compressed-tensors 0.3.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- compressed-tensors-0.3.0/PKG-INFO +13 -0
- compressed-tensors-0.3.0/README.md +82 -0
- compressed-tensors-0.3.0/pyproject.toml +3 -0
- compressed-tensors-0.3.0/setup.cfg +20 -0
- compressed-tensors-0.3.0/setup.py +40 -0
- compressed-tensors-0.3.0/src/compressed_tensors/__init__.py +21 -0
- compressed-tensors-0.3.0/src/compressed_tensors/base.py +16 -0
- compressed-tensors-0.3.0/src/compressed_tensors/compressors/__init__.py +25 -0
- compressed-tensors-0.3.0/src/compressed_tensors/compressors/base.py +79 -0
- compressed-tensors-0.3.0/src/compressed_tensors/compressors/dense.py +34 -0
- compressed-tensors-0.3.0/src/compressed_tensors/compressors/helpers.py +161 -0
- compressed-tensors-0.3.0/src/compressed_tensors/compressors/sparse_bitmask.py +238 -0
- compressed-tensors-0.3.0/src/compressed_tensors/config/__init__.py +18 -0
- compressed-tensors-0.3.0/src/compressed_tensors/config/base.py +42 -0
- compressed-tensors-0.3.0/src/compressed_tensors/config/dense.py +36 -0
- compressed-tensors-0.3.0/src/compressed_tensors/config/sparse_bitmask.py +36 -0
- compressed-tensors-0.3.0/src/compressed_tensors/quantization/__init__.py +21 -0
- compressed-tensors-0.3.0/src/compressed_tensors/quantization/lifecycle/__init__.py +22 -0
- compressed-tensors-0.3.0/src/compressed_tensors/quantization/lifecycle/apply.py +173 -0
- compressed-tensors-0.3.0/src/compressed_tensors/quantization/lifecycle/calibration.py +51 -0
- compressed-tensors-0.3.0/src/compressed_tensors/quantization/lifecycle/forward.py +136 -0
- compressed-tensors-0.3.0/src/compressed_tensors/quantization/lifecycle/frozen.py +46 -0
- compressed-tensors-0.3.0/src/compressed_tensors/quantization/lifecycle/initialize.py +96 -0
- compressed-tensors-0.3.0/src/compressed_tensors/quantization/observers/__init__.py +21 -0
- compressed-tensors-0.3.0/src/compressed_tensors/quantization/observers/base.py +69 -0
- compressed-tensors-0.3.0/src/compressed_tensors/quantization/observers/helpers.py +53 -0
- compressed-tensors-0.3.0/src/compressed_tensors/quantization/observers/memoryless.py +48 -0
- compressed-tensors-0.3.0/src/compressed_tensors/quantization/observers/min_max.py +65 -0
- compressed-tensors-0.3.0/src/compressed_tensors/quantization/quant_args.py +85 -0
- compressed-tensors-0.3.0/src/compressed_tensors/quantization/quant_config.py +171 -0
- compressed-tensors-0.3.0/src/compressed_tensors/quantization/quant_scheme.py +39 -0
- compressed-tensors-0.3.0/src/compressed_tensors/quantization/utils/__init__.py +16 -0
- compressed-tensors-0.3.0/src/compressed_tensors/quantization/utils/helpers.py +115 -0
- compressed-tensors-0.3.0/src/compressed_tensors/registry/__init__.py +17 -0
- compressed-tensors-0.3.0/src/compressed_tensors/registry/registry.py +360 -0
- compressed-tensors-0.3.0/src/compressed_tensors/utils/__init__.py +16 -0
- compressed-tensors-0.3.0/src/compressed_tensors/utils/safetensors_load.py +237 -0
- compressed-tensors-0.3.0/src/compressed_tensors.egg-info/PKG-INFO +13 -0
- compressed-tensors-0.3.0/src/compressed_tensors.egg-info/SOURCES.txt +43 -0
- compressed-tensors-0.3.0/src/compressed_tensors.egg-info/dependency_links.txt +1 -0
- compressed-tensors-0.3.0/src/compressed_tensors.egg-info/requires.txt +11 -0
- compressed-tensors-0.3.0/src/compressed_tensors.egg-info/top_level.txt +1 -0
- compressed-tensors-0.3.0/tests/test_bitmask.py +120 -0
- compressed-tensors-0.3.0/tests/test_registry.py +53 -0
@@ -0,0 +1,13 @@
|
|
1
|
+
Metadata-Version: 2.1
|
2
|
+
Name: compressed-tensors
|
3
|
+
Version: 0.3.0
|
4
|
+
Summary: Library for utilization of compressed safetensors of neural network models
|
5
|
+
Home-page: UNKNOWN
|
6
|
+
Author: Neuralmagic, Inc.
|
7
|
+
Author-email: support@neuralmagic.com
|
8
|
+
License: UNKNOWN
|
9
|
+
Platform: UNKNOWN
|
10
|
+
Provides-Extra: dev
|
11
|
+
|
12
|
+
UNKNOWN
|
13
|
+
|
@@ -0,0 +1,82 @@
|
|
1
|
+
# compressed-tensors
|
2
|
+
|
3
|
+
This repository extends a [safetensors](https://github.com/huggingface/safetensors) format to efficiently store sparse and/or quantized tensors on disk. `compressed-tensors` format supports multiple compression types to minimize the disk space and facilitate the tensor manipulation.
|
4
|
+
|
5
|
+
## Motivation
|
6
|
+
|
7
|
+
### Reduce disk space by saving sparse tensors in a compressed format
|
8
|
+
|
9
|
+
The compressed format stores the data much more efficiently by taking advantage of two properties of tensors:
|
10
|
+
|
11
|
+
- Sparse tensors -> due to a large number of entries that are equal to zero.
|
12
|
+
- Quantized -> due to their low precision representation.
|
13
|
+
|
14
|
+
### Introduce an elegant interface to save/load compressed tensors
|
15
|
+
|
16
|
+
The library provides the user with the ability to compress/decompress tensors. The properties of tensors are defined by human-readable configs, allowing the users to understand the compression format at a quick glance.
|
17
|
+
|
18
|
+
## Installation
|
19
|
+
|
20
|
+
### Pip
|
21
|
+
|
22
|
+
```bash
|
23
|
+
pip install compressed-tensors
|
24
|
+
```
|
25
|
+
|
26
|
+
### From source
|
27
|
+
|
28
|
+
```bash
|
29
|
+
git clone https://github.com/neuralmagic/compressed-tensors
|
30
|
+
cd compressed-tensors
|
31
|
+
pip install -e .
|
32
|
+
```
|
33
|
+
|
34
|
+
## Getting started
|
35
|
+
|
36
|
+
### Saving/Loading Compressed Tensors (Bitmask Compression)
|
37
|
+
|
38
|
+
The function `save_compressed` uses the `compression_format` argument to apply compression to tensors.
|
39
|
+
The function `load_compressed` reverses the process: converts the compressed weights on disk to decompressed weights in device memory.
|
40
|
+
|
41
|
+
```python
|
42
|
+
from compressed_tensors import save_compressed, load_compressed, BitmaskConfig
|
43
|
+
from torch import Tensor
|
44
|
+
from typing import Dict
|
45
|
+
|
46
|
+
# the example BitmaskConfig method efficiently compresses
|
47
|
+
# tensors with large number of zero entries
|
48
|
+
compression_config = BitmaskConfig()
|
49
|
+
|
50
|
+
tensors: Dict[str, Tensor] = {"tensor_1": Tensor(
|
51
|
+
[[0.0, 0.0, 0.0],
|
52
|
+
[1.0, 1.0, 1.0]]
|
53
|
+
)}
|
54
|
+
# compress tensors using BitmaskConfig compression format (save them efficiently on disk)
|
55
|
+
save_compressed(tensors, "model.safetensors", compression_format=compression_config.format)
|
56
|
+
|
57
|
+
# decompress tensors (load_compressed returns a generator for memory efficiency)
|
58
|
+
decompressed_tensors = {}
|
59
|
+
for tensor_name, tensor in load_compressed("model.safetensors", compression_config = compression_config):
|
60
|
+
decompressed_tensors[tensor_name] = tensor
|
61
|
+
```
|
62
|
+
|
63
|
+
## Saving/Loading Compressed Models (Bitmask Compression)
|
64
|
+
|
65
|
+
We can apply bitmask compression to a whole model. For more detailed example see `example` directory.
|
66
|
+
```python
|
67
|
+
from compressed_tensors import save_compressed_model, load_compressed, BitmaskConfig
|
68
|
+
from transformers import AutoModelForCausalLM
|
69
|
+
|
70
|
+
model_name = "neuralmagic/llama2.c-stories110M-pruned50"
|
71
|
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
72
|
+
|
73
|
+
original_state_dict = model.state_dict()
|
74
|
+
|
75
|
+
compression_config = BitmaskConfig()
|
76
|
+
|
77
|
+
# save compressed model weights
|
78
|
+
save_compressed_model(model, "compressed_model.safetensors", compression_format=compression_config.format)
|
79
|
+
|
80
|
+
# load compressed model weights (`dict` turns generator into a dictionary)
|
81
|
+
state_dict = dict(load_compressed("compressed_model.safetensors", compression_config))
|
82
|
+
```
|
@@ -0,0 +1,20 @@
|
|
1
|
+
[isort]
|
2
|
+
profile = black
|
3
|
+
default_section = FIRSTPARTY
|
4
|
+
ensure_newline_before_comments = True
|
5
|
+
force_grid_wrap = 0
|
6
|
+
include_trailing_comma = True
|
7
|
+
sections = FUTURE,STDLIB,THIRDPARTY,FIRSTPARTY,LOCALFOLDER
|
8
|
+
line_length = 88
|
9
|
+
lines_after_imports = 2
|
10
|
+
multi_line_output = 3
|
11
|
+
use_parentheses = True
|
12
|
+
|
13
|
+
[flake8]
|
14
|
+
ignore = E203, E251, E701, W503
|
15
|
+
max-line-length = 88
|
16
|
+
|
17
|
+
[egg_info]
|
18
|
+
tag_build =
|
19
|
+
tag_date = 0
|
20
|
+
|
@@ -0,0 +1,40 @@
|
|
1
|
+
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing,
|
10
|
+
# software distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
|
16
|
+
from setuptools import setup, find_packages
|
17
|
+
from typing import List, Dict
|
18
|
+
|
19
|
+
def _setup_packages() -> List:
|
20
|
+
return find_packages(
|
21
|
+
"src", include=["compressed_tensors", "compressed_tensors.*"], exclude=["*.__pycache__.*"]
|
22
|
+
)
|
23
|
+
|
24
|
+
def _setup_install_requires() -> List:
|
25
|
+
return ["torch>=1.7.0", "transformers<=4.40", "pydantic<2.7"]
|
26
|
+
|
27
|
+
def _setup_extras() -> Dict:
|
28
|
+
return {"dev": ["black==22.12.0", "isort==5.8.0", "wheel>=0.36.2", "flake8>=3.8.3", "pytest>=6.0.0", "nbconvert>=7.16.3"]}
|
29
|
+
|
30
|
+
setup(
|
31
|
+
name="compressed-tensors",
|
32
|
+
version="0.3.0",
|
33
|
+
author="Neuralmagic, Inc.",
|
34
|
+
author_email="support@neuralmagic.com",
|
35
|
+
description="Library for utilization of compressed safetensors of neural network models",
|
36
|
+
extras_require=_setup_extras(),
|
37
|
+
install_requires=_setup_install_requires(),
|
38
|
+
package_dir={"": "src"},
|
39
|
+
packages=_setup_packages(),
|
40
|
+
)
|
@@ -0,0 +1,21 @@
|
|
1
|
+
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing,
|
10
|
+
# software distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
from .base import *
|
16
|
+
|
17
|
+
# flake8: noqa
|
18
|
+
from .compressors import *
|
19
|
+
from .config import *
|
20
|
+
from .quantization import QuantizationConfig, QuantizationStatus
|
21
|
+
from .utils import *
|
@@ -0,0 +1,16 @@
|
|
1
|
+
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing,
|
10
|
+
# software distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
SPARSITY_CONFIG_NAME = "sparsity_config"
|
16
|
+
QUANTIZATION_CONFIG_NAME = "sparseml_quantization_config"
|
@@ -0,0 +1,25 @@
|
|
1
|
+
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing,
|
10
|
+
# software distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
# flake8: noqa
|
16
|
+
|
17
|
+
from .base import ModelCompressor
|
18
|
+
from .dense import DenseCompressor
|
19
|
+
from .helpers import (
|
20
|
+
infer_compressor_from_model_config,
|
21
|
+
load_compressed,
|
22
|
+
save_compressed,
|
23
|
+
save_compressed_model,
|
24
|
+
)
|
25
|
+
from .sparse_bitmask import BitmaskCompressor, BitmaskTensor
|
@@ -0,0 +1,79 @@
|
|
1
|
+
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing,
|
10
|
+
# software distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
import operator
|
16
|
+
from typing import Dict, Generator, Optional, Tuple
|
17
|
+
|
18
|
+
from compressed_tensors.base import SPARSITY_CONFIG_NAME
|
19
|
+
from compressed_tensors.config import CompressionConfig
|
20
|
+
from compressed_tensors.registry import RegistryMixin
|
21
|
+
from compressed_tensors.utils import get_safetensors_folder
|
22
|
+
from torch import Tensor
|
23
|
+
from torch.nn import Module, Parameter
|
24
|
+
from tqdm import tqdm
|
25
|
+
|
26
|
+
|
27
|
+
__all__ = ["ModelCompressor"]
|
28
|
+
|
29
|
+
|
30
|
+
class ModelCompressor(RegistryMixin):
|
31
|
+
"""
|
32
|
+
Base class representing a model compression algorithm.
|
33
|
+
|
34
|
+
:param config: config specifying compression parameters
|
35
|
+
"""
|
36
|
+
|
37
|
+
def __init__(self, config: Optional[CompressionConfig] = None):
|
38
|
+
self.config = config
|
39
|
+
|
40
|
+
def compress(self, model_state: Dict[str, Tensor]) -> Dict[str, Tensor]:
|
41
|
+
"""
|
42
|
+
Compresses a dense state dict
|
43
|
+
|
44
|
+
:param model_state: state dict of uncompressed model
|
45
|
+
:return: compressed state dict
|
46
|
+
"""
|
47
|
+
raise NotImplementedError()
|
48
|
+
|
49
|
+
def decompress(
|
50
|
+
self, path_to_model_or_tensors: str
|
51
|
+
) -> Generator[Tuple[str, Tensor], None, None]:
|
52
|
+
"""
|
53
|
+
Reads a compressed state dict located at path_to_model_or_tensors
|
54
|
+
and returns a generator for sequentially decompressing back to a
|
55
|
+
dense state dict
|
56
|
+
|
57
|
+
:param model_path: path to compressed safetensors model (directory with
|
58
|
+
one or more safetensors files) or compressed tensors file
|
59
|
+
:return: compressed state dict
|
60
|
+
"""
|
61
|
+
raise NotImplementedError()
|
62
|
+
|
63
|
+
def overwrite_weights(self, model_path: str, model: Module):
|
64
|
+
"""
|
65
|
+
Overwrites the weights in model with weights decompressed from model_path
|
66
|
+
|
67
|
+
:param model_path: path to compressed weights
|
68
|
+
:param model: pytorch model to load decompressed weights into
|
69
|
+
"""
|
70
|
+
model_path = get_safetensors_folder(model_path)
|
71
|
+
dense_gen = self.decompress(model_path)
|
72
|
+
for name, data in tqdm(dense_gen, desc="Decompressing model"):
|
73
|
+
# loading the decompressed weights into the model
|
74
|
+
model_device = operator.attrgetter(name)(model).device
|
75
|
+
data_new = Parameter(data.to(model_device))
|
76
|
+
data_old = operator.attrgetter(name)(model)
|
77
|
+
data_old.data = data_new.data
|
78
|
+
|
79
|
+
setattr(model, SPARSITY_CONFIG_NAME, self.config)
|
@@ -0,0 +1,34 @@
|
|
1
|
+
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing,
|
10
|
+
# software distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
from typing import Dict, Generator, Tuple
|
16
|
+
|
17
|
+
from compressed_tensors.compressors import ModelCompressor
|
18
|
+
from compressed_tensors.config import CompressionFormat
|
19
|
+
from torch import Tensor
|
20
|
+
|
21
|
+
|
22
|
+
@ModelCompressor.register(name=CompressionFormat.dense_sparsity.value)
|
23
|
+
class DenseCompressor(ModelCompressor):
|
24
|
+
"""
|
25
|
+
Identity compressor for dense models, returns the original state_dict
|
26
|
+
"""
|
27
|
+
|
28
|
+
def compress(self, model_state: Dict[str, Tensor]) -> Dict[str, Tensor]:
|
29
|
+
return model_state
|
30
|
+
|
31
|
+
def decompress(
|
32
|
+
self, path_to_model_or_tensors: str, device: str
|
33
|
+
) -> Generator[Tuple[str, Tensor], None, None]:
|
34
|
+
return iter([])
|
@@ -0,0 +1,161 @@
|
|
1
|
+
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing,
|
10
|
+
# software distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
from pathlib import Path
|
16
|
+
from typing import Dict, Generator, Optional, Tuple, Union
|
17
|
+
|
18
|
+
import torch
|
19
|
+
from compressed_tensors.base import SPARSITY_CONFIG_NAME
|
20
|
+
from compressed_tensors.compressors import ModelCompressor
|
21
|
+
from compressed_tensors.config import CompressionConfig, CompressionFormat
|
22
|
+
from compressed_tensors.utils.safetensors_load import get_weight_mappings
|
23
|
+
from safetensors import safe_open
|
24
|
+
from safetensors.torch import save_file
|
25
|
+
from torch import Tensor
|
26
|
+
from transformers import AutoConfig
|
27
|
+
|
28
|
+
|
29
|
+
__all__ = [
|
30
|
+
"infer_compressor_from_model_config",
|
31
|
+
"load_compressed",
|
32
|
+
"save_compressed",
|
33
|
+
"save_compressed_model",
|
34
|
+
]
|
35
|
+
|
36
|
+
|
37
|
+
def infer_compressor_from_model_config(
|
38
|
+
pretrained_model_name_or_path: str,
|
39
|
+
) -> Optional[ModelCompressor]:
|
40
|
+
"""
|
41
|
+
Given a path to a model config, extract a sparsity config if it exists and return
|
42
|
+
the associated ModelCompressor
|
43
|
+
|
44
|
+
:param pretrained_model_name_or_path: path to model config on disk or HF hub
|
45
|
+
:return: matching compressor if config contains a sparsity config
|
46
|
+
"""
|
47
|
+
config = AutoConfig.from_pretrained(pretrained_model_name_or_path)
|
48
|
+
sparsity_config = getattr(config, SPARSITY_CONFIG_NAME, None)
|
49
|
+
if sparsity_config is None:
|
50
|
+
return None
|
51
|
+
|
52
|
+
format = sparsity_config.get("format")
|
53
|
+
sparsity_config = CompressionConfig.load_from_registry(format, **sparsity_config)
|
54
|
+
compressor = ModelCompressor.load_from_registry(format, config=sparsity_config)
|
55
|
+
return compressor
|
56
|
+
|
57
|
+
|
58
|
+
def save_compressed(
|
59
|
+
tensors: Dict[str, Tensor],
|
60
|
+
save_path: Union[str, Path],
|
61
|
+
compression_format: Optional[CompressionFormat] = None,
|
62
|
+
):
|
63
|
+
"""
|
64
|
+
Save compressed tensors to disk. If tensors are not compressed,
|
65
|
+
save them as is.
|
66
|
+
|
67
|
+
:param tensors: dictionary of tensors to compress
|
68
|
+
:param save_path: path to save compressed tensors
|
69
|
+
:param compression_format: compression format used for the tensors
|
70
|
+
:return: compression config, if tensors were compressed - None otherwise
|
71
|
+
"""
|
72
|
+
if tensors is None or len(tensors) == 0:
|
73
|
+
raise ValueError("No tensors or empty tensors provided to compress")
|
74
|
+
|
75
|
+
# if no compression_format specified, default to `dense_sparsity`
|
76
|
+
compression_format = compression_format or CompressionFormat.dense_sparsity.value
|
77
|
+
|
78
|
+
if not (
|
79
|
+
compression_format in ModelCompressor.registered_names()
|
80
|
+
or compression_format in ModelCompressor.registered_aliases()
|
81
|
+
):
|
82
|
+
raise ValueError(
|
83
|
+
f"Unknown compression format: {compression_format}. "
|
84
|
+
f"Must be one of {set(ModelCompressor.registered_names() + ModelCompressor.registered_aliases())}" # noqa E501
|
85
|
+
)
|
86
|
+
|
87
|
+
# compress
|
88
|
+
compressor = ModelCompressor.load_from_registry(compression_format)
|
89
|
+
# save compressed tensors
|
90
|
+
compressed_tensors = compressor.compress(tensors)
|
91
|
+
save_file(compressed_tensors, save_path)
|
92
|
+
|
93
|
+
|
94
|
+
def load_compressed(
|
95
|
+
compressed_tensors: Union[str, Path],
|
96
|
+
compression_config: CompressionConfig = None,
|
97
|
+
device: Optional[str] = "cpu",
|
98
|
+
) -> Generator[Tuple[str, Tensor], None, None]:
|
99
|
+
"""
|
100
|
+
Load compressed tensors from disk.
|
101
|
+
If tensors are not compressed, load them as is.
|
102
|
+
|
103
|
+
:param compressed_tensors: path to compressed tensors.
|
104
|
+
This can be a path to a file or a directory containing
|
105
|
+
one or multiple safetensor files (if multiple - in the format
|
106
|
+
assumed by huggingface)
|
107
|
+
:param compression_config: compression config to use for decompressing tensors.
|
108
|
+
:param device: device to move tensors to. If None, tensors are loaded on CPU.
|
109
|
+
:param return_dict: if True, return a dictionary of decompressed tensors
|
110
|
+
:return a generator that yields the name and tensor of the decompressed tensor
|
111
|
+
"""
|
112
|
+
if compressed_tensors is None or not Path(compressed_tensors).exists():
|
113
|
+
raise ValueError("No compressed tensors provided to load")
|
114
|
+
|
115
|
+
if (
|
116
|
+
compression_config is None
|
117
|
+
or compression_config.format == CompressionFormat.dense_sparsity.value
|
118
|
+
):
|
119
|
+
# if no compression_config specified, or `dense_sparsity` format specified,
|
120
|
+
# assume tensors are not compressed on disk
|
121
|
+
weight_mappings = get_weight_mappings(compressed_tensors)
|
122
|
+
for weight_name, file_with_weight_name in weight_mappings.items():
|
123
|
+
with safe_open(file_with_weight_name, framework="pt", device=device) as f:
|
124
|
+
weight = f.get_tensor(weight_name)
|
125
|
+
yield weight_name, weight
|
126
|
+
else:
|
127
|
+
# decompress tensors
|
128
|
+
compression_format = compression_config.format
|
129
|
+
compressor = ModelCompressor.load_from_registry(
|
130
|
+
compression_format, config=compression_config
|
131
|
+
)
|
132
|
+
yield from compressor.decompress(compressed_tensors, device=device)
|
133
|
+
|
134
|
+
|
135
|
+
def save_compressed_model(
|
136
|
+
model: torch.nn.Module,
|
137
|
+
filename: str,
|
138
|
+
compression_format: Optional[CompressionFormat] = None,
|
139
|
+
force_contiguous: bool = True,
|
140
|
+
):
|
141
|
+
"""
|
142
|
+
Wrapper around safetensors `save_model` helper function, which allows for
|
143
|
+
saving compressed model to disk.
|
144
|
+
|
145
|
+
Note: The model is assumed to have a
|
146
|
+
state_dict with unique entries
|
147
|
+
|
148
|
+
:param model: model to save on disk
|
149
|
+
:param filename: filename location to save the file
|
150
|
+
:param compression_format: compression format used for the model
|
151
|
+
:param force_contiguous: forcing the state_dict to be saved as contiguous tensors
|
152
|
+
"""
|
153
|
+
state_dict = model.state_dict()
|
154
|
+
if force_contiguous:
|
155
|
+
state_dict = {k: v.contiguous() for k, v in state_dict.items()}
|
156
|
+
try:
|
157
|
+
save_compressed(state_dict, filename, compression_format=compression_format)
|
158
|
+
except ValueError as e:
|
159
|
+
msg = str(e)
|
160
|
+
msg += " Or use save_compressed_model(..., force_contiguous=True), read the docs for potential caveats." # noqa E501
|
161
|
+
raise ValueError(msg)
|