comfi-fast-grnn-torch 0.0.2__tar.gz → 0.0.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: comfi_fast_grnn_torch
3
- Version: 0.0.2
3
+ Version: 0.0.3
4
4
  Summary: A PyTorch implementation of Comfi-FastGRNN
5
5
  Author-email: Nicolas Arrieta Larraza <NIAL@bang-olufsen.dk>, Niels de Koeijer <NEMK@bang-olufsen.dk>
6
6
  License: MIT
@@ -12,7 +12,7 @@ Requires-Dist: libsegmenter==1.0.4
12
12
  Requires-Dist: torchinfo==1.8.0
13
13
  Requires-Dist: CRM_pytorch==0.1.0
14
14
 
15
- # fast-ulcnet-torch
15
+ # comfi-fast-grnn-torch
16
16
  Implements Comfi-FastGRNN in torch.
17
17
 
18
18
  ## Usage
@@ -26,21 +26,9 @@ Here is how to use the layer with default settings in a standard training loop:
26
26
  import torch
27
27
  from comfi_fast_grnn_torch import ComfiFastGRNN
28
28
 
29
- # 1. Initialize the layer
30
- # batch_first=True is the default for this implementation
31
- model = ComfiFastGRNN(
29
+ comfi_fgrnn = ComfiFastGRNN(
32
30
  input_size=32,
33
31
  hidden_size=64,
34
32
  num_layers=1
35
33
  )
36
-
37
- # 2. Create dummy input: (Batch Size, Sequence Length, Input Size)
38
- x = torch.randn(10, 50, 32)
39
-
40
- # 3. Forward pass
41
- # Returns output (all timesteps) and final hidden state
42
- output, h_n = model(x)
43
-
44
- print(f"Output shape: {output.shape}") # torch.Size([10, 50, 64])
45
- print(f"Hidden state shape: {h_n.shape}") # torch.Size([1, 10, 64])
46
34
  ```
@@ -1,4 +1,4 @@
1
- # fast-ulcnet-torch
1
+ # comfi-fast-grnn-torch
2
2
  Implements Comfi-FastGRNN in torch.
3
3
 
4
4
  ## Usage
@@ -12,21 +12,9 @@ Here is how to use the layer with default settings in a standard training loop:
12
12
  import torch
13
13
  from comfi_fast_grnn_torch import ComfiFastGRNN
14
14
 
15
- # 1. Initialize the layer
16
- # batch_first=True is the default for this implementation
17
- model = ComfiFastGRNN(
15
+ comfi_fgrnn = ComfiFastGRNN(
18
16
  input_size=32,
19
17
  hidden_size=64,
20
18
  num_layers=1
21
19
  )
22
-
23
- # 2. Create dummy input: (Batch Size, Sequence Length, Input Size)
24
- x = torch.randn(10, 50, 32)
25
-
26
- # 3. Forward pass
27
- # Returns output (all timesteps) and final hidden state
28
- output, h_n = model(x)
29
-
30
- print(f"Output shape: {output.shape}") # torch.Size([10, 50, 64])
31
- print(f"Hidden state shape: {h_n.shape}") # torch.Size([1, 10, 64])
32
20
  ```
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "comfi_fast_grnn_torch"
7
- version = "0.0.2"
7
+ version = "0.0.3"
8
8
  description = "A PyTorch implementation of Comfi-FastGRNN"
9
9
  readme = {file = "README.md", content-type = "text/markdown"}
10
10
  requires-python = ">=3.10"
@@ -0,0 +1 @@
1
+ from .ComfiFastGRNN import ComfiFastGRNN
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: comfi_fast_grnn_torch
3
- Version: 0.0.2
3
+ Version: 0.0.3
4
4
  Summary: A PyTorch implementation of Comfi-FastGRNN
5
5
  Author-email: Nicolas Arrieta Larraza <NIAL@bang-olufsen.dk>, Niels de Koeijer <NEMK@bang-olufsen.dk>
6
6
  License: MIT
@@ -12,7 +12,7 @@ Requires-Dist: libsegmenter==1.0.4
12
12
  Requires-Dist: torchinfo==1.8.0
13
13
  Requires-Dist: CRM_pytorch==0.1.0
14
14
 
15
- # fast-ulcnet-torch
15
+ # comfi-fast-grnn-torch
16
16
  Implements Comfi-FastGRNN in torch.
17
17
 
18
18
  ## Usage
@@ -26,21 +26,9 @@ Here is how to use the layer with default settings in a standard training loop:
26
26
  import torch
27
27
  from comfi_fast_grnn_torch import ComfiFastGRNN
28
28
 
29
- # 1. Initialize the layer
30
- # batch_first=True is the default for this implementation
31
- model = ComfiFastGRNN(
29
+ comfi_fgrnn = ComfiFastGRNN(
32
30
  input_size=32,
33
31
  hidden_size=64,
34
32
  num_layers=1
35
33
  )
36
-
37
- # 2. Create dummy input: (Batch Size, Sequence Length, Input Size)
38
- x = torch.randn(10, 50, 32)
39
-
40
- # 3. Forward pass
41
- # Returns output (all timesteps) and final hidden state
42
- output, h_n = model(x)
43
-
44
- print(f"Output shape: {output.shape}") # torch.Size([10, 50, 64])
45
- print(f"Hidden state shape: {h_n.shape}") # torch.Size([1, 10, 64])
46
34
  ```