compressed-tensors 0.12.3a20251008__tar.gz → 0.12.3a20251010__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/.github/workflows/test.yml +1 -1
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/.github/workflows/trigger-all.yml +1 -1
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/PKG-INFO +1 -1
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/base.py +0 -3
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/quantization/lifecycle/forward.py +1 -1
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/quantization/lifecycle/initialize.py +10 -3
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/quantization/quant_args.py +8 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/quantization/quant_scheme.py +1 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/version.py +1 -1
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors.egg-info/PKG-INFO +1 -1
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors.egg-info/SOURCES.txt +2 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/conftest.py +0 -21
- compressed_tensors-0.12.3a20251010/tests/mock_observer.py +173 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_quantization/lifecycle/test_initialize.py +0 -7
- compressed_tensors-0.12.3a20251010/tests/test_quantization/lifecycle/test_static_lifecycle.py +388 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_quantization/test_configs/test_strategies.py +0 -31
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_quantization/test_utils/test_helpers.py +0 -1
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/.github/.gitkeep +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/.github/actions/test/action.yml +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/.github/scripts/step-status +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/.github/workflows/build-test.yml +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/.github/workflows/build.yml +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/.github/workflows/post-release-nightly-build.yml +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/.github/workflows/quality-check.yaml +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/.github/workflows/report.yml +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/.github/workflows/test-check.yaml +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/.github/workflows/upload.yml +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/.gitignore +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/LICENSE +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/Makefile +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/README.md +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/examples/bit_packing/ex_quantize_and_pack.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/examples/bit_packing/int4_config.json +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/examples/bitmask_compression.ipynb +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/examples/llama_1.1b/ex_config_quantization.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/examples/llama_1.1b/ex_llmcompressor_quantization.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/examples/llama_1.1b/example_quant_config.json +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/examples/llama_1.1b/example_quant_recipe.yaml +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/examples/quantize_and_pack_int4.ipynb +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/pyproject.toml +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/setup.cfg +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/setup.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/__init__.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/README.md +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/__init__.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/compressors/__init__.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/compressors/base.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/compressors/helpers.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/compressors/model_compressors/__init__.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/compressors/model_compressors/model_compressor.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/compressors/quantized_compressors/__init__.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/compressors/quantized_compressors/base.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/compressors/quantized_compressors/naive_quantized.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/compressors/quantized_compressors/nvfp4_quantized.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/compressors/quantized_compressors/pack_quantized.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/compressors/sparse_compressors/__init__.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/compressors/sparse_compressors/base.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/compressors/sparse_compressors/dense.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/compressors/sparse_compressors/sparse_24_bitmask.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/compressors/sparse_compressors/sparse_bitmask.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/compressors/sparse_quantized_compressors/__init__.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/compressors/sparse_quantized_compressors/marlin_24.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/config/__init__.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/config/base.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/config/dense.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/config/format.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/config/sparse_24_bitmask.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/config/sparse_bitmask.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/linear/__init__.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/linear/compressed_linear.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/logger.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/quantization/__init__.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/quantization/lifecycle/__init__.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/quantization/lifecycle/apply.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/quantization/lifecycle/compressed.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/quantization/lifecycle/helpers.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/quantization/quant_config.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/quantization/quant_metadata.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/quantization/utils/__init__.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/quantization/utils/helpers.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/registry/__init__.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/registry/registry.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/transform/__init__.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/transform/apply.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/transform/factory/__init__.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/transform/factory/base.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/transform/factory/hadamard.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/transform/factory/matrix_multiply.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/transform/factory/random_hadamard.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/transform/transform_args.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/transform/transform_config.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/transform/transform_scheme.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/transform/utils/__init__.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/transform/utils/hadamard.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/transform/utils/hadamards.safetensors +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/transform/utils/matrix.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/utils/__init__.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/utils/helpers.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/utils/internal.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/utils/match.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/utils/offload.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/utils/permutations_24.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/utils/safetensors_load.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/utils/semi_structured_conversions.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors/utils/type.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors.egg-info/dependency_links.txt +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors.egg-info/requires.txt +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/src/compressed_tensors.egg-info/top_level.txt +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/__init__.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_compressors/__init__.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_compressors/model_compressors/__init__.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_compressors/model_compressors/test_model_compressor.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_compressors/quantized_compressors/__init__.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_compressors/quantized_compressors/test_fp8_quant.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_compressors/quantized_compressors/test_int_quant.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_compressors/quantized_compressors/test_nvfp4_quant.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_compressors/quantized_compressors/test_pack_quant.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_compressors/sparse_compressors/__init__.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_compressors/sparse_compressors/test_bitmask.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_compressors/sparse_compressors/test_sparse_24_bitmask.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_compressors/sparse_quantized_compressors/__init__.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_compressors/sparse_quantized_compressors/test_marlin_24.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_configs/__init__.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_configs/test_base.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_configs/test_infer_quant.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_examples/test_bitmask_compression_ipynb.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_linear/__init__.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_linear/test_compressed_linear.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_quantization/__init__.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_quantization/lifecycle/__init__.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_quantization/lifecycle/conftest.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_quantization/lifecycle/test_apply.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_quantization/lifecycle/test_dynamic_lifecycle.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_quantization/lifecycle/test_enabled.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_quantization/lifecycle/test_forward.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_quantization/lifecycle/test_lifecycle.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_quantization/test_configs/__init__.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_quantization/test_configs/test_bit_depths.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_quantization/test_quant_args.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_quantization/test_quant_config.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_quantization/test_quant_scheme.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_registry.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_transform/conftest.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_transform/factory/test_correctness.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_transform/factory/test_memory.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_transform/factory/test_serialization.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_transform/test_transform_args.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_transform/test_transform_config.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_transform/test_transform_scheme.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_transform/utils/test_hadamard.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_utils/__init__.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_utils/test_helpers.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_utils/test_match.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_utils/test_offload.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_utils/test_safetensors_load.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/test_utils/test_type.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/tests/testing_utils.py +0 -0
- {compressed_tensors-0.12.3a20251008 → compressed_tensors-0.12.3a20251010}/utils/copyright.py +0 -0
|
@@ -49,6 +49,6 @@ jobs:
|
|
|
49
49
|
push_to_pypi: ${{ (github.event.schedule == '30 0 * * *') || inputs.push_to_pypi || false }}
|
|
50
50
|
test_configs: '[{"python":"3.11.4","label":"k8s-util","timeout":"40","code_coverage":true},
|
|
51
51
|
{"python":"3.10.12","label":"k8s-util","timeout":"40"},
|
|
52
|
-
{"python":"3.
|
|
52
|
+
{"python":"3.13","label":"k8s-h100-solo","timeout":"40"},
|
|
53
53
|
{"python":"3.12.6","label":"k8s-a100-duo","timeout":"40"}]'
|
|
54
54
|
secrets: inherit
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: compressed-tensors
|
|
3
|
-
Version: 0.12.
|
|
3
|
+
Version: 0.12.3a20251010
|
|
4
4
|
Summary: Library for utilization of compressed safetensors of neural network models
|
|
5
5
|
Home-page: https://github.com/neuralmagic/compressed-tensors
|
|
6
6
|
Author: Neuralmagic, Inc.
|
|
@@ -330,7 +330,7 @@ def _process_quantization(
|
|
|
330
330
|
inv_perm = torch.argsort(perm)
|
|
331
331
|
output = output.index_select(-1, inv_perm)
|
|
332
332
|
|
|
333
|
-
else: # covers channel, token and
|
|
333
|
+
else: # covers tensor, channel, token, and attn_head strategies
|
|
334
334
|
if do_quantize:
|
|
335
335
|
output = _quantize(
|
|
336
336
|
x=x,
|
|
@@ -14,7 +14,7 @@
|
|
|
14
14
|
|
|
15
15
|
|
|
16
16
|
import logging
|
|
17
|
-
from typing import Optional, Tuple
|
|
17
|
+
from typing import Optional, Tuple, Union
|
|
18
18
|
|
|
19
19
|
import torch
|
|
20
20
|
from compressed_tensors.quantization import (
|
|
@@ -152,7 +152,7 @@ def initialize_qparams(
|
|
|
152
152
|
module: Module,
|
|
153
153
|
base_name: str,
|
|
154
154
|
quantization_args: QuantizationArgs,
|
|
155
|
-
observed_shape: Tuple[int],
|
|
155
|
+
observed_shape: Tuple[Union[int, None]],
|
|
156
156
|
observed_dtype: torch.dtype,
|
|
157
157
|
force_zero_point: bool = True,
|
|
158
158
|
):
|
|
@@ -199,7 +199,7 @@ def initialize_qparams(
|
|
|
199
199
|
expected_shape = (1,)
|
|
200
200
|
|
|
201
201
|
elif strategy == QuantizationStrategy.TOKEN:
|
|
202
|
-
|
|
202
|
+
raise ValueError("Cannot perform static token quantization")
|
|
203
203
|
|
|
204
204
|
elif strategy == QuantizationStrategy.CHANNEL:
|
|
205
205
|
if len(observed_shape) < 2:
|
|
@@ -234,6 +234,13 @@ def initialize_qparams(
|
|
|
234
234
|
num_cols = strategy_cdiv(observed_shape[-1], block_structure[-1], strategy)
|
|
235
235
|
expected_shape = (num_rows, num_cols)
|
|
236
236
|
|
|
237
|
+
elif strategy == QuantizationStrategy.ATTN_HEAD:
|
|
238
|
+
# (batch_size, num_attention_heads, seq_len, head_dim)
|
|
239
|
+
if len(observed_shape) < 3:
|
|
240
|
+
raise ValueError("Attention quant requires at least 3 observed dimensions")
|
|
241
|
+
|
|
242
|
+
expected_shape = (observed_shape[-3], 1, 1)
|
|
243
|
+
|
|
237
244
|
else:
|
|
238
245
|
assert False, f"Unknown strategy {strategy}"
|
|
239
246
|
|
|
@@ -101,6 +101,7 @@ class QuantizationStrategy(str, Enum):
|
|
|
101
101
|
BLOCK = "block"
|
|
102
102
|
TOKEN = "token"
|
|
103
103
|
TENSOR_GROUP = "tensor_group"
|
|
104
|
+
ATTN_HEAD = "attn_head"
|
|
104
105
|
|
|
105
106
|
|
|
106
107
|
class DynamicType(str, Enum):
|
|
@@ -263,6 +264,7 @@ class QuantizationArgs(BaseModel, use_enum_values=True):
|
|
|
263
264
|
actorder = model.actorder
|
|
264
265
|
dynamic = model.dynamic
|
|
265
266
|
observer = model.observer
|
|
267
|
+
dynamic = model.dynamic
|
|
266
268
|
|
|
267
269
|
# infer strategy
|
|
268
270
|
if strategy is None:
|
|
@@ -278,6 +280,12 @@ class QuantizationArgs(BaseModel, use_enum_values=True):
|
|
|
278
280
|
"strategy='group' and group_size = -1 for 'channel'"
|
|
279
281
|
)
|
|
280
282
|
|
|
283
|
+
# validate token strategy
|
|
284
|
+
if strategy == QuantizationStrategy.TOKEN and not dynamic:
|
|
285
|
+
raise ValueError(
|
|
286
|
+
"Cannot perform static token quantization, please use `dynamic=True`"
|
|
287
|
+
)
|
|
288
|
+
|
|
281
289
|
# validate group strategy
|
|
282
290
|
if strategy == QuantizationStrategy.GROUP:
|
|
283
291
|
if group_size is None or group_size <= 0:
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: compressed-tensors
|
|
3
|
-
Version: 0.12.
|
|
3
|
+
Version: 0.12.3a20251010
|
|
4
4
|
Summary: Library for utilization of compressed safetensors of neural network models
|
|
5
5
|
Home-page: https://github.com/neuralmagic/compressed-tensors
|
|
6
6
|
Author: Neuralmagic, Inc.
|
|
@@ -101,6 +101,7 @@ src/compressed_tensors/utils/semi_structured_conversions.py
|
|
|
101
101
|
src/compressed_tensors/utils/type.py
|
|
102
102
|
tests/__init__.py
|
|
103
103
|
tests/conftest.py
|
|
104
|
+
tests/mock_observer.py
|
|
104
105
|
tests/test_registry.py
|
|
105
106
|
tests/testing_utils.py
|
|
106
107
|
tests/test_compressors/__init__.py
|
|
@@ -134,6 +135,7 @@ tests/test_quantization/lifecycle/test_enabled.py
|
|
|
134
135
|
tests/test_quantization/lifecycle/test_forward.py
|
|
135
136
|
tests/test_quantization/lifecycle/test_initialize.py
|
|
136
137
|
tests/test_quantization/lifecycle/test_lifecycle.py
|
|
138
|
+
tests/test_quantization/lifecycle/test_static_lifecycle.py
|
|
137
139
|
tests/test_quantization/test_configs/__init__.py
|
|
138
140
|
tests/test_quantization/test_configs/test_bit_depths.py
|
|
139
141
|
tests/test_quantization/test_configs/test_strategies.py
|
|
@@ -29,27 +29,6 @@ def _get_dim(dim: int, value: torch.Tensor):
|
|
|
29
29
|
return reduce_dims
|
|
30
30
|
|
|
31
31
|
|
|
32
|
-
@pytest.fixture
|
|
33
|
-
def mock_per_token_calibration():
|
|
34
|
-
def update_scale_zp(module: torch.nn.Module, base_name: str, value: torch.Tensor):
|
|
35
|
-
quantization_scheme = getattr(module, "quantization_scheme", None)
|
|
36
|
-
if not quantization_scheme:
|
|
37
|
-
# no quantization scheme nothing to do
|
|
38
|
-
return
|
|
39
|
-
|
|
40
|
-
arg_name = "weights" if base_name == "weight" else f"{base_name}_activations"
|
|
41
|
-
args = getattr(quantization_scheme, arg_name, None)
|
|
42
|
-
|
|
43
|
-
dim = _get_dim({0, 1}, value)
|
|
44
|
-
min_val = torch.amin(value, dim=dim, keepdims=True)
|
|
45
|
-
max_val = torch.amax(value, dim=dim, keepdims=True)
|
|
46
|
-
scale, zp = calculate_qparams(min_val, max_val, args)
|
|
47
|
-
update_parameter_data(module, scale, f"{base_name}_scale")
|
|
48
|
-
update_parameter_data(module, zp, f"{base_name}_zero_point")
|
|
49
|
-
|
|
50
|
-
return update_scale_zp
|
|
51
|
-
|
|
52
|
-
|
|
53
32
|
@pytest.fixture
|
|
54
33
|
def mock_per_group_calibration():
|
|
55
34
|
def update_scale_zp(
|
|
@@ -0,0 +1,173 @@
|
|
|
1
|
+
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing,
|
|
10
|
+
# software distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from typing import Tuple
|
|
16
|
+
from weakref import ref
|
|
17
|
+
|
|
18
|
+
import torch
|
|
19
|
+
from compressed_tensors.quantization import QuantizationArgs, QuantizationStrategy
|
|
20
|
+
from compressed_tensors.quantization.utils import (
|
|
21
|
+
calculate_qparams,
|
|
22
|
+
generate_gparam,
|
|
23
|
+
strategy_cdiv,
|
|
24
|
+
)
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
class MockMinMaxObserver(torch.nn.Module):
|
|
28
|
+
def __init__(self, base_name: str, args: QuantizationArgs, module: torch.nn.Module):
|
|
29
|
+
super().__init__()
|
|
30
|
+
self.parent = ref(module)
|
|
31
|
+
self.base_name = base_name
|
|
32
|
+
self.args = args
|
|
33
|
+
|
|
34
|
+
# used for testing
|
|
35
|
+
self.min_vals = None
|
|
36
|
+
self.max_vals = None
|
|
37
|
+
|
|
38
|
+
def get_min_max(self, observed: torch.Tensor):
|
|
39
|
+
min_vals = torch.amin(observed, dim=(0, -1))
|
|
40
|
+
max_vals = torch.amax(observed, dim=(0, -1))
|
|
41
|
+
|
|
42
|
+
return min_vals, max_vals
|
|
43
|
+
|
|
44
|
+
def forward(self, observed: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
45
|
+
observed = flatten_for_quantization(observed, self.base_name, self.args)
|
|
46
|
+
|
|
47
|
+
self.min_vals, self.max_vals = self.get_min_max(observed)
|
|
48
|
+
|
|
49
|
+
scales, zero_points = calculate_qparams(
|
|
50
|
+
min_vals=self.min_vals,
|
|
51
|
+
max_vals=self.max_vals,
|
|
52
|
+
quantization_args=self.args,
|
|
53
|
+
global_scale=getattr(self.parent(), f"{self.base_name}_global_scale", None),
|
|
54
|
+
)
|
|
55
|
+
|
|
56
|
+
return scales, zero_points
|
|
57
|
+
|
|
58
|
+
def get_global_scale(self, observed: torch.Tensor):
|
|
59
|
+
observed = observed.reshape((1, 1, -1)) # per tensor reshape
|
|
60
|
+
min_vals, max_vals = self.get_min_max(observed)
|
|
61
|
+
global_scale = generate_gparam(min_vals, max_vals)
|
|
62
|
+
|
|
63
|
+
return global_scale
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
def flatten_for_quantization(
|
|
67
|
+
value: torch.Tensor, base_name: str, args: QuantizationArgs
|
|
68
|
+
) -> torch.Tensor:
|
|
69
|
+
if base_name == "weight":
|
|
70
|
+
return flatten_weight_for_quantization(value, args)
|
|
71
|
+
elif base_name in ("input", "output"):
|
|
72
|
+
return flatten_activation_for_quantization(value, args)
|
|
73
|
+
elif base_name in ("q", "k", "v"):
|
|
74
|
+
return flatten_attention_for_quantization(value, args)
|
|
75
|
+
else:
|
|
76
|
+
raise ValueError(f"Unknown quantization base name: {base_name}")
|
|
77
|
+
|
|
78
|
+
|
|
79
|
+
def flatten_weight_for_quantization(value: torch.Tensor, args: QuantizationArgs):
|
|
80
|
+
# value.shape = (num_rows, num_cols)
|
|
81
|
+
|
|
82
|
+
if args.strategy == QuantizationStrategy.TENSOR:
|
|
83
|
+
# (1, 1, num_weight_elems)
|
|
84
|
+
return value.reshape((1, 1, -1))
|
|
85
|
+
|
|
86
|
+
if args.strategy == QuantizationStrategy.TOKEN:
|
|
87
|
+
raise ValueError("Token quantization cannot be applied to weights")
|
|
88
|
+
|
|
89
|
+
if args.strategy == QuantizationStrategy.CHANNEL:
|
|
90
|
+
# (1, num_rows, 1, num_cols)
|
|
91
|
+
return value.unsqueeze(-2).unsqueeze(0)
|
|
92
|
+
|
|
93
|
+
if args.strategy in (QuantizationStrategy.GROUP, QuantizationStrategy.TENSOR_GROUP):
|
|
94
|
+
# (1, num_rows, num_groups, group_size)
|
|
95
|
+
return value.unflatten(-1, (-1, args.group_size)).unsqueeze(0)
|
|
96
|
+
|
|
97
|
+
if args.strategy == QuantizationStrategy.BLOCK:
|
|
98
|
+
# (1, num_block_rows, num_block_cols, block_width * block_height)
|
|
99
|
+
block_height, block_width = args.block_structure
|
|
100
|
+
num_rows, num_cols = value.shape
|
|
101
|
+
num_block_rows = strategy_cdiv(num_rows, block_height, args.strategy)
|
|
102
|
+
num_block_cols = strategy_cdiv(num_cols, block_width, args.strategy)
|
|
103
|
+
return (
|
|
104
|
+
value.reshape(
|
|
105
|
+
num_block_rows,
|
|
106
|
+
block_height,
|
|
107
|
+
num_block_cols,
|
|
108
|
+
block_width,
|
|
109
|
+
)
|
|
110
|
+
.transpose(1, 2)
|
|
111
|
+
.flatten(-2, -1)
|
|
112
|
+
.unsqueeze(0)
|
|
113
|
+
)
|
|
114
|
+
|
|
115
|
+
if args.strategy == QuantizationStrategy.ATTN_HEAD:
|
|
116
|
+
raise ValueError("attention head quantization cannot be applied to weights")
|
|
117
|
+
|
|
118
|
+
assert False, f"Unknown strategy {args.strategy}"
|
|
119
|
+
|
|
120
|
+
|
|
121
|
+
def flatten_activation_for_quantization(value: torch.Tensor, args: QuantizationArgs):
|
|
122
|
+
# value.shape = (batch_size, seq_len, hidden_dim)
|
|
123
|
+
|
|
124
|
+
if args.strategy == QuantizationStrategy.TENSOR:
|
|
125
|
+
# (batch_size * seq_len, 1, hidden_dim)
|
|
126
|
+
return value.reshape((-1, 1, value.size(-1)))
|
|
127
|
+
|
|
128
|
+
if args.strategy == QuantizationStrategy.TOKEN:
|
|
129
|
+
# (batch_size, seq_len, hidden_dim)
|
|
130
|
+
# warning: token quantization uses `compute_dynamic_scales_and_zp`
|
|
131
|
+
return value.flatten(2, -1)
|
|
132
|
+
|
|
133
|
+
if args.strategy == QuantizationStrategy.CHANNEL:
|
|
134
|
+
raise ValueError("Channel quantization cannot be applied to activations")
|
|
135
|
+
|
|
136
|
+
if args.strategy in (QuantizationStrategy.GROUP, QuantizationStrategy.TENSOR_GROUP):
|
|
137
|
+
# (batch_size * seq_len, num_groups, group_size)
|
|
138
|
+
# warning: group activation quantization uses compute_dynamic_scales_and_zp
|
|
139
|
+
return value.flatten(0, 1).unflatten(-1, (-1, args.group_size))
|
|
140
|
+
|
|
141
|
+
if args.strategy == QuantizationStrategy.BLOCK:
|
|
142
|
+
raise ValueError("Block quantization cannot be applied to activations")
|
|
143
|
+
|
|
144
|
+
if args.strategy == QuantizationStrategy.ATTN_HEAD:
|
|
145
|
+
raise ValueError("attention head quantization cannot be applied to linear acts")
|
|
146
|
+
|
|
147
|
+
assert False, f"Unknown strategy {args.strategy}"
|
|
148
|
+
|
|
149
|
+
|
|
150
|
+
def flatten_attention_for_quantization(value: torch.Tensor, args: QuantizationArgs):
|
|
151
|
+
# value.shape = (batch_size, num_heads, seq_len, head_dim)
|
|
152
|
+
|
|
153
|
+
if args.strategy == QuantizationStrategy.TENSOR:
|
|
154
|
+
# (batch_size * seq_len, 1, num_heads * head_dim)
|
|
155
|
+
return value.transpose(1, 2).flatten(0, 1).flatten(-2, -1).unsqueeze(-2)
|
|
156
|
+
|
|
157
|
+
if args.strategy == QuantizationStrategy.TOKEN:
|
|
158
|
+
raise ValueError("Token quantization cannot be applied to attention")
|
|
159
|
+
|
|
160
|
+
if args.strategy == QuantizationStrategy.CHANNEL:
|
|
161
|
+
raise ValueError("Channel quantization cannot be applied to attention")
|
|
162
|
+
|
|
163
|
+
if args.strategy in (QuantizationStrategy.GROUP, QuantizationStrategy.TENSOR_GROUP):
|
|
164
|
+
raise ValueError("Group quantization cannot be applied to attention")
|
|
165
|
+
|
|
166
|
+
if args.strategy == QuantizationStrategy.BLOCK:
|
|
167
|
+
raise ValueError("Block quantization cannot be applied to attention")
|
|
168
|
+
|
|
169
|
+
if args.strategy == QuantizationStrategy.ATTN_HEAD:
|
|
170
|
+
# (batch_size * seq_len, num_heads, 1, 1, head_dim)
|
|
171
|
+
return value.transpose(1, 2).flatten(0, 1).unsqueeze(-2).unsqueeze(-2)
|
|
172
|
+
|
|
173
|
+
assert False, f"Unknown strategy {args.strategy}"
|
|
@@ -176,10 +176,6 @@ def test_initialize_module_for_quantization_offloaded(
|
|
|
176
176
|
QuantizationArgs(strategy="block", block_structure=[2, 4]),
|
|
177
177
|
None,
|
|
178
178
|
),
|
|
179
|
-
(
|
|
180
|
-
QuantizationArgs(strategy="token"),
|
|
181
|
-
QuantizationArgs(strategy="token"),
|
|
182
|
-
),
|
|
183
179
|
],
|
|
184
180
|
)
|
|
185
181
|
def test_initialize_quantization_parameters(weights, input_activations):
|
|
@@ -238,9 +234,6 @@ def test_initialize_quantization_parameters(weights, input_activations):
|
|
|
238
234
|
# For activations or when block_structure is None
|
|
239
235
|
expected_shape = (1,)
|
|
240
236
|
|
|
241
|
-
elif args.strategy == QuantizationStrategy.TOKEN:
|
|
242
|
-
expected_shape = (1, 1)
|
|
243
|
-
|
|
244
237
|
if not args.dynamic:
|
|
245
238
|
assert getattr(layer, f"{q_param_name}_scale").shape == expected_shape
|
|
246
239
|
assert getattr(layer, f"{q_param_name}_zero_point").shape == expected_shape
|