compressed-tensors 0.3.0__tar.gz → 0.3.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (47) hide show
  1. compressed-tensors-0.3.2/LICENSE +201 -0
  2. compressed-tensors-0.3.2/PKG-INFO +100 -0
  3. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/README.md +3 -0
  4. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/setup.py +10 -3
  5. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/src/compressed_tensors/compressors/__init__.py +1 -6
  6. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/src/compressed_tensors/compressors/base.py +25 -1
  7. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/src/compressed_tensors/compressors/dense.py +1 -1
  8. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/src/compressed_tensors/compressors/helpers.py +0 -24
  9. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/src/compressed_tensors/compressors/sparse_bitmask.py +3 -2
  10. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/src/compressed_tensors/quantization/lifecycle/forward.py +18 -12
  11. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/src/compressed_tensors/quantization/lifecycle/frozen.py +9 -9
  12. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/src/compressed_tensors/quantization/lifecycle/initialize.py +7 -4
  13. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/src/compressed_tensors/quantization/observers/memoryless.py +2 -2
  14. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/src/compressed_tensors/quantization/quant_args.py +11 -0
  15. compressed-tensors-0.3.2/src/compressed_tensors.egg-info/PKG-INFO +100 -0
  16. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/src/compressed_tensors.egg-info/SOURCES.txt +1 -0
  17. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/src/compressed_tensors.egg-info/requires.txt +1 -1
  18. compressed-tensors-0.3.0/PKG-INFO +0 -13
  19. compressed-tensors-0.3.0/src/compressed_tensors.egg-info/PKG-INFO +0 -13
  20. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/pyproject.toml +0 -0
  21. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/setup.cfg +0 -0
  22. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/src/compressed_tensors/__init__.py +0 -0
  23. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/src/compressed_tensors/base.py +0 -0
  24. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/src/compressed_tensors/config/__init__.py +0 -0
  25. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/src/compressed_tensors/config/base.py +0 -0
  26. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/src/compressed_tensors/config/dense.py +0 -0
  27. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/src/compressed_tensors/config/sparse_bitmask.py +0 -0
  28. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/src/compressed_tensors/quantization/__init__.py +0 -0
  29. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/src/compressed_tensors/quantization/lifecycle/__init__.py +0 -0
  30. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/src/compressed_tensors/quantization/lifecycle/apply.py +0 -0
  31. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/src/compressed_tensors/quantization/lifecycle/calibration.py +0 -0
  32. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/src/compressed_tensors/quantization/observers/__init__.py +0 -0
  33. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/src/compressed_tensors/quantization/observers/base.py +0 -0
  34. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/src/compressed_tensors/quantization/observers/helpers.py +0 -0
  35. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/src/compressed_tensors/quantization/observers/min_max.py +0 -0
  36. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/src/compressed_tensors/quantization/quant_config.py +0 -0
  37. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/src/compressed_tensors/quantization/quant_scheme.py +0 -0
  38. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/src/compressed_tensors/quantization/utils/__init__.py +0 -0
  39. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/src/compressed_tensors/quantization/utils/helpers.py +0 -0
  40. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/src/compressed_tensors/registry/__init__.py +0 -0
  41. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/src/compressed_tensors/registry/registry.py +0 -0
  42. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/src/compressed_tensors/utils/__init__.py +0 -0
  43. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/src/compressed_tensors/utils/safetensors_load.py +0 -0
  44. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/src/compressed_tensors.egg-info/dependency_links.txt +0 -0
  45. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/src/compressed_tensors.egg-info/top_level.txt +0 -0
  46. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/tests/test_bitmask.py +0 -0
  47. {compressed-tensors-0.3.0 → compressed-tensors-0.3.2}/tests/test_registry.py +0 -0
@@ -0,0 +1,201 @@
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
@@ -0,0 +1,100 @@
1
+ Metadata-Version: 2.1
2
+ Name: compressed-tensors
3
+ Version: 0.3.2
4
+ Summary: Library for utilization of compressed safetensors of neural network models
5
+ Home-page: https://github.com/neuralmagic/compressed-tensors
6
+ Author: Neuralmagic, Inc.
7
+ Author-email: support@neuralmagic.com
8
+ License: Apache 2.0
9
+ Platform: UNKNOWN
10
+ Description-Content-Type: text/markdown
11
+ Provides-Extra: dev
12
+ License-File: LICENSE
13
+
14
+ # compressed-tensors
15
+
16
+ This repository extends a [safetensors](https://github.com/huggingface/safetensors) format to efficiently store sparse and/or quantized tensors on disk. `compressed-tensors` format supports multiple compression types to minimize the disk space and facilitate the tensor manipulation.
17
+
18
+ ## Motivation
19
+
20
+ ### Reduce disk space by saving sparse tensors in a compressed format
21
+
22
+ The compressed format stores the data much more efficiently by taking advantage of two properties of tensors:
23
+
24
+ - Sparse tensors -> due to a large number of entries that are equal to zero.
25
+ - Quantized -> due to their low precision representation.
26
+
27
+ ### Introduce an elegant interface to save/load compressed tensors
28
+
29
+ The library provides the user with the ability to compress/decompress tensors. The properties of tensors are defined by human-readable configs, allowing the users to understand the compression format at a quick glance.
30
+
31
+ ## Installation
32
+
33
+ ### Pip
34
+
35
+ ```bash
36
+ pip install compressed-tensors
37
+ ```
38
+
39
+ ### From source
40
+
41
+ ```bash
42
+ git clone https://github.com/neuralmagic/compressed-tensors
43
+ cd compressed-tensors
44
+ pip install -e .
45
+ ```
46
+
47
+ ## Getting started
48
+
49
+ ### Saving/Loading Compressed Tensors (Bitmask Compression)
50
+
51
+ The function `save_compressed` uses the `compression_format` argument to apply compression to tensors.
52
+ The function `load_compressed` reverses the process: converts the compressed weights on disk to decompressed weights in device memory.
53
+
54
+ ```python
55
+ from compressed_tensors import save_compressed, load_compressed, BitmaskConfig
56
+ from torch import Tensor
57
+ from typing import Dict
58
+
59
+ # the example BitmaskConfig method efficiently compresses
60
+ # tensors with large number of zero entries
61
+ compression_config = BitmaskConfig()
62
+
63
+ tensors: Dict[str, Tensor] = {"tensor_1": Tensor(
64
+ [[0.0, 0.0, 0.0],
65
+ [1.0, 1.0, 1.0]]
66
+ )}
67
+ # compress tensors using BitmaskConfig compression format (save them efficiently on disk)
68
+ save_compressed(tensors, "model.safetensors", compression_format=compression_config.format)
69
+
70
+ # decompress tensors (load_compressed returns a generator for memory efficiency)
71
+ decompressed_tensors = {}
72
+ for tensor_name, tensor in load_compressed("model.safetensors", compression_config = compression_config):
73
+ decompressed_tensors[tensor_name] = tensor
74
+ ```
75
+
76
+ ## Saving/Loading Compressed Models (Bitmask Compression)
77
+
78
+ We can apply bitmask compression to a whole model. For more detailed example see `example` directory.
79
+ ```python
80
+ from compressed_tensors import save_compressed_model, load_compressed, BitmaskConfig
81
+ from transformers import AutoModelForCausalLM
82
+
83
+ model_name = "neuralmagic/llama2.c-stories110M-pruned50"
84
+ model = AutoModelForCausalLM.from_pretrained(model_name)
85
+
86
+ original_state_dict = model.state_dict()
87
+
88
+ compression_config = BitmaskConfig()
89
+
90
+ # save compressed model weights
91
+ save_compressed_model(model, "compressed_model.safetensors", compression_format=compression_config.format)
92
+
93
+ # load compressed model weights (`dict` turns generator into a dictionary)
94
+ state_dict = dict(load_compressed("compressed_model.safetensors", compression_config))
95
+ ```
96
+
97
+ For more in-depth tutorial on bitmask compression, refer to the [notebook](https://github.com/neuralmagic/compressed-tensors/blob/d707c5b84bc3fef164aebdcd97cb6eaa571982f8/examples/bitmask_compression.ipynb).
98
+
99
+
100
+
@@ -80,3 +80,6 @@ save_compressed_model(model, "compressed_model.safetensors", compression_format=
80
80
  # load compressed model weights (`dict` turns generator into a dictionary)
81
81
  state_dict = dict(load_compressed("compressed_model.safetensors", compression_config))
82
82
  ```
83
+
84
+ For more in-depth tutorial on bitmask compression, refer to the [notebook](https://github.com/neuralmagic/compressed-tensors/blob/d707c5b84bc3fef164aebdcd97cb6eaa571982f8/examples/bitmask_compression.ipynb).
85
+
@@ -14,7 +14,10 @@
14
14
 
15
15
 
16
16
  from setuptools import setup, find_packages
17
- from typing import List, Dict
17
+ from typing import List, Dict, Tuple
18
+
19
+ def _setup_long_description() -> Tuple[str, str]:
20
+ return open("README.md", "r", encoding="utf-8").read(), "text/markdown"
18
21
 
19
22
  def _setup_packages() -> List:
20
23
  return find_packages(
@@ -22,17 +25,21 @@ def _setup_packages() -> List:
22
25
  )
23
26
 
24
27
  def _setup_install_requires() -> List:
25
- return ["torch>=1.7.0", "transformers<=4.40", "pydantic<2.7"]
28
+ return ["torch>=1.7.0", "transformers<4.41", "pydantic<2.7"]
26
29
 
27
30
  def _setup_extras() -> Dict:
28
31
  return {"dev": ["black==22.12.0", "isort==5.8.0", "wheel>=0.36.2", "flake8>=3.8.3", "pytest>=6.0.0", "nbconvert>=7.16.3"]}
29
32
 
30
33
  setup(
31
34
  name="compressed-tensors",
32
- version="0.3.0",
35
+ version="0.3.2",
33
36
  author="Neuralmagic, Inc.",
34
37
  author_email="support@neuralmagic.com",
38
+ license="Apache 2.0",
35
39
  description="Library for utilization of compressed safetensors of neural network models",
40
+ long_description=_setup_long_description()[0],
41
+ long_description_content_type=_setup_long_description()[1],
42
+ url="https://github.com/neuralmagic/compressed-tensors",
36
43
  extras_require=_setup_extras(),
37
44
  install_requires=_setup_install_requires(),
38
45
  package_dir={"": "src"},
@@ -16,10 +16,5 @@
16
16
 
17
17
  from .base import ModelCompressor
18
18
  from .dense import DenseCompressor
19
- from .helpers import (
20
- infer_compressor_from_model_config,
21
- load_compressed,
22
- save_compressed,
23
- save_compressed_model,
24
- )
19
+ from .helpers import load_compressed, save_compressed, save_compressed_model
25
20
  from .sparse_bitmask import BitmaskCompressor, BitmaskTensor
@@ -22,6 +22,7 @@ from compressed_tensors.utils import get_safetensors_folder
22
22
  from torch import Tensor
23
23
  from torch.nn import Module, Parameter
24
24
  from tqdm import tqdm
25
+ from transformers import AutoConfig
25
26
 
26
27
 
27
28
  __all__ = ["ModelCompressor"]
@@ -34,6 +35,29 @@ class ModelCompressor(RegistryMixin):
34
35
  :param config: config specifying compression parameters
35
36
  """
36
37
 
38
+ @classmethod
39
+ def from_pretrained(
40
+ cls, pretrained_model_name_or_path: str
41
+ ) -> Optional["ModelCompressor"]:
42
+ """
43
+ Given a path to a model config, extract a sparsity config if it exists and
44
+ return the associated ModelCompressor
45
+
46
+ :param pretrained_model_name_or_path: path to model config on disk or HF hub
47
+ :return: matching compressor if config contains a sparsity config
48
+ """
49
+ config = AutoConfig.from_pretrained(pretrained_model_name_or_path)
50
+ sparsity_config = getattr(config, SPARSITY_CONFIG_NAME, None)
51
+ if sparsity_config is None:
52
+ return None
53
+
54
+ format = sparsity_config.get("format")
55
+ sparsity_config = CompressionConfig.load_from_registry(
56
+ format, **sparsity_config
57
+ )
58
+ compressor = cls.load_from_registry(format, config=sparsity_config)
59
+ return compressor
60
+
37
61
  def __init__(self, config: Optional[CompressionConfig] = None):
38
62
  self.config = config
39
63
 
@@ -47,7 +71,7 @@ class ModelCompressor(RegistryMixin):
47
71
  raise NotImplementedError()
48
72
 
49
73
  def decompress(
50
- self, path_to_model_or_tensors: str
74
+ self, path_to_model_or_tensors: str, device: str = "cpu"
51
75
  ) -> Generator[Tuple[str, Tensor], None, None]:
52
76
  """
53
77
  Reads a compressed state dict located at path_to_model_or_tensors
@@ -29,6 +29,6 @@ class DenseCompressor(ModelCompressor):
29
29
  return model_state
30
30
 
31
31
  def decompress(
32
- self, path_to_model_or_tensors: str, device: str
32
+ self, path_to_model_or_tensors: str, device: str = "cpu"
33
33
  ) -> Generator[Tuple[str, Tensor], None, None]:
34
34
  return iter([])
@@ -16,45 +16,21 @@ from pathlib import Path
16
16
  from typing import Dict, Generator, Optional, Tuple, Union
17
17
 
18
18
  import torch
19
- from compressed_tensors.base import SPARSITY_CONFIG_NAME
20
19
  from compressed_tensors.compressors import ModelCompressor
21
20
  from compressed_tensors.config import CompressionConfig, CompressionFormat
22
21
  from compressed_tensors.utils.safetensors_load import get_weight_mappings
23
22
  from safetensors import safe_open
24
23
  from safetensors.torch import save_file
25
24
  from torch import Tensor
26
- from transformers import AutoConfig
27
25
 
28
26
 
29
27
  __all__ = [
30
- "infer_compressor_from_model_config",
31
28
  "load_compressed",
32
29
  "save_compressed",
33
30
  "save_compressed_model",
34
31
  ]
35
32
 
36
33
 
37
- def infer_compressor_from_model_config(
38
- pretrained_model_name_or_path: str,
39
- ) -> Optional[ModelCompressor]:
40
- """
41
- Given a path to a model config, extract a sparsity config if it exists and return
42
- the associated ModelCompressor
43
-
44
- :param pretrained_model_name_or_path: path to model config on disk or HF hub
45
- :return: matching compressor if config contains a sparsity config
46
- """
47
- config = AutoConfig.from_pretrained(pretrained_model_name_or_path)
48
- sparsity_config = getattr(config, SPARSITY_CONFIG_NAME, None)
49
- if sparsity_config is None:
50
- return None
51
-
52
- format = sparsity_config.get("format")
53
- sparsity_config = CompressionConfig.load_from_registry(format, **sparsity_config)
54
- compressor = ModelCompressor.load_from_registry(format, config=sparsity_config)
55
- return compressor
56
-
57
-
58
34
  def save_compressed(
59
35
  tensors: Dict[str, Tensor],
60
36
  save_path: Union[str, Path],
@@ -75,8 +75,9 @@ class BitmaskCompressor(ModelCompressor):
75
75
  self, path_to_model_or_tensors: str, device: str = "cpu"
76
76
  ) -> Generator[Tuple[str, Tensor], None, None]:
77
77
  """
78
- Reads a bitmask compressed state dict located at path_to_model_or_tensors
79
- and returns a generator for sequentially decompressing back to a dense state dict
78
+ Reads a bitmask compressed state dict located
79
+ at path_to_model_or_tensors and returns a generator
80
+ for sequentially decompressing back to a dense state dict
80
81
 
81
82
  :param model_path: path to compressed safetensors model (directory with
82
83
  one or more safetensors files) or compressed tensors file
@@ -111,7 +111,7 @@ def wrap_module_forward_quantized(module: Module, scheme: QuantizationScheme):
111
111
 
112
112
 
113
113
  def _maybe_calibrate_or_quantize(
114
- module: Module, value: Module, base_name: str, args: "QuantizationArgs"
114
+ module: Module, value: torch.Tensor, base_name: str, args: "QuantizationArgs"
115
115
  ) -> torch.Tensor:
116
116
  # only run quantized for the included stages
117
117
  if module.quantization_status not in {
@@ -120,17 +120,23 @@ def _maybe_calibrate_or_quantize(
120
120
  }:
121
121
  return value
122
122
 
123
- device = next(module.parameters()).device
124
- scale = getattr(module, f"{base_name}_scale")
125
- zero_point = getattr(module, f"{base_name}_zero_point")
126
-
127
- if module.quantization_status == QuantizationStatus.CALIBRATION:
128
- # get observer and get new quant params from observation
123
+ if args.dynamic:
124
+ # dynamic quantization - get scale and zero point directly from observer
129
125
  observer = getattr(module, f"{base_name}_observer")
130
- updated_scale, updated_zero_point = observer(value)
131
-
132
- # update scale and zero point
133
- scale.data = updated_scale.to(device)
134
- zero_point.data = updated_zero_point.to(device)
126
+ scale, zero_point = observer(value)
127
+ else:
128
+ # static quantization - get previous scale and zero point from layer
129
+ scale = getattr(module, f"{base_name}_scale")
130
+ zero_point = getattr(module, f"{base_name}_zero_point")
131
+
132
+ if module.quantization_status == QuantizationStatus.CALIBRATION:
133
+ # calibration mode - get new quant params from observer
134
+ observer = getattr(module, f"{base_name}_observer")
135
+ updated_scale, updated_zero_point = observer(value)
136
+
137
+ # update scale and zero point
138
+ device = next(module.parameters()).device
139
+ scale.data = updated_scale.to(device)
140
+ zero_point.data = updated_zero_point.to(device)
135
141
 
136
142
  return fake_quantize(value, scale, zero_point, args)
@@ -30,17 +30,17 @@ def freeze_module_quantization(module: Module):
30
30
 
31
31
  :param module: module to freeze quantization for
32
32
  """
33
- if not getattr(module, "quantization_scheme", None):
33
+ scheme = getattr(module, "quantization_scheme", None)
34
+ if not scheme:
34
35
  # no quantization scheme nothing to do
35
36
  return
36
37
 
37
- # delete observers from module
38
- observer_names = []
39
- for submodule_name, _ in module.named_modules():
40
- if "." not in submodule_name and submodule_name.endswith("_observer"):
41
- # delete any observers that belong directly to this module
42
- observer_names.append(submodule_name)
43
- for observer_name in observer_names:
44
- delattr(module, observer_name)
38
+ # delete observers from module if not dynamic
39
+ if scheme.input_activations and not scheme.input_activations.dynamic:
40
+ delattr(module, "input_observer")
41
+ if scheme.weights and not scheme.weights.dynamic:
42
+ delattr(module, "weight_observer")
43
+ if scheme.output_activations and not scheme.output_activations.dynamic:
44
+ delattr(module, "output_observer")
45
45
 
46
46
  module.quantization_status = QuantizationStatus.FROZEN
@@ -80,6 +80,13 @@ def initialize_module_for_quantization(
80
80
  def _initialize_scale_zero_point_observer(
81
81
  module: Module, base_name: str, quantization_args: QuantizationArgs
82
82
  ):
83
+ # initialize observer module and attach as submodule
84
+ observer = quantization_args.get_observer()
85
+ module.register_module(f"{base_name}_observer", observer)
86
+
87
+ if quantization_args.dynamic:
88
+ return # no need to register a scale and zero point for a dynamic observer
89
+
83
90
  device = next(module.parameters()).device
84
91
 
85
92
  # initializes empty scale and zero point parameters for the module
@@ -90,7 +97,3 @@ def _initialize_scale_zero_point_observer(
90
97
  torch.empty(0, device=device, dtype=int), requires_grad=False
91
98
  )
92
99
  module.register_parameter(f"{base_name}_zero_point", init_zero_point)
93
-
94
- # initialize observer module and attach as submodule
95
- observer = quantization_args.get_observer()
96
- module.register_module(f"{base_name}_observer", observer)
@@ -23,10 +23,10 @@ from torch import FloatTensor, IntTensor, Tensor
23
23
  __all__ = ["MemorylessObserver"]
24
24
 
25
25
 
26
- @Observer.register("memoryless")
26
+ @Observer.register("memoryless", alias=["dynamic"])
27
27
  class MemorylessObserver(Observer):
28
28
  """
29
- Implements a dynamic quantization observer that sets the scale and
29
+ Implements a quantization observer that sets the scale and
30
30
  zero point based on the latest observed value without tracking state
31
31
  """
32
32
 
@@ -53,6 +53,11 @@ class QuantizationArgs(BaseModel):
53
53
  :param group_size: group length to use for the group strategy
54
54
  :param block_structure: 2d block structure to use for the block strategy, must be
55
55
  of the format "2x4", "8x16", etc.
56
+ :param dynamic: set True to perform dynamic quantization - values will not be
57
+ calibrated during calibration phase, instead during inference new quantization
58
+ ranges will be observed with every sample. Defaults to False for static
59
+ quantization. Note that enabling dynamic quantization will change the default
60
+ observer to a memoryless one
56
61
  """
57
62
 
58
63
  num_bits: int = 8
@@ -61,6 +66,7 @@ class QuantizationArgs(BaseModel):
61
66
  strategy: QuantizationStrategy = QuantizationStrategy.TENSOR
62
67
  group_size: Optional[int] = None
63
68
  block_structure: Optional[str] = None
69
+ dynamic: bool = False
64
70
  observer: str = Field(
65
71
  default="minmax",
66
72
  description=(
@@ -82,4 +88,9 @@ class QuantizationArgs(BaseModel):
82
88
  """
83
89
  from compressed_tensors.quantization.observers.base import Observer
84
90
 
91
+ if self.observer == "minmax" and self.dynamic:
92
+ # override defualt observer for dynamic, you never want minmax which
93
+ # keeps state across samples for dynamic
94
+ self.observer = "memoryless"
95
+
85
96
  return Observer.load_from_registry(self.observer, quantization_args=self)
@@ -0,0 +1,100 @@
1
+ Metadata-Version: 2.1
2
+ Name: compressed-tensors
3
+ Version: 0.3.2
4
+ Summary: Library for utilization of compressed safetensors of neural network models
5
+ Home-page: https://github.com/neuralmagic/compressed-tensors
6
+ Author: Neuralmagic, Inc.
7
+ Author-email: support@neuralmagic.com
8
+ License: Apache 2.0
9
+ Platform: UNKNOWN
10
+ Description-Content-Type: text/markdown
11
+ Provides-Extra: dev
12
+ License-File: LICENSE
13
+
14
+ # compressed-tensors
15
+
16
+ This repository extends a [safetensors](https://github.com/huggingface/safetensors) format to efficiently store sparse and/or quantized tensors on disk. `compressed-tensors` format supports multiple compression types to minimize the disk space and facilitate the tensor manipulation.
17
+
18
+ ## Motivation
19
+
20
+ ### Reduce disk space by saving sparse tensors in a compressed format
21
+
22
+ The compressed format stores the data much more efficiently by taking advantage of two properties of tensors:
23
+
24
+ - Sparse tensors -> due to a large number of entries that are equal to zero.
25
+ - Quantized -> due to their low precision representation.
26
+
27
+ ### Introduce an elegant interface to save/load compressed tensors
28
+
29
+ The library provides the user with the ability to compress/decompress tensors. The properties of tensors are defined by human-readable configs, allowing the users to understand the compression format at a quick glance.
30
+
31
+ ## Installation
32
+
33
+ ### Pip
34
+
35
+ ```bash
36
+ pip install compressed-tensors
37
+ ```
38
+
39
+ ### From source
40
+
41
+ ```bash
42
+ git clone https://github.com/neuralmagic/compressed-tensors
43
+ cd compressed-tensors
44
+ pip install -e .
45
+ ```
46
+
47
+ ## Getting started
48
+
49
+ ### Saving/Loading Compressed Tensors (Bitmask Compression)
50
+
51
+ The function `save_compressed` uses the `compression_format` argument to apply compression to tensors.
52
+ The function `load_compressed` reverses the process: converts the compressed weights on disk to decompressed weights in device memory.
53
+
54
+ ```python
55
+ from compressed_tensors import save_compressed, load_compressed, BitmaskConfig
56
+ from torch import Tensor
57
+ from typing import Dict
58
+
59
+ # the example BitmaskConfig method efficiently compresses
60
+ # tensors with large number of zero entries
61
+ compression_config = BitmaskConfig()
62
+
63
+ tensors: Dict[str, Tensor] = {"tensor_1": Tensor(
64
+ [[0.0, 0.0, 0.0],
65
+ [1.0, 1.0, 1.0]]
66
+ )}
67
+ # compress tensors using BitmaskConfig compression format (save them efficiently on disk)
68
+ save_compressed(tensors, "model.safetensors", compression_format=compression_config.format)
69
+
70
+ # decompress tensors (load_compressed returns a generator for memory efficiency)
71
+ decompressed_tensors = {}
72
+ for tensor_name, tensor in load_compressed("model.safetensors", compression_config = compression_config):
73
+ decompressed_tensors[tensor_name] = tensor
74
+ ```
75
+
76
+ ## Saving/Loading Compressed Models (Bitmask Compression)
77
+
78
+ We can apply bitmask compression to a whole model. For more detailed example see `example` directory.
79
+ ```python
80
+ from compressed_tensors import save_compressed_model, load_compressed, BitmaskConfig
81
+ from transformers import AutoModelForCausalLM
82
+
83
+ model_name = "neuralmagic/llama2.c-stories110M-pruned50"
84
+ model = AutoModelForCausalLM.from_pretrained(model_name)
85
+
86
+ original_state_dict = model.state_dict()
87
+
88
+ compression_config = BitmaskConfig()
89
+
90
+ # save compressed model weights
91
+ save_compressed_model(model, "compressed_model.safetensors", compression_format=compression_config.format)
92
+
93
+ # load compressed model weights (`dict` turns generator into a dictionary)
94
+ state_dict = dict(load_compressed("compressed_model.safetensors", compression_config))
95
+ ```
96
+
97
+ For more in-depth tutorial on bitmask compression, refer to the [notebook](https://github.com/neuralmagic/compressed-tensors/blob/d707c5b84bc3fef164aebdcd97cb6eaa571982f8/examples/bitmask_compression.ipynb).
98
+
99
+
100
+
@@ -1,3 +1,4 @@
1
+ LICENSE
1
2
  README.md
2
3
  pyproject.toml
3
4
  setup.cfg
@@ -1,6 +1,6 @@
1
1
  pydantic<2.7
2
2
  torch>=1.7.0
3
- transformers<=4.40
3
+ transformers<4.41
4
4
 
5
5
  [dev]
6
6
  black==22.12.0
@@ -1,13 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: compressed-tensors
3
- Version: 0.3.0
4
- Summary: Library for utilization of compressed safetensors of neural network models
5
- Home-page: UNKNOWN
6
- Author: Neuralmagic, Inc.
7
- Author-email: support@neuralmagic.com
8
- License: UNKNOWN
9
- Platform: UNKNOWN
10
- Provides-Extra: dev
11
-
12
- UNKNOWN
13
-
@@ -1,13 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: compressed-tensors
3
- Version: 0.3.0
4
- Summary: Library for utilization of compressed safetensors of neural network models
5
- Home-page: UNKNOWN
6
- Author: Neuralmagic, Inc.
7
- Author-email: support@neuralmagic.com
8
- License: UNKNOWN
9
- Platform: UNKNOWN
10
- Provides-Extra: dev
11
-
12
- UNKNOWN
13
-