compressed-tensors 0.10.2a20250612__tar.gz → 0.10.2a20250616__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (145) hide show
  1. {compressed_tensors-0.10.2a20250612/src/compressed_tensors.egg-info → compressed_tensors-0.10.2a20250616}/PKG-INFO +1 -1
  2. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/setup.py +1 -0
  3. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/transform/factory/hadamard.py +1 -1
  4. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/transform/factory/random_hadamard.py +1 -1
  5. compressed_tensors-0.10.2a20250616/src/compressed_tensors/transform/utils/hadamard.py +160 -0
  6. compressed_tensors-0.10.2a20250616/src/compressed_tensors/transform/utils/hadamards.safetensors +0 -0
  7. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/utils/offload.py +62 -12
  8. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/version.py +1 -1
  9. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616/src/compressed_tensors.egg-info}/PKG-INFO +1 -1
  10. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors.egg-info/SOURCES.txt +1 -0
  11. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_transform/utils/test_hadamard.py +38 -32
  12. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_utils/test_offload.py +97 -8
  13. compressed_tensors-0.10.2a20250612/src/compressed_tensors/transform/utils/hadamard.py +0 -161
  14. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/.github/.gitkeep +0 -0
  15. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/.github/actions/test/action.yml +0 -0
  16. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/.github/scripts/step-status +0 -0
  17. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/.github/workflows/build-test.yml +0 -0
  18. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/.github/workflows/build.yml +0 -0
  19. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/.github/workflows/report.yml +0 -0
  20. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/.github/workflows/test-check.yaml +0 -0
  21. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/.github/workflows/test.yml +0 -0
  22. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/.github/workflows/trigger-all.yml +0 -0
  23. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/.github/workflows/upload.yml +0 -0
  24. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/.gitignore +0 -0
  25. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/LICENSE +0 -0
  26. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/Makefile +0 -0
  27. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/README.md +0 -0
  28. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/examples/bit_packing/ex_quantize_and_pack.py +0 -0
  29. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/examples/bit_packing/int4_config.json +0 -0
  30. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/examples/bitmask_compression.ipynb +0 -0
  31. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/examples/llama_1.1b/ex_config_quantization.py +0 -0
  32. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/examples/llama_1.1b/ex_llmcompressor_quantization.py +0 -0
  33. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/examples/llama_1.1b/example_quant_config.json +0 -0
  34. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/examples/llama_1.1b/example_quant_recipe.yaml +0 -0
  35. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/examples/quantize_and_pack_int4.ipynb +0 -0
  36. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/pyproject.toml +0 -0
  37. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/setup.cfg +0 -0
  38. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/__init__.py +0 -0
  39. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/README.md +0 -0
  40. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/__init__.py +0 -0
  41. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/base.py +0 -0
  42. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/compressors/__init__.py +0 -0
  43. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/compressors/base.py +0 -0
  44. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/compressors/helpers.py +0 -0
  45. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/compressors/model_compressors/__init__.py +0 -0
  46. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/compressors/model_compressors/model_compressor.py +0 -0
  47. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/compressors/quantized_compressors/__init__.py +0 -0
  48. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/compressors/quantized_compressors/base.py +0 -0
  49. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/compressors/quantized_compressors/naive_quantized.py +0 -0
  50. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/compressors/quantized_compressors/nvfp4_quantized.py +0 -0
  51. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/compressors/quantized_compressors/pack_quantized.py +0 -0
  52. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/compressors/sparse_compressors/__init__.py +0 -0
  53. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/compressors/sparse_compressors/base.py +0 -0
  54. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/compressors/sparse_compressors/dense.py +0 -0
  55. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/compressors/sparse_compressors/sparse_24_bitmask.py +0 -0
  56. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/compressors/sparse_compressors/sparse_bitmask.py +0 -0
  57. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/compressors/sparse_quantized_compressors/__init__.py +0 -0
  58. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/compressors/sparse_quantized_compressors/marlin_24.py +0 -0
  59. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/config/__init__.py +0 -0
  60. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/config/base.py +0 -0
  61. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/config/dense.py +0 -0
  62. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/config/sparse_24_bitmask.py +0 -0
  63. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/config/sparse_bitmask.py +0 -0
  64. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/linear/__init__.py +0 -0
  65. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/linear/compressed_linear.py +0 -0
  66. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/quantization/__init__.py +0 -0
  67. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/quantization/lifecycle/__init__.py +0 -0
  68. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/quantization/lifecycle/apply.py +0 -0
  69. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/quantization/lifecycle/compressed.py +0 -0
  70. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/quantization/lifecycle/forward.py +0 -0
  71. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/quantization/lifecycle/helpers.py +0 -0
  72. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/quantization/lifecycle/initialize.py +0 -0
  73. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/quantization/quant_args.py +0 -0
  74. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/quantization/quant_config.py +0 -0
  75. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/quantization/quant_scheme.py +0 -0
  76. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/quantization/utils/__init__.py +0 -0
  77. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/quantization/utils/helpers.py +0 -0
  78. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/registry/__init__.py +0 -0
  79. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/registry/registry.py +0 -0
  80. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/transform/__init__.py +0 -0
  81. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/transform/factory/__init__.py +0 -0
  82. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/transform/factory/base.py +0 -0
  83. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/transform/factory/matrix_multiply.py +0 -0
  84. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/transform/transform_args.py +0 -0
  85. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/transform/transform_config.py +0 -0
  86. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/transform/transform_scheme.py +0 -0
  87. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/transform/utils/__init__.py +0 -0
  88. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/transform/utils/utils.py +0 -0
  89. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/utils/__init__.py +0 -0
  90. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/utils/helpers.py +0 -0
  91. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/utils/permutations_24.py +0 -0
  92. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/utils/permute.py +0 -0
  93. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/utils/safetensors_load.py +0 -0
  94. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors/utils/semi_structured_conversions.py +0 -0
  95. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors.egg-info/dependency_links.txt +0 -0
  96. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors.egg-info/requires.txt +0 -0
  97. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/src/compressed_tensors.egg-info/top_level.txt +0 -0
  98. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/__init__.py +0 -0
  99. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/conftest.py +0 -0
  100. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_compressors/__init__.py +0 -0
  101. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_compressors/model_compressors/__init__.py +0 -0
  102. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_compressors/model_compressors/test_model_compressor.py +0 -0
  103. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_compressors/quantized_compressors/__init__.py +0 -0
  104. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_compressors/quantized_compressors/test_fp8_quant.py +0 -0
  105. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_compressors/quantized_compressors/test_int_quant.py +0 -0
  106. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_compressors/quantized_compressors/test_nvfp4_quant.py +0 -0
  107. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_compressors/quantized_compressors/test_pack_quant.py +0 -0
  108. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_compressors/sparse_compressors/__init__.py +0 -0
  109. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_compressors/sparse_compressors/test_bitmask.py +0 -0
  110. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_compressors/sparse_compressors/test_sparse_24_bitmask.py +0 -0
  111. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_compressors/sparse_quantized_compressors/__init__.py +0 -0
  112. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_compressors/sparse_quantized_compressors/test_marlin_24.py +0 -0
  113. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_configs/__init__.py +0 -0
  114. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_configs/test_base.py +0 -0
  115. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_examples/test_bitmask_compression_ipynb.py +0 -0
  116. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_linear/__init__.py +0 -0
  117. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_linear/test_compressed_linear.py +0 -0
  118. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_quantization/__init__.py +0 -0
  119. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_quantization/lifecycle/__init__.py +0 -0
  120. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_quantization/lifecycle/conftest.py +0 -0
  121. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_quantization/lifecycle/test_apply.py +0 -0
  122. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_quantization/lifecycle/test_dynamic_lifecycle.py +0 -0
  123. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_quantization/lifecycle/test_enabled.py +0 -0
  124. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_quantization/lifecycle/test_forward.py +0 -0
  125. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_quantization/lifecycle/test_helpers.py +0 -0
  126. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_quantization/lifecycle/test_initialize.py +0 -0
  127. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_quantization/lifecycle/test_lifecycle.py +0 -0
  128. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_quantization/test_configs/__init__.py +0 -0
  129. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_quantization/test_configs/test_bit_depths.py +0 -0
  130. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_quantization/test_configs/test_strategies.py +0 -0
  131. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_quantization/test_quant_args.py +0 -0
  132. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_quantization/test_quant_config.py +0 -0
  133. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_quantization/test_quant_scheme.py +0 -0
  134. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_quantization/test_utils/test_helpers.py +0 -0
  135. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_registry.py +0 -0
  136. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_transform/factory/test_correctness.py +0 -0
  137. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_transform/factory/test_memory.py +0 -0
  138. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_transform/test_transform_args.py +0 -0
  139. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_transform/test_transform_config.py +0 -0
  140. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_transform/test_transform_scheme.py +0 -0
  141. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_utils/__init__.py +0 -0
  142. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_utils/test_helpers.py +0 -0
  143. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/test_utils/test_safetensors_load.py +0 -0
  144. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/tests/testing_utils.py +0 -0
  145. {compressed_tensors-0.10.2a20250612 → compressed_tensors-0.10.2a20250616}/utils/copyright.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: compressed-tensors
3
- Version: 0.10.2a20250612
3
+ Version: 0.10.2a20250616
4
4
  Summary: Library for utilization of compressed safetensors of neural network models
5
5
  Home-page: https://github.com/neuralmagic/compressed-tensors
6
6
  Author: Neuralmagic, Inc.
@@ -113,5 +113,6 @@ setup(
113
113
  extras_require=_setup_extras(),
114
114
  install_requires=_setup_install_requires(),
115
115
  package_dir={"": "src"},
116
+ package_data={"": ["transform/utils/hadamards.safetensors"]},
116
117
  packages=_setup_packages(),
117
118
  )
@@ -59,7 +59,7 @@ class HadamardFactory(TransformFactory):
59
59
  return HadamardTransform(weight, args)
60
60
 
61
61
  def _create_weight(self, size: int, dtype: dtype, device: device) -> Parameter:
62
- data = deterministic_hadamard_matrix(size)
62
+ data = deterministic_hadamard_matrix(size, dtype, device)
63
63
  data = data.to(dtype=dtype, device=device)
64
64
  return Parameter(data, requires_grad=self.scheme.requires_grad)
65
65
 
@@ -29,6 +29,6 @@ class RandomHadamardFactory(HadamardFactory):
29
29
  """
30
30
 
31
31
  def _create_weight(self, size: int, dtype: dtype, device: device) -> Parameter:
32
- data = random_hadamard_matrix(size, self.generator)
32
+ data = random_hadamard_matrix(size, dtype, device, self.generator)
33
33
  data = data.to(dtype=dtype, device=device)
34
34
  return Parameter(data, requires_grad=self.scheme.requires_grad)
@@ -0,0 +1,160 @@
1
+ # Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing,
10
+ # software distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import math
16
+ from pathlib import Path
17
+ from typing import Optional
18
+
19
+ import torch
20
+ from safetensors import safe_open
21
+
22
+
23
+ REPO_PATH = Path(__file__).parent / "hadamards.safetensors"
24
+
25
+
26
+ __all__ = ["random_hadamard_matrix", "deterministic_hadamard_matrix", "is_pow2"]
27
+
28
+
29
+ # note that hadamard matrix multiplication can be accelerated using a library such as
30
+ # https://github.com/Dao-AILab/fast-hadamard-transform/tree/master
31
+
32
+
33
+ def deterministic_hadamard_matrix(
34
+ size: int,
35
+ dtype: torch.dtype = torch.bfloat16,
36
+ device: torch.device = torch.device("cpu"),
37
+ ) -> torch.Tensor:
38
+ """
39
+ Construct an n-by-n Hadamard matrix, using Sylvester's construction.
40
+ `n` must be a power of 2.
41
+
42
+ Adapated from https://github.com/scipy/scipy/blob/v1.15.2/scipy/linalg/_special_matrices.py # noqa: E501
43
+
44
+ :param size: order of the matrix, must be a power of 2
45
+ :param dtype: data type of matrix
46
+ :param device: device to construct matrix on
47
+ :return: hadamard matrix of size `size`
48
+ """
49
+ if size <= 0:
50
+ raise ValueError("Cannot construct deterministic hadamard of size <= 0")
51
+
52
+ log2 = int(math.log2(size))
53
+ if size != 2**log2:
54
+ raise ValueError("Cannot construct deterministic hadamard of size != 2^n")
55
+
56
+ H = torch.tensor([[1]], dtype=dtype, device=device)
57
+
58
+ # Sylvester's construction
59
+ for _ in range(log2):
60
+ H = torch.vstack((torch.hstack((H, H)), torch.hstack((H, -H))))
61
+
62
+ return H / math.sqrt(size)
63
+
64
+
65
+ def random_hadamard_matrix(
66
+ size: int,
67
+ dtype: torch.dtype = torch.bfloat16,
68
+ device: torch.device = torch.device("cpu"),
69
+ gen: Optional[torch.Generator] = None,
70
+ ) -> torch.Tensor:
71
+ """
72
+ Produces a randomly generated Hadamard matrix. Differs from
73
+ `deterministic_hadamard_matrix` in that this function supports non powers of 2
74
+ and randomization using a seeded generator
75
+
76
+ Adapated from https://github.com/facebookresearch/SpinQuant/blob/main/utils/hadamard_utils.py # noqa: E501
77
+ Known matrices were retrieved from N. J. A. Sloane's Library of Hadamard Matrices http://www.neilsloane.com/hadamard/ # noqa: E501
78
+
79
+ :param size: The dimension of the hamadard matrix
80
+ :param dtype: data type of matrix
81
+ :param device: device to construct matrix on
82
+ :param gen: Optional generator random values
83
+ :return: randomly generated hadamard matrix
84
+ """
85
+ Q = torch.randint(low=0, high=2, size=(size,), generator=gen, dtype=dtype) # cpu
86
+ Q = Q.to(device=device)
87
+ Q = Q * 2 - 1
88
+ Q = torch.diag(Q)
89
+ return _matmul_hadU(Q) / math.sqrt(size)
90
+
91
+
92
+ def is_pow2(n: int) -> bool:
93
+ """
94
+ Check if a number is a power of 2
95
+
96
+ :param n: number to check
97
+ :return: True iff `n` is a power of 2
98
+ """
99
+ return n > 0 and (n & (n - 1) == 0)
100
+
101
+
102
+ def _fetch_hadamard_divisor(
103
+ n: int,
104
+ dtype: torch.dtype,
105
+ device: torch.device = torch.device("cpu"),
106
+ file_path: str = REPO_PATH,
107
+ ) -> Optional[torch.Tensor]:
108
+ """
109
+ Fetch a known hadamard matrix from the given file path. The returned matrix will
110
+ be of of size `k` such that `n / k` is a power of two. Return None if no such
111
+ matrix exists.
112
+
113
+ Note: This function reopens the safetensors file every time it is called.
114
+ This is technically inefficient, but a very small runtime cost and simpler
115
+ than forcing callers to manage the file open context
116
+
117
+ :param n: size of known hadamard matrix
118
+ :return: a known hadamard matrix of size `n` if one exists, else None
119
+ """
120
+ with safe_open(file_path, framework="pt", device=str(device)) as file:
121
+ divisors = sorted((int(key) for key in file.keys()), reverse=True)
122
+ for divisor in divisors:
123
+ if n % divisor == 0 and is_pow2(n // divisor):
124
+ return file.get_tensor(str(divisor)).to(dtype=dtype)
125
+
126
+ return None
127
+
128
+
129
+ def _matmul_hadU(X: torch.Tensor) -> torch.Tensor:
130
+ size = X.size(0)
131
+ dtype = X.dtype
132
+ device = X.device
133
+
134
+ # Check if we have the determined hadamard matrix
135
+ hadK = _fetch_hadamard_divisor(size, dtype, device=device)
136
+ if hadK is None:
137
+ raise ValueError(f"Cannot construct random hadamard matrix of size {size}")
138
+ K = hadK.size(0)
139
+
140
+ # Reshape diag matrix with randomized -1/+1
141
+ input = X.clone().view(-1, size, 1)
142
+ output = input.clone()
143
+ while input.shape[1] > K:
144
+ input = input.view(input.shape[0], input.shape[1] // 2, 2, input.shape[2])
145
+ output = output.view(input.shape)
146
+ output[:, :, 0, :] = input[:, :, 0, :] + input[:, :, 1, :]
147
+ output[:, :, 1, :] = input[:, :, 0, :] - input[:, :, 1, :]
148
+ output = output.view(input.shape[0], input.shape[1], -1)
149
+ (input, output) = (output, input)
150
+ assert input.shape[1] == K
151
+ del output
152
+
153
+ # Do not explicitly repeat - OOM
154
+ # input = torch.bmm(
155
+ # hadK.repeat(len(input), 1, 1).to(input.device).to(input.dtype), input)
156
+ # Use bcast instead
157
+ input = hadK.view(1, K, K).to(input) @ input
158
+
159
+ # normalize
160
+ return input.view(X.shape)
@@ -31,9 +31,10 @@ import contextlib
31
31
  import warnings
32
32
  from functools import wraps
33
33
  from operator import attrgetter
34
- from typing import Any, Callable, Dict, Iterable, Literal, Optional, Union
34
+ from typing import Any, Callable, Dict, Iterable, Literal, Optional, Tuple, Union
35
35
 
36
36
  import torch
37
+ from compressed_tensors.utils import patch_attr
37
38
 
38
39
 
39
40
  try:
@@ -83,6 +84,7 @@ __all__ = [
83
84
  "register_offload_module",
84
85
  "delete_offload_module",
85
86
  "offloaded_dispatch",
87
+ "disable_offloading",
86
88
  ]
87
89
 
88
90
 
@@ -204,9 +206,24 @@ def register_offload_parameter(
204
206
  has_onload = any(p.device != torch.device("meta") for p in module.parameters())
205
207
  module.register_parameter(name, parameter)
206
208
 
209
+ # do everything AlignDevicesHook.init_hook does
210
+ # https://github.com/huggingface/accelerate/blob/main/src/accelerate/hooks.py#L281
207
211
  if has_offloaded_params(module):
208
- weights_map = module._hf_hook.weights_map
209
- offload_to_weights_map(weights_map, name, parameter.data, offload_device)
212
+ hook: AlignDevicesHook = module._hf_hook
213
+ assert hook.weights_map is not None
214
+
215
+ # append to original_devices
216
+ hook.original_devices[name] = parameter.device
217
+
218
+ # append to weights map
219
+ offload_to_weights_map(hook.weights_map, name, parameter.data, offload_device)
220
+
221
+ # append to tied_params_map
222
+ offloaded = hook.weights_map[name]
223
+ if hook.tied_params_map is not None:
224
+ hook.tied_params_map[offloaded.data_ptr()] = {} # (1)
225
+
226
+ # perform offloading
210
227
  if not has_onload:
211
228
  set_module_tensor_to_device(module, name, "meta")
212
229
 
@@ -214,7 +231,7 @@ def register_offload_parameter(
214
231
  def update_offload_parameter(
215
232
  module: torch.nn.Module,
216
233
  name: str,
217
- data: Optional[torch.Tensor],
234
+ data: torch.Tensor,
218
235
  offload_device: Optional[Union[torch.device, Literal["disk"]]] = None,
219
236
  ):
220
237
  """
@@ -227,7 +244,7 @@ def update_offload_parameter(
227
244
  :param offload_device: device on which weight will be offloaded to. If None is
228
245
  provided, then infer device from parameters on module
229
246
  """
230
- param = getattr(module, name)
247
+ param: torch.nn.Parameter = getattr(module, name)
231
248
  if param.data.shape != data.shape:
232
249
  warnings.warn(
233
250
  f"Shape of parameter being updated {param.data.shape} does not match shape "
@@ -235,7 +252,7 @@ def update_offload_parameter(
235
252
  )
236
253
 
237
254
  # copy data into onloaded parameter if applicable
238
- if param.device != torch.device("meta"):
255
+ if param.device != torch.device("meta") and data is not param.data:
239
256
  param.data.copy_(data)
240
257
 
241
258
  # update offload dict
@@ -420,7 +437,6 @@ def register_offload_module(base: torch.nn.Module, name: str, module: torch.nn.M
420
437
  hook: AlignDevicesHook = base._hf_hook
421
438
  assert hook.offload
422
439
  assert hook.weights_map is not None
423
- assert hook.tied_params_map is not None
424
440
 
425
441
  # offloading kwargs for submodule
426
442
  place_submodules = False
@@ -435,7 +451,8 @@ def register_offload_module(base: torch.nn.Module, name: str, module: torch.nn.M
435
451
  module, include_buffers=offload_buffers, recurse=place_submodules
436
452
  ):
437
453
  offloaded = param.to(offload_device)
438
- hook.tied_params_map[offloaded.data_ptr()] = {} # (1)
454
+ if hook.tied_params_map is not None:
455
+ hook.tied_params_map[offloaded.data_ptr()] = {} # (1)
439
456
  offload_to_weights_map(hook.weights_map, f"{name}.{param_name}", offloaded)
440
457
 
441
458
  # if the parent places submodules, offload here
@@ -463,9 +480,6 @@ def register_offload_module(base: torch.nn.Module, name: str, module: torch.nn.M
463
480
 
464
481
  base.register_module(name, module)
465
482
 
466
- # (1): Since we cannot know which pointers are shared when we add parameters in an
467
- # online way, assume that all pointers are shared. This comes at no runtime cost
468
-
469
483
 
470
484
  def delete_offload_module(base: torch.nn.Module, name: str):
471
485
  """
@@ -501,7 +515,9 @@ def offloaded_dispatch(
501
515
  raise NotImplementedError("Disk offloading is not currently supported")
502
516
 
503
517
  # create weights map
504
- weights_map = OffloadedWeightsLoader(state_dict=module.state_dict(), device="cpu")
518
+ state_dict = module.state_dict()
519
+ state_dict = {key: val.to(offload_device) for key, val in state_dict.items()}
520
+ weights_map = OffloadedWeightsLoader(state_dict=state_dict, device=offload_device)
505
521
 
506
522
  # create tied params map
507
523
  tied_params = find_tied_parameters(module)
@@ -522,6 +538,36 @@ def offloaded_dispatch(
522
538
  return module
523
539
 
524
540
 
541
+ @contextlib.contextmanager
542
+ def disable_offloading():
543
+ """
544
+ Keep modules onloaded and disable offloading until this context exits.
545
+ Affects modules which have been hooked with accelerate's `AlignDevicesHook`
546
+ """
547
+ original_pre_forward = AlignDevicesHook.pre_forward
548
+ onloaded_modules: Dict[torch.nn.Module, Tuple[AlignDevicesHook, bool]] = dict()
549
+
550
+ # onload once and disable any future onloading/offloading steps
551
+ def keep_onload_pre_forward(self: AlignDevicesHook, module, *args, **kwargs):
552
+ ret = original_pre_forward(self, module, *args, **kwargs)
553
+ if module not in onloaded_modules:
554
+ onloaded_modules[module] = (self, self.offload)
555
+ self.offload = False
556
+ return ret
557
+
558
+ # use the patched pre_forward function within the context
559
+ with patch_attr(AlignDevicesHook, "pre_forward", keep_onload_pre_forward):
560
+ yield
561
+
562
+ # manually offload all modules that were onloaded
563
+ # update any parameters which may have changed
564
+ for module, (hook, offload) in onloaded_modules.items():
565
+ hook.offload = offload
566
+ for name, param in module.named_parameters():
567
+ update_offload_parameter(module, name, param.data)
568
+ hook.post_forward(module, None)
569
+
570
+
525
571
  """ Upstreamed Functions """
526
572
 
527
573
 
@@ -589,3 +635,7 @@ def align_module_device(
589
635
 
590
636
  else:
591
637
  yield
638
+
639
+
640
+ # (1): Since we cannot know which pointers are shared when we add parameters in an
641
+ # online way, assume that all pointers are shared. This has virtually no runtime cost
@@ -17,5 +17,5 @@ __version__: str
17
17
  __version_tuple__: VERSION_TUPLE
18
18
  version_tuple: VERSION_TUPLE
19
19
 
20
- __version__ = version = '0.10.2.a20250612'
20
+ __version__ = version = '0.10.2.a20250616'
21
21
  __version_tuple__ = version_tuple = (0, 10, 2)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: compressed-tensors
3
- Version: 0.10.2a20250612
3
+ Version: 0.10.2a20250616
4
4
  Summary: Library for utilization of compressed safetensors of neural network models
5
5
  Home-page: https://github.com/neuralmagic/compressed-tensors
6
6
  Author: Neuralmagic, Inc.
@@ -82,6 +82,7 @@ src/compressed_tensors/transform/factory/matrix_multiply.py
82
82
  src/compressed_tensors/transform/factory/random_hadamard.py
83
83
  src/compressed_tensors/transform/utils/__init__.py
84
84
  src/compressed_tensors/transform/utils/hadamard.py
85
+ src/compressed_tensors/transform/utils/hadamards.safetensors
85
86
  src/compressed_tensors/transform/utils/utils.py
86
87
  src/compressed_tensors/utils/__init__.py
87
88
  src/compressed_tensors/utils/helpers.py
@@ -13,46 +13,48 @@
13
13
  # limitations under the License.
14
14
 
15
15
 
16
- import numpy
17
16
  import pytest
18
17
  import torch
19
18
  from compressed_tensors.transform.utils.hadamard import (
20
- _get_had12,
21
- _get_had20,
22
19
  deterministic_hadamard_matrix,
20
+ is_pow2,
23
21
  random_hadamard_matrix,
24
22
  )
23
+ from tests.testing_utils import requires_gpu
25
24
 
26
25
 
27
- @pytest.mark.parametrize(
28
- "had_func",
29
- [
30
- _get_had12,
31
- _get_had20,
32
- ],
33
- )
34
- def test_packed_hadamard_compliant(had_func):
35
- had_matrix = had_func()
36
- size = had_matrix.size(0)
37
- # HH.T == nI
38
- product = had_matrix @ had_matrix.T
39
- assert torch.equal(product, size * torch.eye(size))
26
+ _sizes_to_test = [
27
+ 768, # gpt2 small
28
+ 1024, # gpt2 medium
29
+ 1280, # qwen_2_5_vl vision
30
+ 1600, # gpt2 xl
31
+ 2048, # gpt3 small
32
+ 3584, # qwen_2_5_vl
33
+ 3840, # qwen_2_5_vl vision qkv
34
+ 4096, # llama3
35
+ 7168, # deepseek_v3
36
+ 14336, # llama3 intermediate
37
+ 18432, # deepseek_v3 intermediate
38
+ 18944, # qwen_2_5_vl intermediate
39
+ ]
40
+ _atol = 1e-1 # bfloat16 is low precision for large matrices
40
41
 
41
42
 
42
- @pytest.mark.parametrize(
43
- "size",
44
- [4096, 2048],
45
- )
43
+ @requires_gpu
44
+ @pytest.mark.parametrize("size", _sizes_to_test)
46
45
  def test_random_hadamard_matrix_compliant(size):
47
- had_matrix = random_hadamard_matrix(size)
48
- product = torch.round(had_matrix @ had_matrix.T)
49
- assert torch.equal(product, torch.eye(size))
46
+ # (H / sqrt(n))(H.T / sqrt(n)) == I
47
+ matrix = random_hadamard_matrix(size, device="cuda")
48
+ product = matrix @ matrix.T
49
+ eye = torch.eye(size, dtype=product.dtype, device="cuda")
50
+ assert torch.allclose(product, eye, atol=_atol)
50
51
 
51
52
 
52
53
  def test_random_hadamard_generator():
54
+ # check that generation is deterministic with a seed
53
55
  generator = torch.Generator().manual_seed(42)
54
- one = random_hadamard_matrix(2048, generator)
55
- two = random_hadamard_matrix(2048, generator)
56
+ one = random_hadamard_matrix(2048, gen=generator)
57
+ two = random_hadamard_matrix(2048, gen=generator)
56
58
 
57
59
  one_true = torch.tensor(
58
60
  [
@@ -73,12 +75,16 @@ def test_random_hadamard_generator():
73
75
  assert torch.all(two[:3, :3].sign() == two_true.sign())
74
76
 
75
77
 
76
- @pytest.mark.parametrize(
77
- "size",
78
- [1024],
79
- )
78
+ @requires_gpu
79
+ @pytest.mark.parametrize("size", _sizes_to_test)
80
80
  def test_deterministic_hadamard_compliant(size):
81
- had_matrix = deterministic_hadamard_matrix(size)
81
+ if not is_pow2(size):
82
+ with pytest.raises(ValueError):
83
+ matrix = deterministic_hadamard_matrix(size, device="cuda")
84
+ return
85
+
82
86
  # (H / sqrt(n))(H.T / sqrt(n)) == I
83
- product = had_matrix @ had_matrix.T
84
- assert numpy.array_equal(product, numpy.eye(size))
87
+ matrix = deterministic_hadamard_matrix(size, device="cuda")
88
+ product = matrix @ matrix.T
89
+ eye = torch.eye(size, dtype=product.dtype, device="cuda")
90
+ assert torch.allclose(product, eye, atol=_atol)
@@ -19,6 +19,7 @@ from compressed_tensors.utils import (
19
19
  delete_offload_module,
20
20
  delete_offload_parameter,
21
21
  disable_hf_hook,
22
+ disable_offloading,
22
23
  get_execution_device,
23
24
  has_offloaded_params,
24
25
  offloaded_dispatch,
@@ -148,6 +149,47 @@ def test_register_offload_parameter():
148
149
  assert module.a.device == module.b.device == module.c.device == torch.device("meta")
149
150
 
150
151
 
152
+ @requires_accelerate()
153
+ @requires_gpu
154
+ def test_register_offload_parameter_hook_replacement():
155
+ module = ExampleModule()
156
+ parameter_c = torch.nn.Parameter(torch.tensor(1.0, device="cuda"))
157
+ parameter_d = torch.nn.Parameter(torch.tensor(1.0, device="cpu"))
158
+
159
+ offloaded_dispatch(module, "cuda")
160
+ register_offload_parameter(module, "c", parameter_c)
161
+ register_offload_parameter(module, "d", parameter_d)
162
+
163
+ with disable_hf_hook(module):
164
+ assert module.a.device == torch.device("cpu")
165
+ assert module.b.device == torch.device("cpu")
166
+ assert module.c.device == torch.device("cuda:0")
167
+ assert module.d.device == torch.device("cpu")
168
+
169
+ assert module.a.device == torch.device("meta")
170
+ assert module.b.device == torch.device("meta")
171
+ assert module.c.device == torch.device("meta")
172
+ assert module.d.device == torch.device("meta")
173
+ assert module._hf_hook.weights_map["a"].device == torch.device("cpu")
174
+ assert module._hf_hook.weights_map["b"].device == torch.device("cpu")
175
+ assert module._hf_hook.weights_map["c"].device == torch.device("cpu")
176
+ assert module._hf_hook.weights_map["d"].device == torch.device("cpu")
177
+
178
+
179
+ @requires_accelerate()
180
+ @requires_gpu
181
+ def test_register_offload_parameter_shared():
182
+ module = ExampleModule()
183
+ parameter = torch.nn.Parameter(torch.tensor(1.0))
184
+
185
+ offloaded_dispatch(module, "cuda")
186
+ register_offload_parameter(module, "c", parameter)
187
+ register_offload_parameter(module, "d", parameter)
188
+
189
+ with align_module_device(module):
190
+ assert module.c is module.d
191
+
192
+
151
193
  @requires_accelerate()
152
194
  def test_update_offload_parameter():
153
195
  from accelerate.hooks import attach_align_device_hook
@@ -397,15 +439,23 @@ def test_delete_offload_module(exec_device):
397
439
 
398
440
  @requires_gpu
399
441
  @requires_accelerate()
400
- @pytest.mark.parametrize("exec_device", [torch.device("cpu"), torch.device("cuda")])
401
- def test_offloaded_dispatch(exec_device):
442
+ @pytest.mark.parametrize(
443
+ "exec_device,offload_device",
444
+ [
445
+ (torch.device("cpu"), torch.device("cpu")),
446
+ (torch.device("cpu"), torch.device("cuda:0")),
447
+ (torch.device("cuda:0"), torch.device("cpu")),
448
+ (torch.device("cuda:0"), torch.device("cuda:0")),
449
+ ],
450
+ )
451
+ def test_offloaded_dispatch(exec_device, offload_device):
402
452
  # single module
403
- module = torch.nn.Linear(1, 2)
404
- module = offloaded_dispatch(module, exec_device)
453
+ module = torch.nn.Linear(1, 2, device=offload_device)
454
+ module = offloaded_dispatch(module, exec_device, offload_device)
405
455
  assert has_offloaded_params(module)
406
456
  assert module._hf_hook.offload
407
457
  assert module.weight.device == torch.device("meta")
408
- assert "weight" in module._hf_hook.weights_map
458
+ assert module._hf_hook.weights_map["weight"].device == offload_device
409
459
  assert module._hf_hook.tied_params_map is not None
410
460
 
411
461
  # can run
@@ -413,13 +463,13 @@ def test_offloaded_dispatch(exec_device):
413
463
 
414
464
  # model
415
465
  model = ExampleModel()
416
- model = offloaded_dispatch(model, exec_device)
466
+ model = offloaded_dispatch(model, exec_device, offload_device)
417
467
  assert not has_offloaded_params(model)
418
468
 
419
469
  assert has_offloaded_params(model.linear)
420
470
  assert model.linear._hf_hook.offload
421
471
  assert model.linear.weight.device == torch.device("meta")
422
- assert "weight" in model.linear._hf_hook.weights_map
472
+ assert model.linear._hf_hook.weights_map["weight"].device == offload_device
423
473
  assert model.linear._hf_hook.tied_params_map is not None
424
474
 
425
475
  # can run
@@ -429,4 +479,43 @@ def test_offloaded_dispatch(exec_device):
429
479
  parameter = torch.nn.Parameter(torch.tensor(1.0))
430
480
  register_offload_parameter(module, "new_param", parameter)
431
481
  assert module.new_param.device == torch.device("meta")
432
- assert module._hf_hook.weights_map["new_param"].device == torch.device("cpu")
482
+ assert module._hf_hook.weights_map["new_param"].device == offload_device
483
+
484
+
485
+ @requires_gpu
486
+ @requires_accelerate()
487
+ @pytest.mark.parametrize(
488
+ "exec_device,offload_device",
489
+ [
490
+ (torch.device("cpu"), torch.device("cpu")),
491
+ (torch.device("cpu"), torch.device("cuda:0")),
492
+ (torch.device("cuda:0"), torch.device("cpu")),
493
+ (torch.device("cuda:0"), torch.device("cuda:0")),
494
+ ],
495
+ )
496
+ def test_disable_offloading(exec_device, offload_device):
497
+ module = torch.nn.Linear(1, 2, device=exec_device)
498
+
499
+ # non-offloaded modules are unaffected
500
+ with disable_offloading():
501
+ output = module(torch.empty(1, device=exec_device))
502
+ assert module.weight.device == exec_device
503
+ assert output.device == exec_device
504
+
505
+ # offloaded modules stay on device until context exit
506
+ offloaded_dispatch(module, exec_device, offload_device)
507
+ assert module.weight.device == torch.device("meta")
508
+ assert module._hf_hook.weights_map["weight"].device == offload_device
509
+
510
+ with disable_offloading():
511
+ assert module.weight.device == torch.device("meta")
512
+ output = module(torch.empty(1, device=exec_device))
513
+ assert module.weight.device == exec_device
514
+ assert output.device == exec_device
515
+
516
+ output = module(torch.empty(1, device=exec_device))
517
+ assert module.weight.device == exec_device
518
+ assert output.device == exec_device
519
+
520
+ assert module.weight.device == torch.device("meta")
521
+ assert module._hf_hook.weights_map["weight"].device == offload_device