data[param_name] = f.get_tensor(full_name)
|
113
|
+
|
114
|
+
if "weight_scale" in weight_data:
|
115
|
+
zero_point = weight_data.get("weight_zero_point", None)
|
116
|
+
scale = weight_data["weight_scale"]
|
117
|
+
if zero_point is None:
|
118
|
+
# zero_point assumed to be 0 if not included in state_dict
|
119
|
+
zero_point = torch.zeros_like(scale)
|
120
|
+
|
121
|
+
decompressed = dequantize(
|
122
|
+
x_q=weight_data["weight"],
|
123
|
+
scale=scale,
|
124
|
+
zero_point=zero_point,
|
125
|
+
)
|
126
|
+
yield merge_names(weight_name, "weight"), decompressed
|